Supplement to "Learning Individualized Treatment Rules with Many Treatments: A Supervised Clustering Approach Using Adaptive Fusion"

Haixu Ma
Department of Statistics and Operations Research
University of North Carolina at Chapel Hill
Chapel Hill, NC 27516
haixuma@live.unc.edu

Donglin Zeng
Department of Biostatistics
University of North Carolina at Chapel Hill
Chapel Hill, NC 27516
dzeng@email.unc.edu

Yufeng Liu
Department of Statistics and Operations Research
Department of Genetics
Department of Biostatistics
University of North Carolina at Chapel Hill
Chapel Hill, NC 27516
yfliu@email.unc.edu

In this supplementary material, we present additional implementation details for the algorithm, proof of theorems, and additional figures for simulations and real data analysis.

A Additional details for the algorithm

A. 1 Estimation of the main effect

We briefly discuss how to obtain the estimation of the main effect function $M_{0}(Z)$ based on the weighted parametric regression or nonparametric regression models. By the identification condition in model (1), we have

$$
M_{0}(Z)=\frac{\sum_{a=1}^{M} \mathbb{E}[Y \mid Z, A=a]}{M}=\mathbb{E}\left[\left.\frac{Y}{M p(A \mid Z)} \right\rvert\, Z\right]
$$

For parametric models, we assume the linear main effect $M_{0}(Z)=Z^{\top} \boldsymbol{\eta}$ where $\boldsymbol{\eta} \in \mathbb{R}^{p}$. Then, similar to [II] and [2], $\boldsymbol{\eta}$ can be estimated by the following ℓ_{1}-penalized inverse-probability weighted regression problem:

$$
\min _{\boldsymbol{\eta}}\left\{\mathbb{E}_{n}\left[\left(\frac{Y}{M p(A \mid Z)}-Z^{\top} \boldsymbol{\eta}\right)^{2}\right]+\lambda_{M_{0}}\|\boldsymbol{\eta}\|_{1}\right\}
$$

where the tuning parameter $\lambda_{M_{0}}$ can be selected using cross validation.
For nonparametric regression, we follow [3] to divide the training data into M folds based on the assigned treatment. Then $\widehat{\mathbb{E}}[Y \mid Z, A=a]$ is obtained from the regression forest [4] on $Y \sim Z$ with the dataset $\left\{\left(y_{i}, \boldsymbol{z}_{i}\right): a_{i}=a\right\}$. Finally, $\widehat{M}_{0}(Z)=\sum_{a \in \mathcal{A}} \widehat{\mathbb{E}}[Y \mid X, A=a] / M$. We refer to [3] for more discussions about the case of misspecifying the main effect, and the corresponding robust and efficient method to solve the misspecification problem.

