
A Proof of Main Theorem

Let {f(I,J) : X → [0,∞)}(I,J)∈I be an indexed family of non-negative measurable functions on X ,
and let fk := f({k},∅) for k ∈ N . We will consider two following properties:

(a) ∀(I, J) ∈ I, f(I,J) =
∑

S:I⊆S,J⊆N\S f(S,N\S)

(b) ∀i, j ∈ N s.t. i ̸= j, supp f({i},{j}) ∩ supp f({j},{i}) = ∅

We first derive some useful lemmas to prove the necessity of Theorem 1.
Lemma 1. Assume that (a) and (b) hold. ∀(I1, J1), (I2, J2) ∈ I s.t. I1 ∩ J2 ̸= ∅, J1 ∩ I2 ̸= ∅,
supp f(I1,J1) ∩ supp f(I2,J2) = ∅.

Proof. Choose any u ∈ I1 ∩ J2, v ∈ J1 ∩ I2. By (a),

f({u},{v}) =
∑

S:u∈S,v∈N\S
f(S,N\S) ≥

∑
S:I1⊆S,J1⊆N\S

f(S,N\S) = f(I1,J1)

f({v},{u}) =
∑

S:v∈S,u∈N\S
f(S,N\S) ≥

∑
S:I2⊆S,J2⊆N\S

f(S,N\S) = f(I2,J2).
(9)

If u = v, then I1 ∩ J1 ̸= ∅ which contradicts the definition of I. Therefore, u ̸= v. By (b),
supp f(I1,J1) ∩ supp f(I2,J2) ⊆ supp f({u},{v}) ∩ supp f({v},{u}) = ∅.

Lemma 2. Assume that (a) and (b) hold. ∀i ∈ N, ∀I ⊆ N s.t. {i} ⊊ I , supp f(I\{i},{i}) ∩
supp

∑
S:i∈S,I⊈S⊆N f(S,N\S) = ∅.

Proof. Let S ⊆ N s.t. i ∈ S ⊉ I . Then, ∅ ̸= I \ S ⊆ (I \ {i}) ∩ (N \ S).
By Lemma 1, supp f(I\{i},{i}) ∩ supp f(S,N\S) = ∅. Therefore, supp f(I\{i},{i}) ∩
supp

∑
S:i∈S,I⊈S⊆N f(S,N\S) = ∅.

Lemma 3. Assume that (a) and (b) hold. ∀I ⊆ N s.t. I ̸= ∅, f(I,∅) = mini∈I fi.

Proof. We will use induction to prove the lemma. Let P (k) be the following statement.

P (k) : ∀I s.t. 1 ≤ |I| = k ≤ |N |, then f(I,∅) = min
i∈I

fi. (10)

For the base case k = 1, the statement holds by the definition. Assume that the induction hypothesis
for k ≤ l < |N | holds. Consider |I| = l + 1 and choose any i ∈ I . Then,

min
i∈I

fi = min{f(I\{i},∅), f({i},∅)} by the induction hypothesis

= f(I\{i},∅) −max{f(I\{i},∅) − f({i},∅), 0}

= f(I\{i},∅) −max{f(I\{i},{i}) −
∑

S:i∈S,I⊈S⊆N
f(S,N\S), 0}

= f(I\{i},∅) − f(I\{i},{i}) by Lemma 2

= f(I,∅)
(11)

Therefore, P (l + 1) holds. We conclude that f(I,∅) = mini∈I fi for ∅ ≠ I ⊆ N .

Theorem 1. Let {f(I,J) : X → [0,∞)}(I,J)∈I be an indexed family of non-negative measurable
functions on X , and let fk := f({k},∅). Then, the following conditions hold:

(a) ∀(I, J) ∈ I, f(I,J) =
∑

S:I⊆S,J⊆N\S f(S,N\S)

(b) ∀i, j ∈ N s.t. i ̸= j, supp f({i},{j}) ∩ supp f({j},{i}) = ∅

if and only if, for every (I, J) ∈ I,

f(I,J) =

{
(mini∈I fi −maxj∈J fj)

+ if J ̸= ∅
mini∈I fi otherwise

, (3)

where (·)+ represents the positive part.
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Proof. We first show the necessity of the condition. Assume that (a) and (b) hold. If J = ∅,
then f(I,J) = mini∈I fi by Lemma2. Hence, we may assume that J ̸= ∅. Fix x ∈ X , and let
{a1, a2, ..., a|J|} be an arrangement of J so that fai

(x) ≤ faj
(x) for all i < j. For every ∅ ≠ S ⊆ J ,

we let m(S) denote the minimum index s such that as ∈ S.

