
A Proofs

First, we recall basic properties of convex conjugate functions that we rely on in our proofs. Let
ψ : RD → R be a convex function and ψ be its convex conjugate. From the definition of ψ, we obtain

ψ(x) + ψ(y) ≥ 〈x, y〉

for all x, y ∈ RD. Assume that ψ is differentiable and has an invertible gradient ∇ψ : RD → RD.
The latter condition holds, e.g., for strongly convex functions. From the convexity of ψ, we derive

x = arg max
x∈RD

[〈x, y〉 − ψ(x)]⇔ y = ∇ψ(x)⇔ x = (∇ψ)−1(y),

which yields
ψ(y) = 〈(∇ψ)−1(x), x〉 − ψ

(
(∇ψ)−1(x)).

In particular, the strict equality ψ(x) + ψ(y) = 〈x, y〉 holds if and only if y = ∇ψ(x). By applying
the same logic to ψ, we obtain (∇ψ)−1 = ∇ψ and (∇ψ)−1 = ∇ψ, i.e., the gradients of conjugate
functions are mutually inverse.

A.1 Proof of Lemma 1

Proof. For each n = 1, 2, . . . , N we perform the following evaluation:

∂

∂ξ
W2

2(Gξ]S,Pn) =

∫
z

JξGξ(z)
T∇u∗n

(
Gξ(z)

)
dS(z), (13)∫

z

JξGξ(z)
T
(
Gξ(z)− TPξ→Pn

(
Gξ(z)

))
dS(z), (14)

where u∗n is the optimal dual potential for Pξ = Gξ]S and Pn. Equation (13) follows from [22,
Equation 3]. Equation (14) follows from the property ∇u∗n(x) = x− TPξ→Pn(x) connecting dual
potentials and OT maps. We sum (14) for n = 1, . . . , N w.r.t. weights αn with ξ = ξ0 and obtain

∂

∂ξ

N∑
n=1

αnW2
2(Gξ]S,Pn) =

∫
z

JξGξ0(z)T
(
Gξ0(z)−

N∑
n=1

αnTPξ0→Pn
(
Gξ0(z)

))
dS(z). (15)

Note that (15) exactly matches the derivative of the left-hand side of (9) evaluated at ξ = ξ0.

A.2 Proof of Lemma 2

Proof. First, we prove the congruence, i.e., βψl(x) + (1− β)ψr(x) = ‖x‖2
2 for all x ∈ RD.

βψl(x) + (1− β)ψr(x) =

β max
y1∈RD

[
〈x, y1〉 − ψl(y1)

]
+ (1− β) max

y2∈RD

[
〈x, y2〉 − ψr(y2)

]
= (16)

β max
y1∈RD

[
〈x, y1〉 − β

‖y1‖2

2
− (1− β)ψ(y1)

]
+

(1− β) max
y2∈RD

[
〈x, y2〉 − (1− β)

‖y2‖2

2
− βψ(x)

]
=

max
y1,y2∈RD

[
〈x, βy1 + (1− β)y2〉 − β2 ‖y1‖2

2
− (1− β)2 ‖y2‖2

2
− β(1− β)(ψ(y1) + ψ(y2))

]
≤ (17)

max
y1,y2∈RD

[
〈x, βy1 + (1− β)y2〉 − β2 ‖y1‖2

2
− (1− β)2 ‖y2‖2

2
− β(1− β)〈y1, y2〉

]
=

max
y1,y2∈RD

‖x‖2

2
− 1

2
‖x− (βy1 + (1− β)y2)‖2 ≤ ‖x‖

2

2
. (18)

First, we substitute (y1, y2) = (yl,∇ψ(yl)). For this pair, x = ∇ψl(yl) = βyl + (1 − β)∇ψ(yl),
which results in x = βy1 + (1− β)y2. Moreover, since y2 = ∇ψ(y1), we have ψ(y1) + ψ(y2) =

16

〈y1, y2〉. As the consequence, both inequalities (17) and (18) turn to strict equalities yielding
congruence of ψl, ψr. From (10), the smoothness and strong convexity of ψ imply that ψl and ψr

are smooth. Consequently, ψl and ψl are strongly convex. Thus, the maximizer of (16) is unique. We
know the maximum of (16) is attained at (y1, y2) = (∇ψl(x),∇ψr(x)) = (yl, yr). We conclude
(yl, yr) = (yl,∇ψ(yl)), i.e., yr = ∇ψ(yl). Finally, yl = ∇ψl(x) ⇔ x = ∇ψl(yl) ⇔ yl =

max
y∈RD

[
〈x, y〉 − ψl(y)

]
, which matches (11).