A. 2 Implementation details for the adaptive proximal gradient algorithm

Recall that $\mathbf{U}=\operatorname{diag}\left(\mathbf{X}_{1}, \mathbf{X}_{2}, \ldots, \mathbf{X}_{M}\right) \in \mathbb{R}^{n \times M p}$ where $\mathbf{X}_{a} \in \mathbb{R}^{n_{a} \times p}$ is the submatrix of \mathbf{X} and the observations in \mathbf{X}_{a} are assigned to treatment a. Then we can rewrite $L_{n}(\boldsymbol{\beta})=\frac{1}{2}\|\mathbf{U} \boldsymbol{\beta}-\bar{y}\|_{2}^{2}$ where $\bar{y} \in \mathbb{R}^{n}$ is the vector of calculated residual. The gradient of $L_{n}(\boldsymbol{\beta})$ can be directed calculated by $\nabla L_{n}(\boldsymbol{\beta})=\mathbf{U}^{\top}\left(\mathbf{U}^{\top} \boldsymbol{\beta}-\bar{y}\right)$ with Lipschitz constant $l_{n}=\lambda_{\max }\left(\mathbf{U}^{\top} \mathbf{U}\right)$ where $\lambda_{\max }\left(\mathbf{U}^{\top} \mathbf{U}\right)$ is the maximum eigenvalue of $\mathbf{U}^{\top} \mathbf{U}$. In addition, we follow [5] to approximately calculate the proximal operator of P_{n} by solving the dual problem of $\operatorname{prox}_{s_{n} P_{n}}(\boldsymbol{\beta}):=\arg \min _{\overline{\boldsymbol{\beta}}}\left\{P_{n}(\overline{\boldsymbol{\beta}})+\frac{1}{2 s_{n}}\|\boldsymbol{\beta}-\boldsymbol{\beta}\|_{2}^{2}\right\}$ for any updated $\boldsymbol{\beta}$ and the step size $s_{n}>0$, with the accelerated projected gradient algorithm.
We use $\widehat{\boldsymbol{\beta}}^{(i)}$ to denote the estimation of $\boldsymbol{\beta}$ in the i-th iteration. Due to the usage of proximal gradient descent algorithm, the time and space complexities for our algorithm are both $\mathcal{O}\left(n^{2}\right)$, where n is the training sample size. The main steps of the proposed algorithm for SCAF are summarized as below. In particular, the experiments were run on a Linux-based computing server.

```
Algorithm 1: SCAF
    Step 1: Sort the observations based on the assigned treatment order.
    Step 2: Remove the main effect \(M_{0}(Z)\) and get residual \(\bar{y}\).
    Step 3: Implement group lasso to identify heterogeneous variables \(X\) from \(Z\).
    Step 4: Use adaptive fast proximal gradient algorithm to solve problem (6) of the main paper:
    (1) Obtain the initial point \(\boldsymbol{\beta}^{(0)}\) from Step 2 and set the desired tolerance \(\epsilon_{0}>0\);
    (2) Compute the Lipschitz constant \(l_{n}=\lambda_{\max }\left(\mathbf{U}^{\top} \mathbf{U}\right)\) and set the step-size \(s_{n}=1 / l_{n}, t_{0}=1\);
    (3) Let \(\widehat{\boldsymbol{\beta}}^{(0)}:=\boldsymbol{\beta}^{(0)}\) and set \(\boldsymbol{\omega}_{l, t}^{(0)}:=\min \left\{B_{\boldsymbol{\omega}}, 1 /\left\|\widehat{\boldsymbol{\beta}}_{l}^{(0)}-\widehat{\boldsymbol{\beta}}_{t}^{(0)}\right\|_{1}\right\}\) for \(P_{n}^{(0)}(\boldsymbol{\beta})(l, t \in \mathcal{A})\);
    (4) For \(i=0,1, \ldots, i_{\max }\), do:
        a. Compute \(\boldsymbol{\beta}^{(i+1)} \approx \operatorname{prox}_{s_{n} P_{n}^{(i)}}\left(\widehat{\boldsymbol{\beta}}^{(i)}-s_{n} \nabla L_{n}\left(\widehat{\boldsymbol{\beta}}^{(i)}\right)\right)[5]\);
        b. Update \(t_{i+1}:=\left(1+\sqrt{1+4 t_{i}^{2}}\right) / 2\);
        c. Perform FISTA [6] with \(\widehat{\boldsymbol{\beta}}^{(i+1)}:=\boldsymbol{\beta}^{(i+1)}+\frac{t_{i}-1}{t_{i+1}}\left(\boldsymbol{\beta}^{(i+1)}-\boldsymbol{\beta}^{(i)}\right)\);
        d. If \(\left\|\widehat{\boldsymbol{\beta}}^{(i+1)}-\widehat{\boldsymbol{\beta}}^{(i)}\right\| \leqslant \epsilon_{0}\), then end the loop;
        e. Update \(\boldsymbol{\omega}_{l, t}^{(i+1)}:=\min \left\{B_{\boldsymbol{\omega}}, 1 /\left\|\widehat{\boldsymbol{\beta}}_{l}^{(i+1)}-\widehat{\boldsymbol{\beta}}_{t}^{(i+1)}\right\|_{1}\right\}\) for \(P_{n}^{(i+1)}(\boldsymbol{\beta})(l, t \in \mathcal{A})\);
    (5) End of the main loop.
    Step 5: Obtain the estimated ITR \(\hat{D}(\boldsymbol{x}) \in \arg \max _{a \in \mathcal{A}} \boldsymbol{x}^{\top} \widehat{\boldsymbol{\beta}}_{a}\) for \(\boldsymbol{x} \in \mathcal{X}\).
```


