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Abstract

Learning an optimal Individualized Treatment Rule (ITR) is a very important prob-
lem in precision medicine. This paper is concerned with the challenge when the
number of treatment arms is large, and some groups of treatments in the large treat-
ment space may work similarly for the patients. Motivated by the recent develop-
ment of supervised clustering, we propose a novel adaptive fusion based method
to cluster the treatments with similar treatment effects together and estimate the
optimal ITR simultaneously through a single convex optimization. The problem is
formulated as balancing loss`penalty terms with a tuning parameter, which allows
the entire solution path of the treatment clustering process to be clearly visualized
hierarchically. For computation, we propose an efficient algorithm based on accel-
erated proximal gradient and further conduct a novel group-lasso based algorithm
for variable selection to boost the performance. Moreover, we demonstrate the
theoretical guarantee of recovering the underlying true clustering structure of the
treatments for our method. Finally, we demonstrate the superior performance of
our method via both simulations and a real data application on cancer treatment,
which may assist the decision making process for doctors.

1 Introduction

Data-driven individualized decision making problems have received a lot of attentions in precision
medicine [1, 2, 3, 4]. Due to possible significant heterogeneity of treatment effects among individ-
uals, it is necessary for decision makers to precisely tailor the treatment decision rules to different
subgroups of individuals rather than simply implement the traditional “one size fits all” medical
procedures. The main goal of the paper is to recommend the optimal Individualized Treatment Rule
(ITR), mapping from the covariate space based on patients’ characteristics to the treatment assign-
ment, that optimizes the expected value of a specified reward, known as the value function [5].

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



There are many existing machine learning based approaches for estimating the optimal ITR. Some
methods estimate the treatment effect related functions under some prespecified outcome mean mod-
els. The estimated ITR is induced by maximizing the estimated treatment effects conditional on
patients’ covariates. These methods include Q-learning [5], A-learning [6, 7], weighted ordinary
least square based method [8] and D-learning [9]. Some other methods circumvent modeling the
treatment effect functions by directly estimating the ITR that maximizes the Inverse Probability
Weighting (IPW) version of the value function [10, 11, 12, 13, 14]. To overcome the potential mis-
specification problems for these methods, [15, 16, 17, 18] proposed the doubly robust IPW methods.

Problem description. This paper is concerned with the following two questions: (1) Given a
large number of treatment options but limited observations of some specific treatments, how can we
effectively estimate the optimal ITR? (2) Some treatments in the large treatment space may work
similarly for patients. How can we identify this homogeneous treatment structure and cluster the
treatments with similar treatment effects together to reduce the dimension of the treatment space?

For question (1), the estimated ITR using either the model-based methods or the IPW-based methods
can become inaccurate with large variability and numerical instability due to the insufficient number
of observations for certain treatments. For question (2), it is common that the drugs are developed
based on intervening the same disease symptoms and mechanisms but may be produced by different
pharmaceutical companies. [16] and [19] directly combined the treatments with similar treatment
effects into certain classes of treatments based on some prior knowledge. In general, it is desirable to
propose data-driven methods to identify the homogeneous treatment structure automatically. How-
ever, to our best of knowledge, few existing methods deal with clustering treatments because most
literature only consider binary or a moderate number of treatments.

Related work and our method. Our goal is to cluster the heterogeneous treatment effects and
estimate the ITR under the Q-learning framework [20, 5]. Some methods have been developed
to address the problem of identifying subgroups with homogeneous relationships. In supervised
learning, with the special focus on exploring the homogeneous relations between the covariates and
response, [21], [22] and [23] estimated the group structure for the regression coefficients of covari-
ates with various fusion penalties. To identify subgroups from a heterogeneous population, [24]
and [25] assumed the population comes from a mixture of subgroups with their own distributions
and utilized the mixture model analysis to classify the observations. However, the mixture model
may cause misspecification problems in practice since it needs to specify the underlying distribution
for the data and the number of mixture components in the population. Moreover, these supervised
learning methods only utilized the information of response and covariates without considering the
treatment assignment. Hence, they are not applicable to the ITR problem. In unsupervised learning,
clustering analysis is a popular tool. It is usually used to detect the similarities of observations using
a predefined distance measure. In particular, a popular visualization method is to draw a dendrogram
of the hierarchical clustering using a “bottom up” approach [26].

Regarding to our problem of clustering the treatment effects, we would like to adapt the idea of
latent supervised clustering [27, 28]. We are interested in clustering the relationship characterized
by the regression of “response „ covariates ˆ treatments” where “ˆ” refers to the interactions be-
tween covariates and treatments. To achieve this goal, we model the treatment effects as the regres-
sion problem with treatment-specific coefficient vectors. We implement an adaptive pairwise fusion
penalty of the ℓ1´distance between the treatment-specific coefficient vectors in order to merge these
coefficient vectors with similar values together. This is equivalent to clustering the treatments with
similar treatment effects. We formulate the clustering process as a convex minimization problem in-
volving loss ` fusion penalty, with a tuning parameter balancing these two terms. With this convex
formulation, we achieve to maximize the goodness of fit for estimating the heterogeneous treatment
effects, while at the same time clustering the treatments without the need of prior knowledge.