Note that

f(I,J)(x) =
∑
S⊆J

(−1)|S|f(I∪S,∅)(x) by Inclusion–exclusion principle

=
∑
S⊆J

(−1)|S| min
i∈I∪S

fi(x) by Lemma 3
(12)

We now decompose the last summation into three cases.

(i) S = ∅

(−1)|S| min
i∈I∪S

fi(x) = min
i∈I

fi(x). (13)

(ii) m(S) < |J |∑
S:m(S)<|J|

(−1)|S| min
i∈I∪S

fi(x) =
∑
j<|J|

∑
S:m(S)=j

(−1)|S| min
i∈I∪{aj}

fi(x)

=
∑
j<|J|

(
min

i∈I∪{aj}
fi(x)

){
(−1) · 2|J|−j−1 + 2|J|−j−1

}
= 0.

(14)

(iii) m(S) = |J |

(−1)|S| min
i∈I∪S

fi(x) = − min
i∈I∪{a|J|}

fi(x). (15)

Summing up all of the above terms gives the rest result.

f(I,J)(x) = min
i∈I

fi(x)− min
i∈I∪{a|J|}

fi(x)

= min
i∈I

fi(x)−min{min
i∈I

fi(x),max
j∈J

fj(x)}

=

(
min
i∈I

fi(x)−max
j∈J

fj(x)

)+

.

(16)

To show the sufficiency, assume

∀(I, J) ∈ I, f(I,J) =
{
(mini∈I fi −maxj∈J fj)

+ if J ̸= ∅
mini∈I fi otherwise

. (17)

Let us assume that f(I,J) ̸=
∑

S:I⊆S,J⊆N\S f(S,N\S) for some (I, J) ∈ I . Choose such I, J so that
|I|+ |J | is maximum. Note that I ∪ J ⊊ N because

∑
S:I⊆S,J⊆N\S f(S,N\S) is exactly the same

expression as f(I,J) for I ∪J = N . Hence, we can choose some k ∈ N \ (I ∪J). By the maximality
of |I|+ |J |, the following two equations hold.

f(I,J∪{k}) =
∑

S:I⊆S,J∪{k}⊆N\S
f(S,N\S)

f(I∪{k},J) =
∑

S:I∪{k}⊆S,J⊆N\S
f(S,N\S).

(18)
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We use above two equations and consider all possible inequalities among mini∈I fi, maxj∈Jfj , and
fk. The following equation always holds regardless of these inequalities.∑
S:I⊆S,J⊆N\S

f(S,N\S) = f(I,J∪{k}) + f(I∪{k},J)

=

{(
mini∈I fi −maxj∈J∪{k} fj

)+
+
(
mini∈I∪{k} fi −maxj∈J fj

)+
if J ̸= ∅

(mini∈I fi − fk)
+ +mini∈I∪{k} fi otherwise

=

{
(mini∈I fi −maxj∈J fj)

+ if J ̸= ∅
mini∈I fi otherwise

= f(I,J),
(19)

which leads to a contradiction.

Also, for every i, j ∈ N such that i ̸= j,
min(f({i},{j}), f({j},{i})) = min{(fi − fj)

+, (fj − fi)
+}

= (min{fi − fj , fj − fi})+

= 0.

(20)

Therefore, (a) and (b) hold.

B Description for S2M Sampling

B.1 Pseudocode of S2M Sampling

In Section 3.2, we describe how to build S2M sampling upon unconditional GANs and class-
conditional GANs. Algorithm 1 illustrates the use of S2M sampling for GANs. This algorithm
can be easily modified to the conditional versions by replacing the acceptance probability α (See
Equation 7).

Algorithm 1 S2M Sampling for GANs
Input: generator G, classifiers D∗

v , D
∗
r , intersection index set I , difference index set J , and class

prior ratios γ1:N
Output: filtered sample x

1: Choose any x ∈ supp p(I,J).
2: for k = 1 to K do
3: Draw x′ from G.
4: Draw u from Uniform(0,1).
5: ri ← γiD

∗
r(i|x) for every i ∈ I ∪ J

6: r′i ← γiD
∗
r(i|x′) for every i ∈ I ∪ J

7: α← min

(
1,

(min{r′i:i∈I}−max{r′j :j∈J}∪{0})
+
(D∗

v(x)
−1−1)

(min{ri:i∈I}−max{rj :j∈J}∪{0})+(D∗
v(x

′)−1−1)