B Proof of theorems

B. 1 Proof of Theorem 1

Note that under the true group structure, we have

$$
\bar{y}=\mathbf{H} \boldsymbol{\alpha}^{0}+\boldsymbol{\epsilon}
$$

Since $\widehat{\boldsymbol{\alpha}}^{o r}=\left(\mathbf{H}^{\top} \mathbf{H}\right)^{-1} \mathbf{H}^{\top} \bar{y}$, we have

$$
\widehat{\boldsymbol{\alpha}}^{o r}-\boldsymbol{\alpha}^{\mathbf{0}}=\left(\mathbf{H}^{\top} \mathbf{H}\right)^{-1} \mathbf{H}^{\top} \boldsymbol{\epsilon}
$$

So,

$$
\left\|\hat{\boldsymbol{\alpha}}^{o r}-\boldsymbol{\alpha}^{\mathbf{0}}\right\|_{\infty} \leqslant\left\|\left(\mathbf{H}^{\top} \mathbf{H}\right)^{-1}\right\|_{\infty}\left\|\mathbf{H}^{\top} \boldsymbol{\epsilon}\right\|_{\infty}
$$

We will bound $\left\|\left(\mathbf{H}^{\top} \mathbf{H}\right)^{-1}\right\|_{\infty}$ and $\left\|\mathbf{H}^{\top} \boldsymbol{\epsilon}\right\|_{\infty}$ respectively.
First,

$$
\begin{aligned}
\left\|\left(\mathbf{H}^{\top} \mathbf{H}\right)^{-1}\right\|_{2} & =\sqrt{\lambda_{\max }^{2}\left(\left(\mathbf{H}^{\top} \mathbf{H}\right)^{-1}\right)} \\
& =\frac{1}{\lambda_{\min }\left(\mathbf{H}^{\top} \mathbf{H}\right)} \\
& \leqslant C_{1}^{-1} N_{\min }^{-1}
\end{aligned}
$$

where the inequality is given by Assumption 2. Hence, we have

$$
\left\|\left(\mathbf{H}^{\top} \mathbf{H}\right)^{-1}\right\|_{\infty} \leqslant \sqrt{K_{n} p_{n}}\left\|\left(\mathbf{H}^{\top} \mathbf{H}\right)^{-1}\right\|_{2} \leqslant \sqrt{K_{n} p_{n}} C_{1}^{-1} N_{\min }^{-1}
$$

Second, for $\left\|\mathbf{H}^{\boldsymbol{\top}} \boldsymbol{\epsilon}\right\|_{\infty}$, denote \boldsymbol{H}_{j} as the j-th column of \mathbf{H}. We have

$$
\begin{aligned}
\operatorname{Pr}\left(\left\|\mathbf{H}^{\boldsymbol{\top}} \boldsymbol{\epsilon}\right\|_{\infty}>C \sqrt{n \log n}\right) & \leqslant \sum_{j=1}^{K_{n} p_{n}} \operatorname{Pr}\left(\left|\boldsymbol{H}_{j}^{\top} \boldsymbol{\epsilon}\right|>C \sqrt{n \log n}\right) \\
& \leqslant \sum_{j=1}^{K_{n} p_{n}} \operatorname{Pr}\left(\left|\boldsymbol{H}_{j}^{\top} \boldsymbol{\epsilon}\right|>C\left\|\boldsymbol{H}_{j}\right\|_{2} \sqrt{\log n}\right) \\
& \leqslant 2 K_{n} p_{n} \exp \left(-c_{1} C^{2} \log n\right)=2 K_{n} p_{n} n^{-c_{1} C^{2}}
\end{aligned}
$$

where the second and third inequalities come from $\left\|\boldsymbol{H}_{j}\right\|_{2} \leqslant \sqrt{n}$, Assumptions 1 and 3 .
Combining both parts and let $C=c_{1}^{-1 / 2}$ complete the proof.