Contribution. The main contributions of our paper can be summarized as follows. (1) We propose
the Supervised Clustering approach using the Adaptive Fusion (SCAF) to identify possible homo-
geneous group structure within the large treatment space and estimate the ITR in a more effective
way. (2) Compared with the two-step method [29], we simultaneously cluster the treatments with
similar treatment effects and estimate the optimal ITR. Our method combines the unsupervised and
supervised learning together within a single convex optimization problem. (3) We do not need to
specify the number of treatment clusters and the entire solution path of the clustering process can
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be visualized with a new dendrogram by using a “bottom up” approach. (4) Although [27] and [28]
also adopted the supervised clustering technique, they focused on identifying the heterogeneous
subpopulations and aimed to cluster the subject-specific regression coefficients. In contrast, SCAF
only needs to estimate the treatment-specific coefficients and the dimension of the estimated param-
eters is dramatically reduced. (5) For computation, we propose an effective algorithm to solve the
convex minimization problem based on the accelerated proximal gradient algorithm [30]. Specif-
ically, in order to boost the performance of our fusion algorithm, we propose a novel group-lasso
based algorithm to classify the covariates into homogeneous variables and heterogeneous variables
respectively. Thus, the fusion penalty only needs to be imposed to the heterogeneous variables that
have interaction with treatments. (6) For the theoretical study, we prove the consistency of the re-
gression coefficients and demonstrate that SCAF is able to recover the true underlying clustering
structure with probability 1. (7) We conduct both simulation studies and a real data analysis on
cancer treatment to illustrate the superior performance of SCAF.

2 Methodology

We first introduce the ITR problem under the regression-based framework. Consider the training
data pzi, ai, yiq for i “ 1, . . . , n as i.i.d. realizations from the joint distribution of pZ,A, Y q, where
zi P Z Ď Rp denotes the patient’s prognostic variables, ai P A “ t1, 2, . . . ,Mu is the treatment
assignment, and yi P R is the observed reward for each patient i. Let

`

Y paq
˘

aPA P RM be the
potential outcome. In addition, define the propensity scores of treatment ppa|zq :“ PpA “ a|Z “
zq for a P A. An ITR D P D is a map from the covariate space Z to the treatment space A.
Here, D Ď AZ is a prespecified ITR class. The value function of an ITR is defined as VpDq “

ErY
`

DpZq
˘

s. Assuming that a larger reward is better, our goal is to find the optimal ITR D˚ P D
that maximizes the value function, i.e., D˚ P argmaxDPD VpDq.

We assume the following identifiability assumptions are satisfied [31]: (1) consistency: Y “
ř

aPA IrA “ asY paq; (2) no unmeasured confounders: for each a P A, Y paq KK A | Z; (3)
positivity: ppa|zq ě ϵ ą 0 for any z P Z . Note that the no unmeasured confounders as-
sumption can be relaxed. If there are possible confounding issues as in the observational stud-
ies, our proposed method can be further generalized to deal with such issues by using propen-
sity scores. Based on the three identifiability assumptions, the value function can be written as
VpDq “ EZ

“
ř

aPA IrDpZq “ asErY |Z,A “ as
‰

. Therefore, the optimal ITR D˚ can be derived
from D˚pzq P argmaxaPA ErY |Z “ z, A “ as for each z P Z . This motivates us to estimate the
conditional treatment effect ErY |Z,As. Specifically, we consider the following regression model:

Y “ M0pZq `
ř

aPA IrA “ asT pZ; ζaq ` ϵ,

s.t.
ř

aPA T pZ; ζaq “ 0; Erϵ|Z,As “ 0; varrϵ|Z,As ă `8,
(1)

where the redundant function M0pZq is the main effect of treatments, and T pZ; ζaq is the inter-
action effect between treatment a and the covariates. We assume that the interaction effect for
each treatment a P A can be characterized by the treatment-specific parameter ζa P Rp that
has the same dimension as the covariates Z. Here, we consider that the covariates Z contain the
intercept term so that the treatment-specific effect is included in T pZ; ζaq. Note that a sum-to-
zero constraint for the interaction terms is assumed for identifiability of the regression function.
Given an estimated parameter pζ “ ppζ⊺

1 , . . . ,
pζ⊺
M q⊺, the estimated ITR can be equivalently written as

pDpzq P argmaxaPA T pz; pζaq for each z P Z .