)
8: if u ≤ α then
9: x← x′

10: end if
11: end for

B.2 Latent Adaptation with Gaussian Mixture Model

In Section 3.2, we describe the latent adaptation technique to improve the sampling efficiency of our
proposed S2M sampling method. In this section, we provide an example for the latent adaptation
technique using a Gaussian mixture model. The real examples of using latent adaption are shown
in Figure 9. After obtaining target latent samples t1:m from S2M sampling, we use those samples
to fit a multivariate Gaussian mixture model p̃z(z) =

∑M
i=1 ϕiN (z|µi,Σi). The parameters can be

updated using an expectation–maximization algorithm 3 As explained in Section 3.2, we run the MH
3Christopher M. Bishop. Pattern recognition and machine learning, 5th Edition. 2007.
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algorithm where the proposal x′ ∼ q(x′|x) = p̃G(x
′) is accepted with a probability α̃(x′, x) which

is calculated as

α̃(x′, x) = min

(
1,

p(I,J)(x
′)/p̃G(x

′)

p(I,J)(x)/p̃G(x)

)
≈ min

(
1,

r(I,J)(x
′)(D∗

v(x)
−1 − 1)pz(z

′)/p̃z(z
′)

r(I,J)(x)(D∗
v(x

′)
−1 − 1)pz(z)/p̃z(z)

)
.

(21)
If the latent prior of the generator G is the standard multivariate normal distribution pz(z) =
N (z|0, Id), we can compute the acceptance probability by explicitly calculating the density ratio
pz(z)/p̃z(z) as follows:

pz(z)

p̃z(z)
=

N (z|µ0,Σ0)∑M
i=1 ϕiN (z|µi,Σi)

=

(
M∑
i=1

ϕi|Σi|−
1
2 exp

(
−1

2
(z − µi)

TΣi
−1(z − µi) +

1

2
zT z

))−1

.

(22)
In our experiments, some determinants of the covariance matrices often approach zero, resulting
in numerical errors. One way to readily avoid this problem is to let p̃z be a Gaussian mixture with
a shared covariance matrix Σ, i.e., Σ1 = Σ2 = ... = ΣM = Σ. Then, we no longer need to
compute the determinants of the covariance matrices to calculate the acceptance probability because
pz(z

′)p̃z(z)/p̃z(z
′)/pz(z) is simplified as follows:

pz(z
′)p̃z(z)

p̃z(z′)pz(z)
=

∑M
i=1 ϕi exp

(
− 1

2 (z − µi)
TΣ−1(z − µi) +

1
2z

T z
)∑M

i=1 ϕi exp
(
− 1

2 (z
′ − µi)TΣ−1(z′ − µi) +

1
2z

′T z′
) . (23)

Algorithm 2 illustrates the sampling process using the Gaussian mixture latent with a shared covari-
ance matrix. After collecting the filtered latent samples z1:s through Algorithm 2, we can get target
class samples x1:s by taking xi = G(zi) for i = 1, 2, ..., s. As explained in Section 3.2, the latent
adaptation technique can be applied iteratively by increasing the number of specified attributes one by
one. Algorithm 3 illustrates this strategy and Section C provides the computation complexity analysis
of the algorithm.

Algorithm 2 Sampling with Adapted Latent Space
Input: generator G, classifiers D∗

v , D
∗
r , intersection index set I , difference index set J , class prior

ratios γ1:N and target latent distribution parameters ϕ1:M , µ1:M ,Σ
Output: filtered latent sample z

1: Let p̃z(z) :=
∑M

i=1 ϕiN (z|µi,Σ).
2: Choose any z such that G(z) ∈ supp p(I,J).
3: for k = 1 to K do
4: Draw z′ from p̃z .
5: Draw u from Uniform(0,1).
6: ri ← γiD

∗
r(i|G(z)) for every i ∈ I ∪ J

7: r′i ← γiD
∗
r(i|G(z′)) for every i ∈ I ∪ J

8: d←
∑M

i=1 ϕi exp(− 1
2 (z−µi)

TΣ−1(z−µi)+
1
2 z

T z)∑M
i=1 ϕi exp(− 1

2 (z
′−µi)TΣ−1(z′−µi)+

1
2 z

′T z′)

9: α← min

(
1,

(min{r′i:i∈I}−max{r′j :j∈J}∪{0})
+
(D∗

v(G(z))−1−1)

(min{ri:i∈I}−max{rj :j∈J}∪{0})+(D∗
v(G(z′))−1−1)

· d
)

10: if u ≤ α then
11: z ← z′

12: end if
13: end for
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Algorithm 3 Repeating Latent Adaptation
Input: generator G, classifiers D∗

v , D
∗
r , intersection index set I , difference index set J , and class

prior ratios γ1:N
Output: filtered latent samples z1:s

1: Let I0 ⊆ I such that |I0| = 1, and let J0 = ∅.
2: t1:m ← MHAlgorithm(G,D∗

v , D
∗
r , I0, J0, γ1:N ) ▷ Obtain latent samples using Algorihtm 1

3: while I0 ∪ J0 ̸= I ∪ J do
4: Fit p̃z(z) =

∑M
i=1 ϕiN (z|µi,Σ) with t1:m using the expectation-maximization algorithm.