B. 2 Proof of Theorem 2

We follow the proof framework of [7]. Denote $\mathcal{M}_{\mathcal{G}} \subset \mathbb{R}^{M_{n} p_{n}}$ to be parameter space that has true group structure, i.e., $\mathcal{M}_{\mathcal{G}}=\left\{\boldsymbol{\beta} \in \mathbb{R}^{M_{n} p_{n}}\right.$, s.t., $\boldsymbol{\beta}_{i}=\boldsymbol{\beta}_{j}$ for $\left.i, j \in \mathcal{G}_{k}, 1 \leqslant k \leqslant K\right\}$. Define the following two operators. (a) $T: \mathcal{M}_{\mathcal{G}} \rightarrow \mathbb{R}^{K_{n} p_{n}}$ and $T(\boldsymbol{\beta})$ is the $K_{n} p_{n}$-dimensional vector whose k-th p_{n}-dimensional vector is the common value of $\boldsymbol{\beta}_{i}$ for $i \in \mathcal{G}_{k}$. (b) $T^{*}: \mathbb{R}^{M_{n} p_{n}} \rightarrow \mathbb{R}^{K_{n} p_{n}}$ and

$$
T^{*}(\boldsymbol{\beta})=\left\{\frac{\sum_{i \in \mathcal{G}_{k}} \boldsymbol{\beta}_{i}}{\left|\mathcal{G}_{k}\right|}\right\}_{k=1}^{K_{n}}
$$

In particular, the operator T will extract the distinct values of $\boldsymbol{\beta} \in \mathcal{M}_{\mathcal{G}}$. For any given vector $\boldsymbol{\beta} \in \mathbb{R}^{M_{n} p_{n}}$, the operator T^{*} will construct a corresponding vector $T^{*}(\boldsymbol{\beta})$ that belongs to $\in \mathcal{M}_{\mathcal{G}}$ by taking the averaging value among the treatments within the same group. Then we can check that for $\boldsymbol{\beta} \in \mathcal{M}_{\mathcal{G}}, T(\boldsymbol{\beta})=T^{*}(\boldsymbol{\beta})$. For any $\boldsymbol{\beta} \in \mathbb{R}^{M_{n} p_{n}}$, denote $\boldsymbol{\beta}^{*}=T^{-1} T^{*}(\boldsymbol{\beta}) \in \mathbb{R}^{M_{n} p_{n}}$ to be the vector expanded from $T^{*}(\boldsymbol{\beta})$ according to the true group structure.
Consider the following neighborhood of $\boldsymbol{\beta}^{0}$:

$$
\Theta_{n}=\left\{\boldsymbol{\beta}, \text { s.t. },\left\|\boldsymbol{\beta}-\boldsymbol{\beta}^{0}\right\|_{\infty} \leqslant \phi_{n}\right\}
$$

where ϕ_{n} is defined in Theorem 1. From Theorem 1, we know that there exists an event E_{1} where $\operatorname{Pr}\left(E_{1}\right) \geqslant 1-2 K_{n} p_{n} / n$, such that, conditional on E_{1}, we have $\widehat{\boldsymbol{\beta}}^{o r} \in \Theta_{n}$. Now we aim to prove the following two arguments.
(1) For any $\boldsymbol{\beta} \in \Theta_{n}$ such that $\boldsymbol{\beta}^{*} \neq \widehat{\boldsymbol{\beta}}^{o r}$, we have $Q_{n}\left(\boldsymbol{\beta}^{*} ; \lambda_{n}\right)>Q_{n}\left(\widehat{\boldsymbol{\beta}}^{o r} ; \lambda_{n}\right)$.
(2) There exists another event E_{2} where $\operatorname{Pr}\left(E_{2}\right) \geqslant 1-2 M_{n} p_{n} / n$, such that, conditional on the event $E_{1} \cap E_{2}$, we have $Q_{n}\left(\boldsymbol{\beta} ; \lambda_{n}\right) \geqslant Q_{n}\left(\boldsymbol{\beta}^{*} ; \lambda_{n}\right)$ for any $\boldsymbol{\beta} \in \Theta_{n}$.
If (1) and (2) hold, then we have, for any $\boldsymbol{\beta} \in \Theta_{n}$, conditional on $E_{1} \cap E_{2}$,

$$
Q_{n}\left(\boldsymbol{\beta} ; \lambda_{n}\right) \geqslant Q_{n}\left(\boldsymbol{\beta}^{*} ; \lambda_{n}\right)>Q_{n}\left(\widehat{\boldsymbol{\beta}}^{o r} ; \lambda_{n}\right)
$$

In other words, the oracle estimator $\widehat{\boldsymbol{\beta}}^{\text {or }}$ is the strictly local minimizer of $Q_{n}\left(\boldsymbol{\beta} ; \lambda_{n}\right)$ in the neighborhood Θ_{n} with probability greater than $1-2\left(K_{n} p_{n}+M_{n} p_{n}\right) / n$ when n is sufficiently large. Then the results follow.