With Model (1) in place, we propose our SCAF method to cluster the treatments with similar treat-
ment effects into a combined treatment group. To achieve this, we aim to estimate and fuse the
ζa’s into several groups. The group structure of the ζa’s can equivalently represent the cluster-
ing results for the treatments. Note that the main effect function M0pZq can be estimated from
the weighted parametric or nonparametric regression models [32]. More details about estimating
the main effect can be found in Appendix A.1 of supplementary materials. Denote the estimation
of M0 as xM0, and let Y be the residual Y ´ xM0pZq. In this article, we focus on linear interac-
tion effects, i.e., T pz, ζaq “ z⊺ζa. Let ζ “ pζ⊺

1 , . . . , ζ
⊺
M q⊺. Denote the true value of ζ to be

ζ0 “ pζ0⊺
1 , . . . , ζ0⊺

M q⊺ P RMp, where ζ0
a P Rp is the true parameter for treatment a “ 1, . . . ,M . In

order to estimate and cluster ζa’s, we consider the following optimization problem by imposing a
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pairwise fusion penalty to each pair of the treatment-specific parameters:

min
ζ

"

En

“

LpY ,
řM

a“1 IrA “ asZ⊺ζaq
‰

`
ř

1ďlătďM pλnp}ζl ´ ζt}1q

*

, (2)

where Lp¨, ¨q is the prespecified loss function to characterize the goodness of fit, }¨}1 is the ℓ1 norm
of a vector, pλn is the penalty function to encourage fusing pζa’s into groups, and λn is the tuning
parameter. Here, En denotes the empirical mean of the training data. Specifically, the optimization
problem (2) can be interpreted by maximizing the goodness of fit, while at the same time minimiz-
ing the heterogeneity among treatments. When the true treatment effects ζ0

a’s have homogeneous
clustering structure, the estimated parameter pζa’s are expected to recover this structure.

In practice, one may assume that only certain elements of Z P Rp (denoted as X P Rd) contribute
to the interaction term T pZ, ζaq while others (denoted as V P Rp´d) only show up in the main
effects M0pZq [28]. Without loss of generality, assume the first d components of Z are the hetero-
geneous variables X and the remaining p ´ d variables are the homogeneous variables V , i.e., Z “

pX⊺, V ⊺q⊺. Let the coefficients for treatment a be ζa “
`

pζa,1, . . . , ζa,dq, pζa,d`1 . . . , ζa,pq
˘⊺

“

pβ⊺
a ,γ

⊺
a q⊺, where ζa,k is the regression coefficient of covariate Zk (k “ 1, . . . , p), and βa and γa

are the coefficients for X and V respectively. By removing the main effect M0pZq and consider
the residual Y , the true regression coeffecient of V for each treatment should be 0, i.e., γ0

a “ 0
for all a P A. In this case, the penalty term should only be imposed on the coefficients of X , i.e.,
βa. If prior knowledge of whether the covariate belongs to X or V is unknown, we propose the
group-lasso based algorithm in Section 3 to classify Z into homogeneous variables V and heteroge-
neous variables X . Denote the training data as pxi,vi, ai, yiq for i “ 1, . . . , n, where xi P Rd and
vi P Rp´d. We rewrite Model (1) by decomposing T pZ; ζaq into two parts:

Y “ M0pX,V q `
ř

aPA IrA “ as
`

T pX;βaq ` T pV ;γaq
˘

` ϵ

“ M0pX,V q `
ř

aPA IrA “ asX⊺βa ` ϵ,

s.t.
ř

aPA X⊺βa “ 0; Erϵ|X,V,As “ 0; varrϵ|X,V,As ă `8.

(3)

After distinguishing X and V from the whole variables Z, the optimization problem in (2) becomes

pβpλnq “ argmin
β“pβ

⊺
1 ,...,β

⊺
M

q⊺

"

Qnpβ;λnq :“
1

2
En

“

LpY ,
M
ÿ

a“1

IrA “ asX⊺βaq
‰

`
ÿ

1ďlătďM

pλnp}βl ´ βt}1q

*

,

(4)
where Qnpβ;λnq is the optimization function, and pβpλnq is the estimated coefficients based on the
training data. Note that if we do not detect the homogeneous variables X from Z, then the pairwise
penalty in (2) would be applied to the p-dimensional vector ζa’s. For comparison, in (4), only the
subvector, i.e., the d-dimensional vectors βa’s are included in the penalty term. Our empirical results
show that our fusing algorithm becomes more effective to solve the optimization problem since the
low dimensional vector is easier to be merged together.

The minimization problem (4) can be viewed as the supervised clustering process. In the regression-
based Q-learning framework, supervised clustering can be interpreted by clustering the treatment
effects (relationships described by the regression model: reward Y „ covariates X ˆ treatments A)
with the penalized regression problem in (4), which is formulated by balancing loss ` penalty terms
with the tuning parameter λn. The pairwise fusion penalty encourages βa’s to merge together so
that the treatments with similar treatment effects can be clustered into the same group.