5: Choose α ⊆ I \ I0, β ⊆ J \ J0 such that |α ∪ β| = 1.
6: I0 ← I0 ∪ {α}
7: J0 ← J0 ∪ {β}
8: t1:m ← AdaptiveLatentSampling(G,D∗

v , D
∗
r , I0, J0, γ1:N , ϕ1:M , µ1:M ,Σ) ▷ Obtain latent

samples using Algorihtm 2
9: end while

10: Fit p̃z(z) =
∑M

i=1 ϕiN (z|µi,Σ) with t1:m using the expectation-maximization algorithm.
11: z1:s ← AdaptiveLatentSampling(G,D∗

v , D
∗
r , I0, J0, γ1:N , ϕ1:M , µ1:M ,Σ) ▷ Obtain latent

samples using Algorihtm 2

(1) GAN (Original)

Latent
adaptation
(B+M+S)

(2) GAN w/ latent adaptation (3) S2M sampling (10 steps)

S2M
sampling
(B+M+S)

Figure 9: Results of sequentially applying latent adaptation and S2M sampling for B+M+S joint
class. (1) Before applying latent adaptation, GANs draw diverse CelebA images. (2) After applying
latent adaptation to B+M+S class, the generator produces images of that class with a high probability.
(3) By using latent adaptation, S2M sampling can remove samples outside of that class even with a
few MCMC iterations.

C Computational Complexity Analysis

Inference time of different architectures. In this section, we compare the inference time of several
architectures as shown in Table 3. The classifiers and Gaussian mixture sampler add a small amount
of time to the inference process for S2M sampling. To account for these components, we measure the
inference time per iteration during the sampling procedure. We use a single RTX 3090 GPU for this
experiment.

Table 3: Inference time (ms) of several architectures on CelebA-BMS. PD denote the projection
discriminator inference, CLS denote the classifier inference, and GMM denote the gaussian mixture
sampler inference. We use the batch size of 64.

Method CP-GAN BigGAN BigGAN + PD BigGAN + CLS BigGAN + CLS + GMM

Time (ms) 31.61 29.56 31.66 35.86 36.18

Time complexity of sampling algorithms. To simplify the analysis, we assume that a generator
distribution is close to a real distribution, and let α be the probability of a generated sample belonging
to a target joint class. Then, we have p(I,J)(x)

pG(x) ≤ 1
α for all x. By Theorem 2.1 of Mengersen et
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Figure 10: Our latent adaptation can be repeatedly applied for the efficiency of S2M sampling. For
instance, to generate images of B+M+S-A-N-W joint class (6) with S2M sampling, we can first search
the space of Black-hair attribute (1) and then gradually increase the number of attributes.

al. [28] the convergence speed of the independent MH algorithm in this condition is given by

||P t(x, ·)− p(I,J)||TV ≤ (1− α)t, (24)

where || · ||TV is the total variation distance and P t(x, ·) is the t-step transition probability density for
an initial state x. To analyze the inference time complexity, we now compute the number of MCMC
iterations required until the distance is small enough. For a given fixed small ϵ, the number of steps
required for the distance to fall within ϵ is t = ln ϵ

ln(1−α) = O( 1
α ). Intuitively, the sampling algorithm

without latent adaptation (Algorithm 1) takes time inversely proportional to the relative ratio of the
target class samples out of the entire dataset used to train the generator.

Given a fixed number of data, as the number of attributes increases, α decreases, and the algorithm
converges slowly. To alleviate such inefficiency, we additionally proposed latent adaptation which
collects a certain amount of target class samples using Algorithm 1 and then uses it fit to a new
generator distribution close the target distribution. If the newly obtained generator distribution is
sufficiently closed to the target distribution, the sampling algorithm using the new generator will take
a constant time to produce the target class samples. The remaining question is how long it take to
apply latent adaptation.