Now, we start to prove (1) and (2).
Proof of (1): For any $\boldsymbol{\beta} \in \Theta_{n}$, denote $T^{-1} T^{*}(\boldsymbol{\beta})=\boldsymbol{\beta}^{*}=\left(\boldsymbol{\beta}_{1}^{*}, \ldots, \boldsymbol{\beta}_{M_{n}}^{*}\right)^{\top} \in \mathcal{M}_{\mathcal{G}}$ and denote $T^{*}(\boldsymbol{\beta})=\boldsymbol{\alpha}=\left(\boldsymbol{\alpha}_{1}, \cdots, \boldsymbol{\alpha}_{K_{n}}\right)^{\top}$. Note that the oracle estimator is the unique minimizer of the L_{2} loss, which is the first part of $Q_{n}\left(\boldsymbol{\beta} ; \lambda_{n}\right)$. Hence, we can only prove that for any $\boldsymbol{\beta}^{*} \in \Theta_{n} \cap \mathcal{M}_{\mathcal{G}}$, the penalty term

$$
\sum_{1 \leqslant l<t \leqslant M_{n}} p_{\lambda_{n}}\left(\left\|\boldsymbol{\beta}_{l}^{*}-\boldsymbol{\beta}_{t}^{*}\right\|_{1}\right)=\sum_{1 \leqslant k<k^{\prime} \leqslant K_{n}}\left|\mathcal{G}_{k} \| \mathcal{G}_{k^{\prime}}\right| p_{\lambda_{n}}\left(\left\|\boldsymbol{\alpha}_{k}-\boldsymbol{\alpha}_{k^{\prime}}\right\|_{1}\right),
$$

is a constant. To prove that, based on Assumption 4, we can only show that $\left\|\boldsymbol{\alpha}_{k}-\boldsymbol{\alpha}_{k^{\prime}}\right\|_{1} \geqslant \frac{a}{2} \lambda_{n}$ for any $k \neq k^{\prime}$. Note that

$$
\begin{aligned}
\left\|\boldsymbol{\alpha}_{k}-\boldsymbol{\alpha}_{k^{\prime}}\right\|_{1} \geqslant\left\|\boldsymbol{\alpha}_{k}-\boldsymbol{\alpha}_{k^{\prime}}\right\|_{\infty} & \geqslant\left\|\boldsymbol{\alpha}_{k}^{0}-\boldsymbol{\alpha}_{k^{\prime}}^{0}\right\|_{\infty}-2\left\|\boldsymbol{\alpha}-\boldsymbol{\alpha}^{0}\right\|_{\infty} \\
& =\left\|\boldsymbol{\alpha}_{k}^{0}-\boldsymbol{\alpha}_{k^{\prime}}^{0}\right\|_{\infty}-2 \sup _{1 \leqslant k \leqslant K_{n}}\left\|\sum_{i \in \mathcal{G}_{k}} \frac{\boldsymbol{\beta}_{i}-\boldsymbol{\beta}_{i}^{0}}{\left|\mathcal{G}_{k}\right|}\right\|_{\infty} \\
& \geqslant\left\|\boldsymbol{\alpha}_{k}^{0}-\boldsymbol{\alpha}_{k^{\prime}}^{0}\right\|_{\infty}-2 \sup _{1 \leqslant k \leqslant K_{n}} \sup _{i \in \mathcal{G}_{k}}\left\|\boldsymbol{\beta}_{i}-\boldsymbol{\beta}_{i}^{0}\right\|_{\infty} \\
& \geqslant\left\|\boldsymbol{\alpha}_{k}^{0}-\boldsymbol{\alpha}_{k^{\prime}}^{0}\right\|_{\infty}-2\left\|\boldsymbol{\beta}-\boldsymbol{\beta}^{0}\right\|_{\infty} \\
& \geqslant b_{n} / p_{n}-2 \phi_{n} \geqslant a \lambda_{n}-2 \phi_{n} \gg \frac{a}{2} \lambda_{n} \quad \text { (By Assumption 5). }
\end{aligned}
$$