A.3 Proof of Lemma 3

Proof. First, we check that
∑N
n=1 αn indeed equals 1:

N∑
n=1

αn =

N∑
n=1

M∑
m=1

wm
[
βmγ

l
nm + (1− βm)γrnm

]
=

M∑
m=1

[
wmβm

N∑
n=1

γlnm︸ ︷︷ ︸
=1

]
+

M∑
m=1

[
wm(1− βm)

N∑
n=1

γrnm︸ ︷︷ ︸
=1

]
=

M∑
m=1

wmβm +

M∑
m=1

wm(1− βm) =

M∑
m=1

wm
(
βm + (1− βm)

)
=

M∑
m=1

wm = 1. (19)

Next, we check that ψ1, . . . , ψN are congruent w.r.t. weights α1, . . . , αN :
N∑
n=1

αnψn(x) =

N∑
n=1

M∑
m=1

wm
[
βmγ

l
nm · ψlm(x) + (1− βm)γrnm · ψrm(x)

]
=

M∑
m=1

[
wmβmψ

l
m(x)

N∑
n=1

γlnm︸ ︷︷ ︸
=1

]
+

M∑
m=1

[
wm(1− βm)ψrm(x)

N∑
n=1

γrnm︸ ︷︷ ︸
=1

]
=

M∑
m=1

[
wm

(
βmψ

l
m(x) + (1− βm)ψr(x)

]︸ ︷︷ ︸
=
‖x‖2

2

=

M∑
m=1

wm
‖x‖2

2
=
‖x‖2

2
.

B Experimental Details

B.1 Ave, celeba! Dataset Creation

The initialization of random permutations σm and reflections sm (for m = 1, 2) as well as the
random split of CelebA dataset into 3 parts (each containing ≈ 67K images) are hardcoded in our
provided script for producing Ave, celeba! dataset. To initialize ICNNm (for m = 1, 2), we use use
ConvICNN64 [29, Appendix B.1] checkpoints Early v1 conj.pt, Early v2 conj.pt from the
official Wasserstein-2 benchmark repository2.

We rescale Celeba images to 64 × 64 by using imresize from scipy.misc. To create empirical
samples from input distributions Pn by using the rescaled CelebA dataset, we compute the gradient
maps∇ψn(x) (n = 1, 2, 3) in Lemma 3 for images x in the CelebA dataset. This computation implies
computing gradient maps∇ψlm(x) and∇ψrm(x) for each base function ψ0

m (m = 1, 2) and summing
them with respective coefficients (12). Following our Lemma 2, we compute ylm

def
= ∇ψlm(x) by

solving a concave optimization problem (11) over the space of images. We solve this problem with
the gradient descent. We use Adam optimizer [26] with default betas, lr = 2 · 10−2 and do 1000
gradient steps. To speed up the computation, we simultaneously solve the problem for a batch of 256

images x from CelebA dataset. Then we compute yr def
= ∇ψrm(x) as yr = ∇ψm(yl) (Lemma 2).

2https://github.com/iamalexkorotin/Wasserstein2Benchmark

17

https://github.com/iamalexkorotin/Wasserstein2Benchmark

Computational complexity. Producing Ave, celeba! takes about 1, 5 days on a GPU GTX 1080 ti.

B.2 Hyperparameters (Algorithm 1, Main Training)

We provide the hyperparameters of all the experiments with algorithm 1 in Table 3. The column total
iters shows the sum of gradient steps over generator Gξ and each of N potentials vωn in OT solvers.