To discuss about the time complexity of latent adaptation scale with the number of attributes, we
let qi be the probability of a generated sample belonging to the i-th class and assume conditional
independence among the classes, i.e., p(yi|x, y1, ..., yi−1, yi+1, ..., yn) = p(yi|x). Let m be the
number of latent samples used to fit the new proposal distribution and c be the overhead introduced
by fitting the latent distribution. We consider two scenarios of applying latent adaptation and analyze
the time complexity taken to completely fit the latent space in each scenario: (i) Applying latent
adaptation by searching the latent space of target joint class samples at once. (ii) Applying latent
adaptation repeatedly by increasing the number of specified attributes one by one as shown in
Figure 10 (See Algorithm 3 for details). For the case (i), the algorithm runs the MH algorithm
once to draw the target class samples and the probability of each generated sample belonging to
that class is

∏
i∈I qi

∏
j∈J(1 − qj). Hence, it takes O(m(

∏
i∈I qi

∏
j∈J(1 − qj))

−1 + c). For the
case (ii), the algorithm runs the MH algorithm once for each class of I and each class of J , so it
takes O(m(

∑
i∈I q

−1
i +

∑
j∈J(1− qj)

−1) + c(|I|+ |J |)). That is, Algorithm 3 can run efficiently
as it takes time linearly proportional to the number of attributes. When the number of attributes is
small, (i) is also a good way to use latent adaptation, since it has a small overhead of fitting the latent
distribution.

To validate the empirical effectiveness of applications of latent adaptation, we select three joint
classes of CelebA-ABMNSW, whose ratio of training samples is lower than 3%. For the method
(i), sampling for obtaining latent samples is performed by 90 MCMC iterations. For the method
(ii), the latent sampling is performed by 15 MCMC iterations for each attribute. For both cases, we
collect 10K latent samples to perform latent adaptation. After fitting a new latent distribution suit for
a target joint class, we again perform a sampling algorithm to draw target joint class samples. We
measure the number of MCMC iterations required until accuracy converges. As shown in Table 4,
latent adaptation drastically shortens the MCMC chain for all cases, and the method (ii) requires
fewer MCMC iterations to draw the target joint class samples than the method (i).
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Table 4: Comparison of applications of latent adaptation on CelebA-ABMNSW. For each joint class,
we denote the ratio of training samples of the class in the parentheses. "-" in LA type indicates that
latent adaptation is not applied. # of searching iterations refers to the total number of MCMC steps
performed to fit the latent distribution. # of sampling iterations refers to the number of MCMC steps
required until accuracy converges. Accuracy and FID are measured at this step.

Class (Ratio) LA type # of searching
iterations

# of sampling
iterations Accuracy FID

B+M+S-A-N-W (1.95%)
- 0 320 53.51% 44.72

(i) 90 20 57.87% 45.37
(ii) 90 15 59.08% 46.41

B+M+N+S-A-W (2.68%)
- 0 165 43.78% 38.64

(i) 90 35 42.70% 38.34
(ii) 90 5 44.14% 37.15

A+N+W-B-M-S (2.89%)
- 0 335 84.72% 32.03

(i) 90 40 86.20% 32.22
(ii) 90 5 86.94% 33.89

D Experiments Details

D.1 MNIST and FMNIST

Each of MNIST and FMNIST dataset consists of a training set of 60k images and a test set of
10k images. We use 10% of the training set as the validation set. To make the training dataset
annotated by single positive labels, we distribute the images belong to the joint classes equally to each
corresponding classes of the single positive labels. We evaluate accuracy on MNIST and FMNIST
dataset using LeNet5 [36] trained with fully annotated dataset.

The generative models for MNIST and FMNIST are discussed in Section 4.1. As similar to the
original setting of GenPU, the generator consists of ReLU activations and fully connected layers of
input size: 100-256-256-784. The discriminator consists of ReLU activations and fully connected
layers of input size: 784-256-256. As for the GAN objective, we follow the settings introduced by
the authors for baselines, and use WGAN-GP [39] for our model. We train all generative models
using Adam optimizer [45] with a learning rate of 0.0001, β1 = 0.5, β2 = 0.999, and a batch size of
64. The generator is trained for 200k iterations, and two updates of the discriminator are performed
for every update of the generator.

Classification networks used for S2M sampling are obtained from multiple branches of LeNet5
architecture. We train the classifier using Adam optimizer. For MNIST 3/5 dataset, the classifier is
trained for 10 epochs with a learning rate of 0.001, and the temperature of Dr is set to 2. For MNIST
and FMNIST Even dataset, the classifier is trained for 50 epochs with a learning rate of of 0.0001,
and the temperature of Dv is set to 4. Each γk corresponding to the intersection set is set to 0.1 for
both MNIST and FMNIST.