Hence, the result follows.
Proof of (2): Recall the definition of $L_{n}(\boldsymbol{\beta})$ in (7) and recall that

$$
\mathbf{U}=\left(\begin{array}{llll}
\mathbf{X}_{1} & & & \\
& \mathbf{X}_{2} & & \\
& & \ddots & \\
& & & \mathbf{X}_{M}
\end{array}\right)_{n \times M p}
$$

For any $\boldsymbol{\beta} \in \Theta_{n}$, we have

$$
Q_{n}\left(\boldsymbol{\beta} ; \lambda_{n}\right)-Q_{n}\left(\boldsymbol{\beta}^{*} ; \lambda_{n}\right)=\underbrace{L_{n}(\boldsymbol{\beta})-L_{n}\left(\boldsymbol{\beta}^{*}\right)}_{\Gamma_{1}}+\underbrace{\sum_{1 \leqslant l<t \leqslant M_{n}} p_{\lambda_{n}}\left(\left\|\boldsymbol{\beta}_{l}-\boldsymbol{\beta}_{t}\right\|_{1}\right)-\sum_{1 \leqslant l<t \leqslant M_{n}} p_{\lambda_{n}}\left(\left\|\boldsymbol{\beta}_{l}^{*}-\boldsymbol{\beta}_{t}^{*}\right\|_{1}\right)}_{\Gamma_{2}} .
$$

By Taylor expansion,

$$
\Gamma_{1}=-\left[\mathbf{U}^{\top} \bar{y}-\mathbf{U}^{\top} \mathbf{U} \overline{\boldsymbol{\beta}}\right]^{\top}\left(\boldsymbol{\beta}-\boldsymbol{\beta}^{*}\right),
$$

where $\overline{\boldsymbol{\beta}}=\xi \boldsymbol{\beta}+(1-\xi) \boldsymbol{\beta}^{*}$ and $\xi \in(0,1)$. For the gradient part, let

$$
\boldsymbol{w}=\left(\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{M_{n}}\right)^{\top}:=\mathbf{U}^{\top} \bar{y}-\mathbf{U}^{\top} \mathbf{U} \overline{\boldsymbol{\beta}}
$$

where $\boldsymbol{w}_{m} \in \mathbb{R}^{p_{n}}$ for any $m=1, \ldots, M_{n}$. Then

$$
\Gamma_{1}=-\boldsymbol{w}^{\boldsymbol{\top}}\left(\boldsymbol{\beta}-\boldsymbol{\beta}^{*}\right)
$$

$$
\begin{aligned}
& =-\sum_{k=1}^{K_{n}} \sum_{i \in \mathcal{G}_{k}} \sum_{j \in \mathcal{G}_{k}} \frac{\boldsymbol{w}_{i}^{\top}\left(\boldsymbol{\beta}_{i}-\boldsymbol{\beta}_{j}\right)}{\left|\mathcal{G}_{k}\right|} \\
& =-\sum_{k=1}^{K_{n}} \sum_{i \in \mathcal{G}_{k}} \sum_{j \in \mathcal{G}_{k}} \frac{\left(\boldsymbol{w}_{j}-\boldsymbol{w}_{i}\right)^{\top}\left(\boldsymbol{\beta}_{j}-\boldsymbol{\beta}_{i}\right)}{2\left|\mathcal{G}_{k}\right|} \\
& =-\sum_{k=1}^{K_{n}} \sum_{i, j \in \mathcal{G}_{k}, i<j} \frac{\left(\boldsymbol{w}_{j}-\boldsymbol{w}_{i}\right)^{\top}\left(\boldsymbol{\beta}_{j}-\boldsymbol{\beta}_{i}\right)}{\left|\mathcal{G}_{k}\right|} \\
& \geqslant-\sum_{k=1}^{K_{n}} \sum_{i, j \in \mathcal{G}_{k}, i<j} \frac{\left\|\boldsymbol{w}_{j}-\boldsymbol{w}_{i}\right\|_{\infty}\left\|\boldsymbol{\beta}_{j}-\boldsymbol{\beta}_{i}\right\|_{1}}{\left|\mathcal{G}_{k}\right|} \\
& \geqslant-\sum_{k=1}^{K_{n}} \sum_{i, j \in \mathcal{G}_{k}, i<j} \frac{2\|\boldsymbol{w}\|_{\infty}\left\|\boldsymbol{\beta}_{j}-\boldsymbol{\beta}_{i}\right\|_{1}}{\left|\mathcal{G}_{k}\right|} .
\end{aligned}
$$