Optimization. We use Adam optimizer with the default betas. During training, we decrease the
learning rates of the generator Gξ and each potential vωn every 10K steps of their optimizers. In the
Gaussian case, we use a single GPU GTX 1080ti. In all other cases we split the batch over 4×GPU
GTX 1080ti (nn.DataParallel in PyTorch).

Neural Network Architectures. In the Gaussian case, we use In the evaluation in the Gaussian
case, we use sequential fully-connected neural networks with ReLU activations for the generator
Gξ : RD → RD, potentials vωn : RD → R and transport maps Tθn : RD → RD. For all the
networks the sizes of hidden layers are:

[max(100, 2D),max(100, 2D),max(100, 2D)].

Working with images, we use the ResNet3 generator and discriminator architectures of WGAN-QC
[35] for our generator Gξ and potentials vωn respectively. As the maps Tθn , we use U-Net 4 [52].

Generator regression loss. In the Gaussian case and experiments with grayscale images (MNIST,
FashionMNIST), we use mean squared loss for generator regression. In other experiments, we use
the perceptual mean squared loss based on the features of the pre-trained VGG-16 network [57]. The
loss is hardcoded in the implementation.

Data pre-processing. In all experiments with images we normalize them to [−1, 1]. We rescale
MNIST and FashionMNIST images to 32 × 32. In all other cases, we rescale images to 64 × 64.
Note that Fruit360 dataset originally contains 114 × 114 images; before rescaling, we add white
color padding to make the images have the size 128× 128. Working with Ave, celeba! dataset, we
additionally shift each subset Pn by (µ− µn), i.e., we train the models on the dCSc baseline. This
helps the models to avoid learning the shift.

Computational complexity. The most challenging experiments (Ave, celeba! and Handbags, Shoes,
Fruit) take about 2-3 days to converge on 4×GPU GTX 1080 ti. Other experiments converge faster.

Experiment D H N Gξ vωn Tθn kG kv kT lrG lrv lrT `
Total
iters

Batch
size

Toy 2D 2 2 3 MLP MLP

50 50

10 1 · 10−4 1 · 10−3 1 · 10−3

MSE

12K 1024
Gaussians 2-128 2-128 4 MLP MLP 10 1 · 10−4 1 · 10−3 1 · 10−3 12K 1024

MNIST 0/1 1024 16 2

ResNet UNet

15 1 · 10−4 1 · 10−4 1 · 10−4 60K

64

FashionMNIST 10 10 1 · 10−4 1 · 10−4 1 · 10−4 100K
Bags, Shoes, Fruit

12288 128

3 10 3 · 10−4 3 · 10−4 3 · 10−4

VGG

36K
Ave, celeba! 3 10 3 · 10−4 3 · 10−4 3 · 10−4 60K

Celeba 1 15 1 · 10−4 1 · 10−4 1 · 10−4 80K
Celeba (fixedG) 1 0 15 1 · 10−4 1 · 10−4 1 · 10−4 120K

Table 3: Hyperparameters that we use in the experiments with our algorithm 1.

B.3 Hyperparameters (Algorithm 2, Learning Maps to the Barycenter)

After using the main algorithm 1 to train Gξ, we use algorithm 2 to extract the inverse optimal maps
Pn → Pξ. We detail the hyperparameters in Table 4 below. In all the cases we use Adam optimizer
with the default betas. The column total iters show the number of update steps for each vinv

ω′n
.

B.4 Hyperparameters of competitive [SCW2B] algorithm

On Ave, celeba! we use [19, Algorithm 1] with k3 = 50000, k2 = k1 = 10.5 The optimizer, the
learning rates and the generator network are the same as in our algorithm. However, for the potentials

3https://github.com/harryliew/WGAN-QC
4https://github.com/milesial/Pytorch-UNet
5We also tried training their ICNN-based algorithm in our iterative manner, i.e., by performing multiple

regression updates of the generator instead of the single variational update. This provided the same results.