3 Algorithms for SCAF

Group-lasso based algorithm to classify Z into X and V . After obtaining the residual Y by
subtracting xM0pZq from Y , we propose the following group-lasso based algorithm to identify X
and V . Recall that ζ “ pζ⊺

1 , . . . , ζ
⊺
M q⊺ and ζa “ pζa,1, . . . , ζa,pq⊺ for treatment a P A. Note that

ζa,k is the regression coefficient of covariate Zk pk “ 1, . . . , pq for treatment a P A. We rewrite ζ
by sorting it based on the covariate order, i.e., ξ “ pξ⊺1 , . . . , ξ

⊺
p q⊺, where ξk “ pζ1,k, . . . , ζM,kq⊺ for

k “ 1, . . . , p, is the coefficient vector of Zk for all treatments. By the definition of the homogeneous
variables V P Rp´d, the true regression coefficient ζ0a,k “ 0 for all k “ d ` 1, . . . , p and all a P A.
Hence, the whole true coefficient vector can be written by the following sparse group structure,
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i.e, ξ0 “ pξ0
⊺

1 , . . . , ξ0
⊺

d ,0
⊺
, . . . ,0

⊺
q⊺, where the coefficients of each covariate are considered as a

group. This motivates us to implement group-lasso penalty to shrink the whole group vector ξk that
corresponds to covariate Zk to 0 to achieve group sparsity. If pξk “ 0, then Zk should be classified as
V , otherwise it should belong to X . In particular, we consider the following optimization problem:

pξ “ argmin
ξ

"

En

“
řM

a“1 IrA “ aspY ´
řp

k“1 ζa,kZkq2
‰

` λglasso
řp

k“1 }ξk}b

*

, (5)

where }¨}b is a given base norm for each ξk and λglasso is the tuning parameter. Typical choices of
base norms include the }¨}2 or }¨}8 norm, so that the group-lasso penalty term becomes the block
ℓ1{ℓ2 or ℓ1{ℓ8 norm, i.e., the ℓ1 norm on all groups with the ℓ2 or ℓ8 norm for each group.

Adaptive proximal gradient algorithm. Next we introduce our main algorithm to solve problem
(4). We consider the ℓ2-loss function for Lp¨, ¨q and choose the adaptive pairwise fusion penalty
weighted by ω for pλnp¨q. Let β “ pβ⊺

1 , . . . ,β
⊺
M q⊺. Specifically, the optimization problem (4) can

be written in the following compact form

pβpλnq “ argminβ
␣

Qnpβ;λnq :“ Lnpβq ` Pnpβq
(

, (6)

where

Lnpβq :“ 1
2En

“

pY ´
řM

a“1 IrA “ asX⊺βaq2
‰

, Pnpβq :“ λn

ř

1ďlătďM ωl,t }βl ´ βt}1 . (7)

Here, ωl,t is the weight of penalizing the ℓ1-distance between βl and βt. We iteratively solve the
problem coming from (6) and (7). In practice, we find that ωl,t “ min

␣

Bω, 1{} rβl ´ rβt}1
(

can be
a good option where rβ “ prβ⊺

1 , . . . ,
rβ⊺
M q⊺ is an estimate for β from the last iteration. The initial

estimate for β can be obtained from (5) in the group-lasso step. Moreover, Bω is a prespecified
constant to upper bound ωl,t to handle small distance of the pair prβl, rβtq. The adaptive weight helps
to adjust for the potential bias created by the ℓ1-penalty. Intuitively, large weight is expected to be
assigned to treatments within the same group, otherwise, small weights are implemented.

Note that both Lnpβq and Pnpβq are convex functions for β, and Lnpβq has Lipschitz gradient.
Thus, we can utilize the accelerated proximal gradient algorithm [30] to iteratively solve the prob-
lem coming from (6) and (7). Denote the gradient vector of Lnpβq as ∇Lnpβq and the Lipschitz
constant of ∇Lnpβq as ln. The computational cost of our algorithm mainly includes two follow-
ing parts: (1) calculate ln and evaluate the gradient ∇Lnpβq for the updated β; (2) compute the
proximal operator of Pn, which is defined as proxsnPn

pβq :“ argmin
sβ

␣

Pnpsβq ` 1
2sn

}sβ ´ β}22
(

,
for any updated β and the step size sn ą 0. For a fixed λn, the main steps of the proposed algo-
rithm for SCAF are summarized in Algorithm 1. The tuning parameter λn can be tuned by cross
validation based on the IPWE of the value function performed on the validation data. For z P Z ,
the final estimated ITR pDpzq is obtained from randomly sampling one treatment from the optimal
estimated treatment group with probability proportional to the propensity score. The tuning crite-
ria is En

“ Ip pDpZq“Aq

ppA|Zq
Y
‰L

En

“ Ip pDpZq“Aq

ppA|Zq

‰

, which is larger the better [33, 10]. Here, En denotes the
empirical mean for the validation data.

4 Theoretical properties

In this section, we establish the theoretical guarantee for consistency of the estimated regression
coefficients. For Model (3), consider the M treatments can be partitioned into K disjoint treatment
groups tGkuKk“1, where the effects of treatments within the same treatment group are identical. Here,
the group number K is typically unknown in practice. Let β0 “ pβ0⊺

1 ,β0⊺
2 , . . . ,β0⊺

M q⊺ be the true
treatment-specific regression coefficients in (3). The values of β0

a’s from the same treatment group
Gk for k “ 1, . . . ,K are the same. In particular, we aim to develop the convergence of pβpλnq Ñ β0

as n Ñ 8, which equivalently demonstrates consistency of recovering the true group structure.

