
A Learning LSFs with Bounded Noise in Kendall’s Tau distance

A.1 Improperly Learning LSFs with Bounded Noise

We provide an improper learner for LSFs in the presence of bounded noise. We first restate the
main result of this section, whose proof relies on a connection between noisy linear label ranking
distributions and the Massart noise model.
Theorem 3 (Non-Proper Learning Algorithm). Fix 𝜂 ∈ [0, 1/2) and 𝜖, 𝛿 ∈ (0, 1). Let 𝒟 be an
𝜂-noisy linear label ranking distribution satisfying the assumptions of Definition 2. ImproperLSF
(Algorithm 1) draws 𝑁 = ̃︀𝑂 (︁ 𝑑

𝜖(1−2𝜂)6 log(𝑘/𝛿)
)︁

samples from 𝒟, runs in poly(𝑑, 𝑘, 1/𝜖, log(1/𝛿))

time and, with probability at least 1 − 𝛿, outputs a hypothesis ℎ : R𝑑 → S𝑘 that is 𝜖-close in KT
distance to the target.

Proof. Assume that the target function is 𝜎⋆(𝑥) = 𝜎𝑊 ⋆(𝑥) = argsort(𝑊 ⋆𝑥) for some unknown
matrix 𝑊 ⋆ ∈ R𝑘×𝑑. Consider a collection of 𝑁 i.i.d. samples from an 𝜂-noisy linear label ranking
distribution 𝒟 (see Definition 2) and let 𝑇 be the associated training set. For each example (𝑥, 𝜋) ∈ 𝑇 ,
we create a list of

(︀
𝑘
2

)︀
binary examples (𝑥, 𝑦𝑖𝑗) with 𝑦𝑖𝑗 = sgn(𝜋(𝑖)− 𝜋(𝑗)) for any 1 ≤ 𝑖 < 𝑗 ≤ 𝑘,

where 𝜋(𝑖) denotes the position of the element 𝑖. Hence, we create the datasets 𝑇𝑖𝑗 consisting of the
binary labeled examples (𝑥, 𝑦𝑖𝑗). We have that

Pr
(𝑥,𝜋)∼𝒟

[︀
𝑦𝑖𝑗 · sgn((𝑊 ⋆

𝑖 −𝑊 ⋆
𝑗 ) · 𝑥) < 0 | 𝑥

]︀
= Pr

𝜋∼ℳ(𝜎⋆(𝑥))

[︀
𝜋(𝑖) < 𝜋(𝑗) | 𝑊 ⋆

𝑖 · 𝑥 < 𝑊 ⋆
𝑗 · 𝑥

]︀
.

Since ℳ(𝜎⋆(𝑥)) is an 𝜂-bounded noise ranking distribution (see Definition 1), we get that

Pr
𝜋∼ℳ(𝜎⋆(𝑥))

[𝜋(𝑖) < 𝜋(𝑗) | 𝜎⋆(𝑥)(𝑖) > 𝜎⋆(𝑥)(𝑗)] ≤ 𝜂 < 1/2 ,

where 𝜎⋆(𝑥)(𝑖) denotes the position of the element 𝑖 in the ranking 𝜎⋆(𝑥). Focusing on the training
set 𝑇𝑖𝑗 , we have that the sign 𝑦𝑖𝑗 is flipped with probability at most 𝜂. So, we have reduced the
problem to

(︀
𝑘
2

)︀
sub-problems concerning the learnability of halfspaces in the presence of Massart

noise. The Massart noise model is a special case of Definition 2 where 𝑘 = 2. Note also that for each
training set 𝑇𝑖𝑗 , the features 𝑥 have the same distribution. We can now apply the following result
for LTFs with Massart noise for the standard Gaussian distribution. Recall that the concept class of
homogeneous halfspaces (or linear threshold functions) is 𝒞LTF = {ℎ𝑤(𝑥) = sgn(𝑤 ·𝑥) : 𝑤 ∈ R𝑑}.
Lemma 6 (Learning Halfspaces with Massart noise [ZSA20]). Fix 𝜂 ∈ [0, 1/2) and let 𝜖, 𝛿 ∈ (0, 1).
Let 𝒟 be an 𝜂-noisy linear label ranking distribution satisfying the assumptions of Definition 2 with
𝑘 = 2 (where 𝒞LSF = 𝒞LTF). There is a computationally efficient algorithm MassartLTF that draws
𝑚 = 𝑂(𝑑 polylog(𝑑)

𝜖(1−2𝜂)6 · log(1/𝛿)) samples from 𝒟, runs in poly(𝑚) time and outputs a linear threshold
function ℎ that is 𝜖-close to the target linear threshold function ℎ⋆ with probability at least 1− 𝛿, i.e.,
it holds Pr𝑥∼𝒩𝑑

[ℎ(𝑥) ̸= ℎ⋆(𝑥)] ≤ 𝜖.