Note that based on the definition of \boldsymbol{w}, we have

$$
\begin{aligned}
\|\boldsymbol{w}\|_{\infty} & \leqslant\left\|\mathbf{U}^{\top} \mathbf{U}\left(\boldsymbol{\beta}_{0}-\overline{\boldsymbol{\beta}}\right)\right\|_{\infty}+\left\|\mathbf{U}^{\top} \boldsymbol{\epsilon}\right\|_{\infty} \\
& \leqslant \mathcal{O}\left(K_{n} p_{n} \phi_{n}\right)+\left\|\mathbf{U}^{\top} \boldsymbol{\epsilon}\right\|_{\infty} .
\end{aligned}
$$

Similar to the previous proof, we have $\operatorname{Pr}\left(\left\|\mathbf{U}^{\top} \boldsymbol{\epsilon}\right\|_{\infty} \leqslant \mathcal{O}(\sqrt{n \log n})\right) \geqslant 1-2 M_{n} p_{n} / n$. Hence, we have

$$
\Gamma_{1} \geqslant-\sum_{k=1}^{K_{n}} \sum_{i, j \in \mathcal{G}_{k}, i<j} \frac{\mathcal{O}(\sqrt{n \log n})\left\|\boldsymbol{\beta}_{j}-\boldsymbol{\beta}_{i}\right\|_{1}}{\left|\mathcal{G}_{k}\right|}
$$

with probability at least $1-2 M_{n} p_{n} / n$.
For Γ_{2}, note that for treatments i, j that belong to two different groups \mathcal{G}_{k} and $\mathcal{G}_{k^{\prime}}$, we have

$$
\left\|\boldsymbol{\beta}_{i}-\boldsymbol{\beta}_{j}\right\|_{1} \geqslant\left\|\boldsymbol{\beta}_{i}-\boldsymbol{\beta}_{j}\right\|_{\infty} \geqslant\left\|\boldsymbol{\beta}_{i}^{0}-\boldsymbol{\beta}_{j}^{0}\right\|_{\infty}-2\left\|\boldsymbol{\beta}-\boldsymbol{\beta}^{0}\right\|_{\infty} \geqslant b_{n} / p_{n}-2 \phi_{n} \geqslant a \lambda_{n}-2 \phi_{n} \gg \frac{a}{2} \lambda_{n} .
$$

In addition, since $\boldsymbol{\beta} \in \Theta_{n}$, we have $\boldsymbol{\beta}^{*} \in \Theta_{n}$ as well. Hence, with similar derivations, we have $\left\|\boldsymbol{\beta}_{i}^{*}-\boldsymbol{\beta}_{j}^{*}\right\|_{1} \gg \frac{a}{2} \lambda_{n}$. Based on Assumption 4,

$$
\sum_{i \in \mathcal{G}_{k}, j \in \mathcal{G}_{k^{\prime}}, k \neq k^{\prime}} p_{\lambda_{n}}\left(\left\|\boldsymbol{\beta}_{i}-\boldsymbol{\beta}_{j}\right\|_{1}\right)-\sum_{i \in \mathcal{G}_{k}, j \in \mathcal{G}_{k^{\prime}}, k \neq k^{\prime}} p_{\lambda_{n}}\left(\left\|\boldsymbol{\beta}_{i}^{*}-\boldsymbol{\beta}_{j}^{*}\right\|_{1}\right)=0
$$

Therefore, only the treatments that belong to the same group contribute to Γ_{2}. According to the same calculation in the proof of Theorem 2 from [7], we have

$$
\begin{aligned}
\Gamma_{2} & =\sum_{k=1}^{K_{n}} \sum_{i, j \in \mathcal{G}_{k}, i<j} p_{\lambda_{n}}\left(\left\|\boldsymbol{\beta}_{i}-\boldsymbol{\beta}_{j}\right\|_{1}\right)-\sum_{k=1}^{K} \sum_{i, j \in \mathcal{G}_{k}, i<j} p_{\lambda_{n}}\left(\left\|\boldsymbol{\beta}_{i}^{*}-\boldsymbol{\beta}_{j}^{*}\right\|_{1}\right) \\
& \geqslant \sum_{k=1}^{K_{n}} \sum_{i, j \in \mathcal{G}_{k}, i<j} p_{\lambda_{n}}^{\prime}\left(\left\|\overline{\boldsymbol{\beta}}_{i}-\overline{\boldsymbol{\beta}}_{j}\right\|_{1}\right)\left\|\boldsymbol{\beta}_{i}-\boldsymbol{\beta}_{j}\right\|_{1} .
\end{aligned}
$$