D.2 CIFAR-10 and CelebA

For CIFAR-10 dataset, we use 10% of the training set as the validation set. We follow the original
partition description and resize images to 64× 64 for training efficiency on CelebA dataset. To make
the training datasets annotated by single positive labels, we distribute the images belong to the joint
classes equally to each corresponding classes of the single positive labels. We evaluate accuracy on
CIFAR-10 and CelebA dataset using MobileNet V2 [46] trained with fully annotated dataset.

The generative models for CIFAR-7to3 and CelebA datasets are discussed in Section 4.2. We use
BigGAN [2] architecture for all generative models and follow the PyTorch implementation4. We use
hinge loss [47] as the GAN objective and apply spectral normalization [48]. We train all models using
Adam optimizer [45] with a learning rate of 0.0002, β1 = 0.5, β2 = 0.999, and a batch size of of 64.

4https://github.com/POSTECH-CVLab/PyTorch-StudioGAN
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The generator is trained for 100k iterations, and five updates of the discriminator are performed for
every update of the generator. We select the model achieving best FID on the validation dataset.

Classification networks used for S2M sampling are obtained from multiple branches of MobileNet
V2 architecture. We first train the classifier with only Lr during 200 epochs for CIFAR-7to3 and
30 epochs for CelebA-BMS, CelebA-ABMNSW dataset. We use SGD optimizer with a learning
rate of 0.1 and cosine annealing for this training. Then, the classifier is trained with the sum of
all classification losses for 30k iterations. For CIFAR-7to3 and CelebA-BMS dataset, we set the
temperature of Dr and Df as 0.2, 1.0, and 1.2 when the size of difference index set is 0, 1, and 2,
respectively. For CelebA-ABMNSW dataset, we set the temperature of Dr and Df as 0.1, 0.1, 1.0,
1.0, 1.6 and 1.6 when the size of difference index set is 0, 1, 2, 3, 4, 5 and 6, respectively. Each γk
corresponding to the intersection set is set to 0.1 for CelebA-BMS and 0.5 for CelebA-ABMNSW.
On CIFAR-7to3 dataset, we set 0.5 and 0.8 to this parameter for unconditional GAN and cGAN-PD,
respectively.

D.3 CelebA-HQ

For CelebA-HQ dataset, we follow the original partition description and use the images with the
resolution of 256 × 256. To make the training dataset annotated by single positive labels (i.e.,
Black hair, Man and Smiling), we distribute the images belong to the joint classes equally to each
corresponding classes of the single positive labels.

We use the pretrained StyleGAN V2 [49]. Classification networks used for S2M sampling are
obtained from multiple branches of MobileNet V2 [46] architecture. We first train the classifier with
only Lr during 30 epochs. We use SGD optimizer with a learning rate of 0.1 and cosine annealing for
this training. Then, the classifier is trained with the sum of all classification losses for 1k iterations.
We set the temperature of Dr as 0.2, 1.0, and 1.2 when the size of difference index set is 0, 1, and 2,
respectively. Each γk corresponding to the intersection set is set to 0.5.

E Additional Experimental Results

E.1 2× 16 Gaussians Example

Real data (a) GAN

A B A \ B A     B B \ A

(b) GAN + Ours

A
B

Figure 11: Example of 2×16 Gaussians. Using the outputs of original GAN, S2M Sampling samples
high-quality points within various conditions (A,B,A \ B,B \A,A ∩ B).

To provide an illustrative example, we modify 25 Gaussians [20, 21, 25] to have two 4 × 4 grids
of two-dimensional Gaussians of two classes A and B (See Figure 11). The 23 modes in 2× 16
Gaussians are horizontally and vertically spaced by 1.0 and have a standard deviation of 0.05. We first
train a GAN to randomly draw points within two grids using WGAN-GP [39] as the GAN objective.
To apply S2M sampling, we train the classifier to classify each point into two classes A and B. The
generator, discriminator, and classification networks consist of ReLU activations and fully connected
layers of input size: 2-512-512-512.

In this setting, S2M sampling attempts to draw points of given classes (A, B), the overlapping class
(A∩B), and the non-overlapping classes (A\B, B \A). We obtain samples at 400 MCMC iterations.
As shown in Figure 11, S2M sampling correctly draw points of the target classes. On the other
hand, GAN tends to generate spurious lines between the points. For the quantitative analysis, we
report the accuracy, high-quality ratio, and mode standard deviation. We generate 10k samples and
assign each point to the mode with the closest L2 distance for measuring the accuracy. Following
Turner et al. [21], samples whose L2 distances are within four standard deviations are considered as
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Table 5: Accuracy (%), high-quality ratio (%), and mode standard deviation on 2× 16 Gaussians.