Let X P Rnˆp be the design matrix of X . Denote Xa P Rnaˆp as the submatrix of X where the ob-
servations in Xa are assigned to treatment a. Here, na is the number of patients receiving treatment
a and hence

řM
a“1 na “ n. Further denote U “ diagpX1,X2, . . . ,XM q P RnˆMp. Under the true

group structure, let α0 “ pα0⊺
1 ,α0⊺

2 , . . . ,α0⊺
K q⊺ P RKp be the distinct values of β0, where α0

k P Rp
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Algorithm 1: SCAF

Step 1: Sort the observations based on the assigned treatment order.
Step 2: Remove the main effect M0pZq and calculate residual ȳ.
Step 3: Implement group-lasso to identify heterogeneous variables X from Z.
Step 4: Use adaptive fast proximal gradient algorithm to solve problem (6):

(1) Obtain the initial point βp0q from Step 2 and set the desired tolerance ϵ0 ą 0;
(2) Compute the Lipschitz constant ln “ λmaxpU⊺Uq and set the step-size sn “ 1{ln, t0 “ 1;
(3) Let pβp0q :“ βp0q and set ωp0q

l,t :“ mintBω, 1{} pβ
p0q

l ´ pβ
p0q
t }1u for P p0q

n pβq pl, t P Aq;
(4) For i “ 0, 1, . . . , imax, do:

a. Compute βpi`1q « prox
snP

piq
n

`

pβpiq ´ sn∇Lnp pβpiqq
˘

[28];
b. Update ti`1 :“ p1 `

a

1 ` 4t2i q{2;
c. Perform FISTA [34] with pβpi`1q :“ βpi`1q `

ti´1
ti`1

pβpi`1q ´ βpiqq;

d. If } pβpi`1q ´ pβpiq} ď ϵ0, then end the loop;
e. Update ω

pi`1q

l,t :“ mintBω, 1{} pβ
pi`1q

l ´ pβ
pi`1q
t }1u for P pi`1q

n pβq pl, t P Aq;
(5) End of the main loop.

Step 5: Obtain the estimated ITR pDpxq P argmaxaPA x⊺
pβa for x P X .

is the true treatment group-specific coefficients for k “ 1, . . . ,K . Denote Nk to be the number of
patients whose assigned treatments belong to treatment group Gk for k “ 1, . . . ,K . Then we have
řK

k“1 Nk “ n. In addition, we use |Gk| to denote the number of treatments in the k-th group where
řK

k“1 |Gk| “ M . For simplicity of notations, we assume that the treatment index has been well
sorted based on the true group structure. Then, under the true group memberships G1, . . . ,GK , let
Hk P RNkˆp be the submatrix of X where the observations in Hk receive treatments in group Gk

for k “ 1, . . . ,K . Further denote H “ diagpH1,H2, . . . ,HKq P RnˆKp. In particular, under
the true group structure, define the oracle estimator for α0 to be pαor :“ argminα

1
2 }ȳ ´ Hα}

2
2.

Equivalently, pαor “ pH⊺Hq´1H⊺ȳ. The corresponding oracle estimator for β , denoted as pβor, is
obtained by expanding pαor based on the true group structure.

Hereafter, we allow the number of treatments M , the true treatment group number K, and the
covariates’ dimension p to grow as the sample size n increases. We use Mn, Kn, and pn to de-
note them respectively. In addition, for any given matrix G “ pGijq

s,t
i“1,j“1, denote }G}8 :“

max1ďiďs

řt
j“1 |Gij |. For a vector g “ pg1, . . . , gsq⊺ P Rs, denote }g}8 :“ max1ďiďs |gi|. We

use ln " kn to denote l´1
n kn “ op1q.

We first establish the concentration bound for consistency of the oracle estimator when the obser-
vation numbers in each treatment group employ a suitable distribution pattern. Specifically, let
Nmin :“ mink“1,...,K Nk be the minimum number of observations receiving the treatments from
the same treatment group. We make the following regularity assumptions in the high-dimensional
statistical literature [27, 35]:

Assumption 1. Assume }Xj}2 “
?
n for j “ 1, . . . , pn, and }U⊺U}8 ď B1Mnpn where B1 ą 0.

Assumption 2. The minimum eigen value λminpH⊺Hq ě C1Nmin where C1 ą 0.

Assumption 3. Let ϵ “ pϵ1, . . . , ϵnq⊺ P Rn be the error vector in model (3). Suppose ϵ has sub-
Gaussian tail bound, i.e., there exists a constant c1 P p0,`8q such that, for any vector a P Rn and
any t ą 0, we have Prp|a⊺ϵ| ą }a}2 tq ă 2expp´c1t

2q.

Theorem 1 (Consistency of oracle estimator). Suppose Assumptions 1-3 hold. If Knpn “ opnq, and

Nmin "
a

pKnpnqn log n, then with probability at least 1 ´ 2Knpn{n, we have
›

›

›

pβor ´ β0
›

›

›

8
“

›

›

pαor ´ α0
›

›

8
ď ϕn, where ϕn “ c

´1{2
1 C´1

1

?
KnpnN

´1
min

?
n log n.