18

https://github.com/harryliew/WGAN-QC
https://github.com/milesial/Pytorch-UNet

Experiment D N vωn Tθn kT lrv lrT
Total
iters

Batch
size

Toy 2D 2 2 MLP MLP 10 1 · 10−3 1 · 10−3 10k 1024
MNIST 0/1 1024 2

ResNet UNet 10 1 · 10−4 1 · 10−4

4k

64FashionMNIST 10 4k
Bags, Shoes, Fruit 12288 3 20K

Ave, celeba! 3 12K

Table 4: Hyperparameters that we use in the experiments with algorithm 2

Algorithm 2: Learning maps from input measures to the learned barycenter Pξ ≈ P with
dMM:Re OT solver.

Input : latent S and input P1, . . . ,PN measures; pretrained generator Gξ : RH → RD
satisfying Gξ]S ≈ P;
mapping networks T inv

θ′1
, . . . , T inv

θ′N
: RD → RD; potentials vinv

ω′1
, . . . , vinv

ω′N
: RD → R;

number of inner iterations for training transport maps: KT ;
Output :OT maps satisfying T inv

θ′n
]Pn ≈ Pξ = (Gξ]S) ≈ P;

repeat
for n = 1, 2, . . . , N do

Sample batches Z∼S, Y ∼Pn; X←Gξ(Z);
Lv ← 1

|Y |
∑
y∈Y

vinv
ω′n

(
T inv
θ′n

(y)
)
− 1
|X|

∑
x∈X

vinv
ω′n

(
x
)
;

Update ω′n by using ∂Lv
∂ω′n

;
for kT = 1, 2, . . . ,KT do

Sample batch Y ∼Pn;
LT = 1

|Y |
∑
y∈Y

[
1
2‖y−T

inv
θ′n

(y)‖2−vinv
ω′n

(
T inv
θ′n

(y)
)]

;

Update θ′n by using ∂LT
∂θ′n

;

until not converged;

(OT solver), we use ICNN architecture as it is required by their method. We use ConvICNN64 [29,
Appendix B.1] architecture. For handbags, shoes, fruit (Figure 8), the parameters are the same.

(a) Generated samples Pξ ≈ P,
fitted maps to each Pn and their

average.

(b) Samples y ∼ P1

mapped through Pξ to
each Pn.

(c) Samples y ∼ P2

mapped through Pξ to
each Pn.

(d) Samples y ∼ P3

mapped through Pξ to
each Pn.

Figure 8: The barycenter of Handbags, Shoes, Fruit (64×64) datasets fitted by competitive [SCW2B].

19

C Additional Experimental Results

C.1 Toy Experiments

In this section, we provide examples of barycenters computed by our Algorithm for 2D location-scatter
cases. To produce the location-scatter population of distributions and compute their ground truth
barycenters, we employ the publicly available code6 of [CW2B] paper [30]. The hyper-parameters of
our Algorithm 1 (learning the barycenter and maps to input measures) and Algorithm 2 (dMM:Rc
solver, learning the inverse maps) are given in Tables 3 and 4, respectively. For evaluation, we
consider two location-scatter populations produced by a rectangle and a swiss-roll respectively [30,
M5]. The computed barycenters and maps to/from the input distributions are shown in Figures 9, 10.

(a) Input measures Pξ and their ground truth barycenter P w.r.t. weights α1 = α2 = α3 = 1
3

.

(b) Learned maps Pn → Pξ from the input measures and the generated barycenter Pξ = Gξ]S.

(c) Learned maps Pξ → Pn from the generated barycenter Pξ = Gξ]S to the input measures Pn
and their weighted average map

∑N
n=1

[
αnT̂Pξ→Pn

]
]Pξ.

Figure 9: The results of applying our algorithm to compute the barycenter of a 2D
location-scatter population produced by a rectangle.

C.2 Location-Scatter Case

Similar to [30, 19], we consider location-scatter cases for which the true barycenter can be computed
[3, §4]. Let P0 ∈ P2,ac(RD) and define the following location-scatter family of distributionsF(P0) =
{fS,u]P0 | S ∈ M+

D×D, u ∈ RD}, where fS,u : RD → RD is a linear map fS,u(x) = Sx + u

with positive definite matrix S ∈ M+
D×D. When {Pn} ⊂ F(P0), their barycenter P is also an

6http://github.com/iamalexkorotin/Wasserstein2Barycenters

20

http://github.com/iamalexkorotin/Wasserstein2Barycenters

(a) Input measures Pξ and their ground truth barycenter P w.r.t. weights α1 = α2 = α3 = 1
3

.