Condition GAN GAN + Ours

Accuracy High Quality Std. Dev. Accuracy High Quality Std. Dev.

A,B 69.83±0.35 84.39±0.60 0.106±0.002 100.00±0.00 98.94±0.40 0.052±0.002

A \ B,B \A 30.17±0.35 88.87±0.50 0.090±0.002 99.52±0.36 98.67±0.51 0.051±0.002

A ∩ B 39.66±0.46 80.98±0.82 0.118±0.003 100.00±0.00 99.73±0.14 0.050±0.001

high-quality samples. As shown in Table 5, S2M sampling accurately draw samples for all conditions,
and the ratio of high-quality samples is improved by 14.36% on average.

E.2 CelebA-HQ 256× 256

To validate whether S2M sampling can be adopted to state-of-the-art architecture on high resolution
(256 × 256) image dataset, we evaluate the performance of S2M sampling with the pretrained
StyleGANv2 [49] on CelebA-HQ dataset. The quantitative results for StyleGANv2 with and without
S2M sampling are shown in Table 6, and the qualitative results are depicted in Section E.5.

Table 6: Quantitative results of StyleGANv2 with S2M sampling.

Method Accuracy (↑) FID (↓)

StyleGANv2 15.44% 17.08
StyleGANv2 + Ours 77.18% 14.64

E.3 Data Embedding Visualization.

To visually probe the effect of S2M sampling, we perform t-SNE [50, 51] on generated samples. We
embed Inception-V3 activations of samples generated by various models on CIFAR-7to3. As shown
in Figure 12, S2M sampling accurately draw samples for all classes compared to other generative
models.

Real data cGAN-PD* CP-GAN GAN + Ours cGAN-PD + Ours

Figure 12: t-SNE visualization results for generated samples on CIFAR-7to3 dataset. Samples drawn
from S2M sampling are embedded similarly to the real data.

E.4 Ablation Study

Since classifiers used in S2M sampling are not optimal in practice, we correct the sampling algorithm
by scaling the temperatures of the classifiers and adjusting γk. Temperature scaling [30] is useful
technique to control the confidence of classifier. If the temperature of Df and Dr is small, samples
that are likely to belong to overlapping classes tend to be drawn mostly in S2M sampling. Another
approach is to adjust γk. We can obtain samples clearly distinct from classes of a difference set by
decreasing γi for all i ∈ I .

To validate the effects of the temperature scaling and γ adjustment in S2M sampling, we perform
the ablation studies on CIFAR-7to3 and CelebA-BMS dataset. The hyperparameter values used are
explained in Appendix D. In Table 7, we report the average accuracy and FID when S2M sampling is
applied to unconditional GAN and cGAN-PD. With the proper adjustment of the hyperparameters,
accuracy can be highly improved while FID is maintained or slightly degraded.
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Table 7: Ablation study for the hyperparameters of S2M sampling.

Method Metric CIFAR-7to3 CelebA-BMS

GAN cGAN-PD GAN cGAN-PD

Sampling w/
actual logits

Acc. (↑) 62.73±1.63 72.33±0.52 71.14±1.46 73.32±4.62

FID (↓) 14.99±0.17 14.11±0.23 9.86±1.41 10.29±0.83

+ temperature scaling Acc. (↑) 68.40±0.82 76.32±1.44 74.99±1.95 78.50±2.63

FID (↓) 14.81±0.23 14.12±0.31 9.81±1.21 10.21±0.41

+ γ adjustment Acc. (↑) 77.65±1.22 80.62±2.08 85.22±4.27 90.44±1.05

FID (↓) 14.42±0.55 14.14±0.34 10.50±0.97 10.63±0.29

E.5 Qualitative Results

In this section, we provide the qualitative results for the experiments on CIFAR-7to3, CelebA-BMS,
and CelebA-HQ. The qualitative results for CIFAR-7to3 and CelebA-BMS are shown in Figure 13
and Figure 14, respectively. One of advantages of S2M sampling is that it can be readily built upon
existing state-of-the-art GANs. Figure 15 represents the samples with the resolution of 256× 256
when we adopted S2M sampling to pretrained StyleGAN V2 [49] on CelebA-HQ dataset.
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Figure 13: Qualitative results for cGAN-PD∗, AC-GAN∗, CP-GAN, and S2M sampling with GAN
on CIFAR-7to3. For cGAN-PD∗, AC-GAN∗ and CP-GAN, we provide 1/n as the labels for each
class to generate images belonging to n classes.