Since
a

pKnpnqn log n ! Nmin ď n{Kn, we have Kn

a

pKnpnq “ op
a

n{ log nq. Hence,
Kn must satisfy Kn “ opn1{3{plog nq1{3q. It indicates that we cannot have too many
treatment groups. If we set Nmin “ δn{Kn where δ P p0, 1q, then the bound ϕn “

c
´1{2
1 C´1

1 δ´1Kn

?
Knpn

a

log n{n.
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Our next step is to show that the oracle estimator pβor is a local minimizer of the object function
Qnpβ;λnq in (6) with probability 1 by giving a lower bound of the minimum signal difference
between treatment groups. Then the convergence of pβpλnq Ñ β0 can be established. To achieve
that, we need to assume the penalty function pλnp¨q in (4) has sharp derivative around 0 to adjust the
bias of the fusion penalty. Some popular penalties considered in [36], [37] and [38] satisfy similar
properties as the following assumption.
Assumption 4. Suppose pλnp¨q is symmetric around 0 for each λn, and there exists a constant a ą 0
such that pλn

ptq is a constant for all t ě a
2λn. Assume pλn

p0q “ 0, and it is differentiable around 0

with its derivative satisfying p1
λn

ptq ě Op
?
n log nq{ inf1ďkďKn |Gk| for all 0 ă t ď 2ϕn.

Let bn “ infiPGk,jPGk1 ,k‰k1 }β0
i ´ β0

j }1 “ infk‰k1 }α0
k ´ α0

k1 }1 be the minimal difference of the
regression coefficients between two groups. Intuitively, we need the distances between two different
groups to be large enough so that we can recover the group membership. In particular, we make the
following assumption. A similar assumption was also used in [27] and [39].
Assumption 5. Suppose bn{pn ą aλn and λn " ϕn.

Theorem 2. Suppose Assumptions 1-5 hold, then there exists a local minimizer pβpλnq of the objec-
tive function Qnpβ;λnq in (6) such that Pr

`

pβpλnq “ pβor
˘

Ñ 1.

Theorem 1 together with Theorem 2 establish the convergence property of pβpλnq Ñ β0. For our
implementation in Section 3, we iteratively solve the minimization problem (4) with the adaptive
fusion penalty shown in (7). We use pβpiq “ ppβ

piq
1 , . . . , pβ

piq
M q⊺ to denote the estimation of β in the

i-th iteration. For l, t P A, the weight in the i-th iteration ω
piq
l,t is specified as mintBω, 1{}pβ

piq
l ´

pβ
pi`1q
t }1u. Hence, the derivative of pλn

p¨q evaluated at }pβ
piq
l ´ pβ

piq
t }1, which equals to λnω

piq
l,t ,

will become extremely large when }pβ
piq
l ´ pβ

piq
t }1 is close to 0, and it will be relatively small if the

pair ppβ
piq
l , pβ

piq
t q are not fused together. Consequently, if pβ is close to β0, then the derivative of

pλnp¨q will approximately satisfy the properties in Assumption 4 within a neighbourhood around
β0. Therefore, based on Theorem 2, the oracle estimator pβor can still be the local minimizer of
Qnpβ;λnq within a neighbourhood around β0 when our adaptive fusion penalty is utilized.

5 Experiments

We evaluate the finite-sample performance of our method using simulation and a real data applica-
tion to the Patient-Derived Xenograft (PDX) study. We compare our method with the state-of-art
methods for the ITR problem: (a) RF (Random Forest, [40]); (b) PLS (ℓ1-Penalized Least Square
method, [5]); (c) AD (Multi-armed Angle-based Direct learning method, [9]). However, none of
these existing methods consider the treatment group structure in a large treatment space.

Data generation for simulation. We generate 10-dimensional independent feature variables
Z1, . . . , Z10, following U r´1, 1s. The outcome Y is normally distributed with ErY |Z,As “
1 ` 2Z1 ` Z2 ` 0.5Z3 ` T0pZ,Aq and standard deviation 1, where T0pZ,Aq reflects the inter-
action between the treatment and the feature variables. Specifically, we conduct the following three
scenarios where the treatment effects have the homogeneous grouping structure G:

Scenario 1. M “ 10,K “ 2,G “ tG1,G2u “
␣

t1, 2, 3, 4, 5u, t6, 7, 8, 9, 10u
(

, X “ p1, Z1, Z2q, and
T0pZ,Aq “ 1.8

`

0.2 ´ Z1 ´ Z2

˘`

IrA P G1s ˆ p´1q ` IrA P G2s ˆ 1
˘

;

Scenario 2. M “ 15,K “ 3,G “ tG1,G2,G3u “
␣

t1, 2, 3, 4, 5u, t6, 7, 8, 9, 10u, t11, 12, 13, 14, 15u
(

,
X “ p1, Z1, Z2q, and T0pZ,Aq “ 5

`

p´0.2`Z1 ` 2Z2qIrA P G1s ` p0.3` 2Z1 `Z2qIrA P G2s ` p´0.2`

3Z1qIrA P G3s
˘

;