(b) Learned maps Pn → Pξ from the input measures and the generated barycenter Pξ = Gξ]S.

(c) Learned maps Pξ → Pn from the generated barycenter Pξ = Gξ]S to the input measures Pn
and their weighted average map

∑N
n=1

[
αnT̂Pξ→Pn

]
]Pξ.

Figure 10: The results of applying our algorithm to compute the barycenter of a 2D
location-scatter population produced by a Swiss roll.

element of F(P0) and can be computed via fixed-point iterations [3]. We use N = 4 measures
with weights (α1, . . . , α4) = (1

10 ,
2
10 ,

3
10 ,

4
10). We consider two choices for P0: the D-dimensional

standard Gaussian and the uniform distribution on [−
√

3,+
√

3]D. By using the publicly available
code of [30], we construct Pn as fSTnΛSn,0]P0 ∈ F(P0), where Sn is a random rotation matrix and
Λ is diagonal with entries [1

2b
0, 1

2b
1, . . . , 2] where b = D−1

√
4. We quantify the generated barycenter

Gξ]S with the Bures-Wasserstein Unexplained Variance Percentage [30, M5]:

BW2
2-UVP(Gξ]S,P) = 100 · BW2

2(Gξ]S,P)/
[1
2

Var(P)
]
%,

where BW2
2(P,Q) = W2

2

(
N (µP,ΣP),N (µQ,ΣQ)

)
is the Bures-Wasserstein metric and µP, ΣP

denote mean and covariance of P. The metric admits the closed form [13]. For the trivial baseline
prediction Gξ0(z) ≡ µP ≡

∑N
n=1 αnµPn the metric value is 100%. We denote this baseline as bCe.

Method D=2 4 8 16 32 64 128
bCe 100 100 100 100 100 100 100

[SCW2B] 0.07 0.09 0.16 0.28 0.43 0.59 1.28
Ours 0.01 0.02 0.01 0.08 0.11 0.23 0.38

Method D=2 4 8 16 32 64 128
bCe 100 100 100 100 100 100 100

[SCW2B] 0.12 0.10 0.19 0.29 0.46 0.6 1.38
Ours 0.04 0.06 0.06 0.08 0.11 0.27 0.46

Table 5: Comparison of BW2
2-UVP↓ (%) in the location-scatter cases:

P0 = N (0, ID) on the left and P0 = Uniform
(
[−
√

3,+
√

3]D
)

on the right.

21

The results of our algorithm 1 and [SCW2B] adapted from [30, Table 1] are given in Table 5. Both
algorithms work well in the location-scatter cases and provide BW2-UVP < 2% in dimension 128.

C.3 Generative Modeling

Analogously to [19], we evaluate our algorithm when N = 1. In this case, the minimizer of (5) is the
measure P1 itself, i.e., P = P1. As the result, our algorithm 1 works as a usual generative model, i.e.,
it fits data P1 by a generator Gξ . For experiments, we use CelebA 64× 64 dataset. Generated images
Gξ(z) and T̂Pξ→P1

(
Gξ(z)

)
are shown in Figure 11a.

(a) Generator Gξ training enabled (KG > 0). (b) Generator Gξ training disabled (KG = 0).

Figure 11: Images generated by our algorithm 1 serving as a generative model. The 1st line shows
samples from Gξ]S ≈ P1, the 2nd line shows estimated OT map T̂Pξ→P1 from Gξ]S to P1 which
further improves generated images.

In Table 6, we provide FID for generated images. For comparison, we include FID for ICNN-based
[SCW2B], and WGAN-QC [35]. FID scores are adapted from [29, M4.5]. Note that for N = 1,
[SCW2B] is reduced to the OT solver by [40] used as the loss for generative models, a setup tested in
[29, Figure 3a]. Serving as a generative model when N = 1, our algorithm 1 performs comparably to
WGAN-QC and drastically outperforms ICNN-based [SCW2B].