Combining the bound for Γ_{1} and Γ_{2}, we have

$$
\begin{aligned}
Q_{n}\left(\boldsymbol{\beta} ; \lambda_{n}\right)-Q_{n}\left(\boldsymbol{\beta}^{*} ; \lambda_{n}\right) & =\Gamma_{1}+\Gamma_{2} \\
& \geqslant \sum_{k=1}^{K_{n}} \sum_{i, j \in \mathcal{G}_{k}, i<j}\left(p_{\lambda_{n}}^{\prime}\left(\left\|\overline{\boldsymbol{\beta}}_{i}-\overline{\boldsymbol{\beta}}_{j}\right\|_{1}\right)-\frac{\mathcal{O}(\sqrt{n \log n})}{\left|\mathcal{G}_{k}\right|}\right)\left\|\boldsymbol{\beta}_{i}-\boldsymbol{\beta}_{j}\right\|_{1} .
\end{aligned}
$$

Note that $\left\|\overline{\boldsymbol{\beta}}_{i}-\overline{\boldsymbol{\beta}}_{j}\right\|_{1} \leqslant\left\|\overline{\boldsymbol{\beta}}_{i}-\boldsymbol{\beta}_{i}^{0}\right\|_{1}+\left\|\overline{\boldsymbol{\beta}}_{j}-\boldsymbol{\beta}_{j}^{0}\right\|_{1} \leqslant 2 \phi_{n}$. Hence, based on Assumption 4, $p_{\lambda_{n}}^{\prime}\left(\left\|\overline{\boldsymbol{\beta}}_{i}-\overline{\boldsymbol{\beta}}_{j}\right\|_{1}\right) \geqslant \mathcal{O}(\sqrt{n \log n}) / \inf _{1 \leqslant k \leqslant K_{n}}\left|\mathcal{G}_{k}\right|$. This completes the proof.

C Additional Figures

D PDX Data

The PDX data we used in real data analysis can be downloaded from https://www.tandfonline. com/doi/suppl/10.1080/01621459.2020.1828091?scroll=top.

Figure C.1: Boxplots of misclassification rate based on the testing data in simulations.

Figure C.2: Ratio of recovering the true group structure among 200 replications in simulations.

Figure C.3: Boxplots of empirical value for SCAF (with/without group-lasso step) in Scenario 1.

Figure C.4: Path of empirical value on the testing data as λ increases in PDX study. The red vertical dotted lines show the best tuned λ using cross-validation.

References

[1] Xin Zhou, Nicole Mayer-Hamblett, Umer Khan, and Michael R Kosorok. Residual weighted learning for estimating individualized treatment rules. Journal of the American Statistical Association, 112(517):169-187, 2017.
[2] Ying Liu, Yuanjia Wang, Michael R Kosorok, Yingqi Zhao, and Donglin Zeng. Augmented outcome-weighted learning for estimating optimal dynamic treatment regimens. Statistics in medicine, 37(26):3776-3788, 2018.
[3] Weibin Mo and Yufeng Liu. Efficient learning of optimal individualized treatment rules for heteroscedastic or misspecified treatment-free effect models. arXiv preprint arXiv:2109.02570, 2021.
[4] Susan Athey, Julie Tibshirani, and Stefan Wager. Generalized random forests. The Annals of Statistics, 47(2):1148-1178, 2019.
[5] Jingxiang Chen, Quoc Tran-Dinh, Michael R Kosorok, and Yufeng Liu. Identifying heterogeneous effect using latent supervised clustering with adaptive fusion. Journal of Computational and Graphical Statistics, 30(1):43-54, 2021.
[6] Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM journal on imaging sciences, 2(1):183-202, 2009.
[7] Shujie Ma and Jian Huang. A concave pairwise fusion approach to subgroup analysis. Journal of the American Statistical Association, 112(517):410-423, 2017.