F S2M Sampling with Different Attributes

In this section, we examine S2M sampling with various attributes appearing in CelebA dataset.
Concretely, we conduct two additional datasets: (i) CelebA-BBM consisting of classes of Brown-hair,
Bushy-eyebrows, and Mouth-slightly-opens attributes, (ii) CelebA-HBW consisting of classes of
High-cheekbones, Bags-under-eye, and Wavy-hair attributes. Those attributes are chosen due to their
strong visual impact. For both datasets, we adopt S2M sampling to pretrained StyleGANv2.

Quantitative Results. Table 8 shows the quantitative results of S2M sampling. As shown in Table 8,
we can observe that S2M sampling correctly draws samples corresponding to each joint class for
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Figure 14: Qualitative results for cGAN-PD∗, AC-GAN∗, CP-GAN, and S2M sampling with GAN
on CelebA-BMS. For cGAN-PD∗, AC-GAN∗ and CP-GAN, we provide 1/n as the labels for each
class to generate images belonging to n classes. Intersections and differences are denoted by plus
signs and minus signs, respectively.

Table 8: Quantitative results of StyleGANv2 with S2M sampling on two variants of CelebA-BMS:
CelebA-BBM and CelebA-HBW.

Dataset Method Accuracy (↑) FID (↓)

CelebA-BBM StyleGANv2 18.41% 15.57
StyleGANv2 + Ours 74.97% 14.41

CelebA-HBW StyleGANv2 12.68% 15.80
StyleGANv2 + Ours 70.94% 14.54

both datasets, which indicates that S2M sampling can be efficiently performed with various types of
attributes.

Qualitative Results. For the qualitative results, we depict samples drawn by S2M sampling for three
joint classes of CelebA-BBM and CelebA-HBW in Figure 16. For all joint classes, the samples in
Figure 16 are randomly selected from the outputs of S2M sampling.

G Consideration of other sampling approaches for applying S2M Sampling

In this section, we provide insight to apply S2M sampling with other sampling methods. We mainly
considered applying three sampling algorithms which can be found in previous GAN sampling stud-
ies [20, 21, 25, 29]; Rejection sampling, Independent Metropolis-Hastings algorithm, and Langevin
dynamics. Here, we briefly discuss the pros and cons of each sampling method we faced in our
problem settings.

Rejection Sampling As discussed in DRS [20], the rejection sampling can be applied to sample
from the target distribution pt(x) if we can compute the ratio between the target density pt(x) and
the generator density pG(x), and the upper bound of the density ratio pt(x)/pG(x). However, it is
in general difficult and expensive to compute this upper bound in the high dimensional data space.
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Figure 15: Qualitative results of applying S2M sampling to StyleGANv2 on CelebA-HQ. Intersections
and differences are denoted by plus signs and minus signs, respectively.

We need several heuristics to mitigate the issues, e.g., shifting the logit score of the classifier used to
compute the density ratio as introduced by DRS [20], which may introduce additional non-trivial
efforts for hyperparameter searching.

Independent Metropolis-Hastings algorithm This algorithm can also be used to draw samples from
the target distribution if we can compute the density ratio pt(x)/pG(x). Unlike Rejection sampling,
we do not need to compute the upper bound of this density ratio, but a sequence of samples forming a
Markov chain is required. Our study mainly used this algorithm because it empirically performed
well without complex heuristics and the sampling accuracy can be readily controlled at the cost
of MCMC steps. To further mitigate the sample efficiency in our problem, we suggest the latent
adaptation technique.
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Figure 16: Qualitative results of applying S2M sampling to StyleGANv2 on two varaints of CelebA-
BMS: CelebA-BBM (left) and CelebA-HBW (right).

Langevin dynamics Langevin dynamics is a gradient-based MCMC approach which can also be
used when we can compute the density ratio pt(x)/pG(x). Several studies [25, 29] employ its
Euler-Maruyama discretization to improve the quality of GAN samples. While this algorithm can
efficiently push a chain of samples towards the target distribution, the step size of the algorithm is very
sensitive to the sampling cost and quality. Especially, in our problem, we need to deal with the case
that the sample falls within the space where the gradient is not well-defined, i.e. supp pG \ supp pt.
We did not use the algorithm as we could not find an effective way to address these issues.

H Potential Societal Impacts

This work demonstrates that it is possible to generate multi-label data from limited labels. In addition,
this work can be freely adopted to unconditional GANs trained with a large amount of unlabeled

27



data. Hence, our work can reduce the high annotation cost that research groups face in common.
Despite the fact that deep learning models tend to struggle from learning underrepresented data [52],
properly calibrated sampling algorithm does not readily ignore rarely appearing data, meaning that it
is unlikely to introduce bias into generative models.
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