Method FID↓

[SCW2B]
Gξ(z) 90.2

T̂Pξ→P1
(
Gξ(z)

)
89.8

WGAN-QC Gξ(z) 14.4

Ours Gξ(z) 46.6
T̂Pξ→P1

(
Gξ(z)

)
15.7

Ours (fixed Gξ) Gξ(z) N/A
T̂Pξ→P1

(
Gξ(z)

)
16.1

Table 6: FID scores of generated faces.

Fixed generator. For N=1, the fixed point approach M4.1 converges in only one step since operator
H immediately maps Gξ]S to P1. As a result, in our algorithm 1, exclusively when N = 1, we can
fix generator Gξ and train only OT map Tθ1 from Gξ]S to data measure P1 and related potential vω1

.
As a sanity check, we conduct such an experiment with randomly initialized generator network Gξ.
The results are given in Figure 11b, the FID is included in Table 6. Our algorithm performs well even
without generator training at all.

C.4 Barycenters of MNIST Digits and FashionMNIST Classes

Similar to [19, Figure 6], we provide qualitative results of our algorithm applied to computing the
barycenter of two MNIST classes of digits 0, 1. The barycenter w.r.t. weights (1

2 ,
1
2) computed by

our algorithm is shown in Figure 12. We also consider a more complex FashionMNIST [66] dataset.
Here we compute the barycenter of 10 classes w.r.t. weights (1

10 , . . . ,
1
10). The results are given in

Figures 13 and Figure 14.

Due to (6), each barycenter images are an average (in pixel space) of certain images from the input
measure. In all the Figures, the produced barycenter images satisfy this property. The maps to input
measures are visually good. The approximate fixed point operator H(Pξ) is almost the identity as
expected (the method converged).

22

C.5 Additional Results

In Figure 16, we visualize maps between Ave, Celeba! subsets through the learned barycenter. In
Figure 15, we provide additional qualitative results for computing barycenters of Handbags, Shoes,
Fruit360 datasets.

(a) The barycenter Pξ and maps to input measures Pn.

(b) Samples from P1 mapped through Pξ to each Pn. (c) Samples from P2 mapped through Pξ to each Pn.

Figure 12: The barycenter of MNIST digit classes 0/1 learned by Algorithm 1.

23

Figure 13: The barycenter and maps to input measures estimated by our method on 10 FashionMNIST
classes (32×32). The 1st line shows generated samples from Pξ = Gξ]S ≈ P. Each of 10
next lines shows estimated optimal maps T̂Pξ→Pn to measures Pn. The last line shows average[∑N

n=1 αnT̂Pξ→Pn
]
]Pξ.

24

Figure 14: Maps between FashionMNIST classes through the learned barycenter. The 1st images in
each n-th column shows a sample from Pn. The 2nd columns maps these samples to the barycenter.
Each next column shows how the maps from the barycenter to the input classes Pn.

25

(a) Generated samples Pξ ≈ P, fitted maps to each Pn and their average.

(b) Samples y ∼ P1 mapped
through Pξ to each Pn.

(c) Samples y ∼ P2 mapped
through Pξ to each Pn.

(d) Samples y ∼ P3 mapped
through Pξ to each Pn.

Figure 15: The barycenter of Handbags, Shoes, Fruit (64× 64) datasets fitted by our algorithm 1.

(a) Samples y ∼ P1 mapped through
Pξ to each Pn.

(b) Samples y ∼ P2 mapped through
Pξ to each Pn.

(c) Samples y ∼ P3 mapped through
Pξ to each Pn.

Figure 16: Maps between subsets of Ave, celeba! dataset through the barycenter learned by our
algorithm 1.

26

	Proofs
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Lemma 3

	Experimental Details
	Ave, celeba! Dataset Creation
	Hyperparameters (Algorithm 1, Main Training)
	Hyperparameters (Algorithm 2, Learning Maps to the Barycenter)
	Hyperparameters of competitive [SCW2B] algorithm

	Additional Experimental Results
	Toy Experiments
	Location-Scatter Case
	Generative Modeling
	Barycenters of MNIST Digits and FashionMNIST Classes
	Additional Results