Scenario 3. M “ 20,K “ 5,G “ tG1,G2,G3,G4,G5u “
␣

t1, 2, 3, 4u, t5, 6, 7, 8u, t9, 10, 11, 12u, t13, 14,

15, 16u, t17, 18, 19, 20u
(

, X “ p1, Z1, Z2, Z3, Z4q, and T0pZ,Aq “ 3.5
`

p0.5 ` 0.5Z1 ` 1.5Z2 ` 2Z3 `
1.5Z4qIrA P G1s ` p1 ´ 2Z1 ´ Z2 ´ 3Z3 ´ 2Z4qIrA P G2s ` p´1 ` Z1 ´ 2Z2 ` Z3 ´ Z4qIrA P
G3s ` p´2 ´ Z1 ` Z2 ´ Z3 ` Z4qIrA P G4s ` p1.5 ` 1.5Z1 ` 0.5Z2 ` Z3 ` 0.5Z4qIrA P G5s

˘

.

As the number of treatments M increases from 10, 15 to 20, the above three scenarios correspond to
the treatments having 2, 3 and 5 treatment groups respectively. For each scenario, the true decision
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boundaries are linear under the group domain. Take Scenario 1 for example. For any z P R10,
the optimal ITR D˚pzq would recommend any treatment in G1 when 0.2 ´ z1 ´ z2 ă 0, and
any treatment in G2 when 0.2 ´ z1 ´ z2 ě 0. The treatments in all the scenarios are assigned
in the unbalanced structure, which means the propensity score of specific treatments can be small.
The tuning parameter λn is selected by the 5-fold cross-validation. For each scenario, the train-
ing sample sizes vary from 200, 400 to 600 and we replicate the simulations for 200 times. On
an independently generated testing data of size 10, 000, we evaluate the above methods using (a)
empirical value function; (b) group-based misclassification rate between the estimated group deci-
sion rules and the optimal group decision rules. The empirical value function is calculated using
En

“ IpxDpZq“Aq

ppA|Zq
Y
‰L

En

“ IpxDpZq“Aq

ppA|Zq

‰

[33, 10], where En denotes the empirical mean for the testing data.
Since the treatment effects are identical within the same treatment group, the misclassification rate
under the group domain is equivalent to that under the individual treatment domain.

Results for simulation. The boxplots of the empirical value and the misclassification rate eval-
uated on the independent testing data are shown in Figure 1 and Figure C.1 in the supplementary
materials. In most cases, compared with RF, AD and PLS, our proposed SCAF method has supe-
rior performance with higher empirical values, smaller misclassification rates, and extremely lower
variabilities for both evaluation criteria. When the treatment space becomes large, RF, AD and PLS
suffer from inaccurate estimation of the individual treatment effect due to the small amount of obser-
vations for some specific treatments. Moreover, these methods do not consider the possible group
structure in the treatment space and hence employ relatively large variance. As a comparison, SCAF
is able to recover the treatment group structure and reduce the dimension of treatment space by clus-
tering the treatments with similar treatment effects into the same treatment group. We also show the
ratio of exactly recovering the true treatment group structure of SCAF among the 200 replications
in Figure C.2 in the supplementary materials. Furthermore, we use Scenario 1 to demonstrate the
advantage of our group-lasso step for finding the heterogeneous variables X from Z. By implement-
ing the group-lasso before the fusion step, as shown in Figure C.3 in the supplementary materials,
SCAF with the group-lasso step has better performance than that without the group-lasso step since
we only need to fuse the lower dimensional subvectors βa’s rather than ζa’s.
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Figure 1: Boxplots of empirical value based on the testing data in simulations. Red dashed lines demonstrate
the oracle values.

0
1

2
3

4
5

6

Scenario 1

Treatment

Lo
g(

λ*
10

00
)

6 7 8 10 9 1 2 3 5 4

0
1

2
3

4
5

6

Scenario 2

Treatment

Lo
g(

λ*
10

00
)

1 3 2 5 4 6 7 10 8 9 14 15 11 12 13

0.
0

0.
5

1.
0

1.
5

Scenario 3

Treatment

Lo
g(

λ*
10

0)

1 3 2 4 5 7 6 8 13 15 16 14 9 10 11 12 17 18 19 20
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using cross-validation. The estimated groups based on the best λ are framed with grey dotted rectangles.
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Figure 2 demonstrates the solution path of the estimated treatment group structure as the tuning
parameter λ increases based on one of the replications for the three scenarios. When λ “ 0, SCAF
is equivalent to RF and PLS since the fusion penalty is not imposed and does not show any clustering
pattern. As λ increases, the fusion penalty encourages the treatments to merge together and cluster
them with the expected group structure. When λ becomes large enough, all of the treatments will
be merged together and only one treatment group will be formed. With the best tuned λ, 2, 3 and 5
groups are correctly selected for the three scenarios respectively.

Application to Patient-Derived Xenograft (PDX) study. Due to the complexity of human cancer,
there’s significant heterogeneity of treatment effects among the high throughput patients’ genomic
biomarkers such as RNA and DNA sequencing [41]. Utilizing the transferred tumor pieces from
patients to mice, the PDX study [42, 43, 44] aims to personalize the optimal cancer treatment for
five types of cancer among a large number of FDA-approved preclinical cancer therapies, given the
assigned treatments, the observed genomic features and responses. In particular, among five types
of cancer, we focus on the ColoRectal Cancer (CRC), which includes 43 PDX lines with complete
genomic information. For CRC, 847 mice expanded from different PDX lines were treated with
unique treatments among M “ 20 single or combination treatments. The response Y is measured
by the scaled maximum observed tumor shrinkage from the baseline time, where the larger value
is preferable. After the preprocessing and supervised screening steps shown in [29], we select 93
significant genomic biomarkers among all features.
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Figure 3: Observed response in PDX study.

Our goal is to identify the possible homo-
geneous group structure among these 20
treatments and cluster the treatments with
similar treatment effects in order to boost
the performance of the estimated ITR. The
boxplot of the observed response for the
20 treatments in PDX data is shown in Fig-
ure 3. We can see that, with the highest
mean and median of the response, the com-
bination treatment BYL+BIN is superior
than other treatments. For all methods, we
randomly split the data into six folds with
200 replications where five folds are used
to train the model in each replication. We
use the remaining fold to compute the empirical value based on the estimated ITR. The tuning pa-
rameters are selected based on the three-fold cross validation.

Results for the PDX study. We first include all the single and combination treatments in the model.
As shown in the left panel of Figure 4, with the highest empirical value, SCAF can provide more
effective ITR than other comparison methods. On the overall dataset, we plot the solution path of
the hierarchical clustering for all treatments in the left panel of Figure 5. With the best tuned λ, it
can be seen that the 20 treatments can be clustered into three groups. Most of the combination treat-
ments belong to the same group (the green one). One possible explanation is that they include BYL
as a common component. It is interesting to point out that the combination treatment BYL+BIN
forms a treatment group itself. Moreover, SCAF recommends BYL+BIN as the optimal treatment
to 92.1% patients among the PDX data, which is consistent with the outstanding performance of
BYL+BIN shown in Figure 3. This also explains why BYL+BIN itself forms a group because its
recommendation proportion nearly dominates the other treatments.

To better examine the group structure of the treatment effect, we exclude the combination treatments
and only consider the 13 single treatments due to the superior performance of BYL+BIN. Based on
the right panel of Figure 4, the overall values of all four methods decrease compared with the left
panel because we drop the combination treatments and reduce the treatment space, while our pro-
posed SCAF still has the best performance. Similarly, we draw the solution path of the hierarchical
clustering for the single treatments in the right panel of Figure 5. The best tuned λ further suggests
that the single treatments can be clustered into three groups where the second treatment group (the
green one) is recommended as the optimal to 94.1% patients in the PDX data. The outstanding
performance of the second group matches with Figure 3 because the treatments HDM and LKA in
the first group (the pink one) and CGM, ENC and LJC in the third group (the blue one) are the
treatments with smallest mean but highest variance among the 13 single treatments. In particular,
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Figure 4: Boxplots of value on the testing data in PDX study.

Figure C.4 in the supplementary materials shows the path of empirical value function of the testing
data for both cases. As λ becomes larger, the empirical value reaches the maximum point due to
the helpful clustering structure and finally dramatically decreases because of the excessive merging
pattern imposed by the large λ. The results in Figure C.4 are consistent with Figure 5.

0.
00

0
0.

00
8

With All Treatments

λ

5F
U

B
IN

B
K

M
B

K
M

+
LJ

C
B

Y
L

LE
E

LJ
C

LK
A

B
Y

L+
C

E
T

B
Y

L+
C

E
T

+
E

N
C

B
Y

L+
E

N
C

B
Y

L+
LJ

M
C

E
T

C
E

T
+

E
N

C
C

G
M

C
K

X
C

LR
E

N
C

H
D

M
B

Y
L+

B
IN 0.
00

0
0.

01
5

Without Combination Treatments

λ

H
D

M

LK
A

5F
U

B
IN

B
K

M

B
Y

L

C
E

T

C
K

X

C
LR

LE
E

C
G

M

E
N

C

LJ
C

Figure 5: Solution paths for the PDX study as shown in Figure 2.

6 Discussion

In this paper, we consider the challenging ITR problem with a large number of treatments which
may have homogeneous group structure. We propose the SCAF method to identify this structure
and cluster the treatments in order to learn the optimal ITR more effectively. In particular, we adapt
the idea of supervised clustering and formulate the problem as convex optimization that consists of
loss`penalty. We are able to cluster the treatments and estimate the optimal ITR simultaneously
within a single optimization problem. The whole clustering process can be intuitively visualized
with a dendrogram plot similar to the hierarchical clustering. An efficient algorithm is proposed to
solve the problem and the numerical results demonstrate the superior performance of SCAF.

The proposed method can be extended in several aspects. First, we consider the continuous outcome
in this paper. One interesting future direction is to extend SCAF to deal with various types of
outcomes, such as discrete outcome and survival outcome. Second, our method can be extended to
learn the group structures of treatments for multi-stage dynamic treatment regimes [6, 11]. We leave
these interesting directions for future research.
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