We can invoke the algorithm of Lemma 6 for any alternatives 1 ≤ 𝑖 < 𝑗 ≤ 𝑘 with accuracy 𝜖′ = 𝑂(𝜖),
𝛿′ = 𝑂(𝛿/𝑘2) and error rate 𝜂 < 1/24. We remark that Lemma 6 returns a halfspace. Each one of
the
(︀
𝑘
2

)︀
calls will provide a vector 𝑣𝑖𝑗 ∈ R𝑑 such that, with probability at least 1− 𝛿′, it satisfies

Pr
𝑥∼𝒩𝑑

[sgn(𝑣𝑖𝑗 · 𝑥) ̸= sgn((𝑊 ⋆
𝑖 −𝑊 ⋆

𝑗 ) · 𝑥)] ≤ 𝜖′ ,

where the true target halfspace has normal vector 𝑊 ⋆
𝑖 −𝑊 ⋆

𝑗 . Moreover, for any 𝑖 < 𝑗, the algorithm
requires that the training set 𝑇𝑖𝑗 is of size

|𝑇𝑖𝑗 | = Ω

(︂
𝑑

𝜖′
· 1

(1− 2𝜂)6
· log(1/𝛿′)

)︂
,

and, so, a total number of

𝑁 = Ω

(︂
𝑑

𝜖
· 1

(1− 2𝜂)6
· log(𝑘/𝛿)

)︂
,

4We can assume that 𝜂 is known without loss of generality.
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samples (𝑥, 𝜋) is required from the distribution 𝒟. Given a collection of linear classifiers with normal
vectors 𝑣𝑖𝑗 for any 𝑖 < 𝑗, it remains to aggregate them and compute a sorting function ℎ : R𝑑 → S𝑘.
To this end, the estimator ℎ, given an example 𝑥, creates the directed complete graph 𝐺 with 𝑘 nodes
with directed edge 𝑖 → 𝑗 if 𝑣𝑖𝑗 · 𝑥 > 0. If all the linear classifiers are correct (which occurs with
probability 1−𝑂(𝜖𝑘2) over 𝒟𝑥 due to the union bound), the graph 𝐺 is acyclic (since it will match
the true directions induced by 𝑊 ⋆) and the estimator ℎ outputs the induced permutation. Observe
that the KT distance is

1(︀
𝑘
2

)︀ · E
𝑥∼𝒩𝑑

⎡⎣ ∑︁
1≤𝑖<𝑗≤𝑘

1{sgn(𝑣𝑖𝑗 · 𝑥) ̸= sgn((𝑊 ⋆
𝑖 −𝑊 ⋆

𝑗 ) · 𝑥)}

⎤⎦ ≤ 𝜖′ .

Otherwise, the classifiers are inconsistent and 𝐺 contains cycles. So, the expected number of mistakes
in the graph 𝐺 is 𝜖𝑘2. The estimator in order to output a ranking uses a deterministic constant
approximation algorithm for the minimum Feedback Arc Set [ACN08] in order to remove the cycles.
For an overview of this fundamental line of research, we refer to [ACN08, VZW09, KMS06].

Lemma 7 (3-Approximation Algorithm for mimimum FAS (see [VZW09, ACN08])). There is a
deterministic algorithm MFAS for the minimum Feedback Arc Set on unweighted tournaments with 𝑘
vertices that outputs orderings with cost less than 3 ·OPT. The running time is poly(𝑘).

In the above, OPT is the minimum number of flips the algorithm should perform. With input
the cyclic directed graph 𝐺 induced by the estimated linear classifiers, the algorithm of Lemma 7
computes, in poly(𝑘) time, a 3-approximation of the optimal solution (i.e., instead of correcting 𝜖0
directed edges, the algorithm will provide a directed acyclic graph with 3𝜖0 changed edges). Hence,
for the hypothesis ℎ : R𝑑 → S𝑘, where ℎ(𝑥) is the output of the minimum FAS approximation
algorithm with input 𝐺 (𝐺 depends on the input 𝑥, the randomness of the samples and the internal
randomness of the

(︀
𝑘
2

)︀
calls of the Massart linear classifiers), and the target function 𝜎⋆(𝑥), we have

that
E

𝑥∼𝒩𝑑

[∆𝐾𝑇 (ℎ(𝑥), 𝜎
⋆(𝑥))] ≤ (𝜖′ + 3𝜖′) = 4𝜖′ ,

which completes the proof, by setting 𝜖′ = 𝜖/4.

Remark 1. Consider the following variant of the above procedure: compute the 𝑂(𝑘2) linear
classifiers with accuracy 𝜖′ = 𝜖/𝑘2: If the induced directed graph is acyclic, output the ranking;
otherwise, output a random permutation. With probability 𝜖, the KT distance will be of order 𝑘2.
Hence, one has to draw in total 𝑂(𝑘4𝑑/𝜖) samples to make the expected KT distance roughly 𝑂(𝜖).
The algorithm of Theorem 3 improves on this approach.

A.2 The Proof of Theorem 1: Properly Learning LSFs with Bounded Noise

We first restate the main result of this section.

Theorem 4 (Proper Learning Algorithm). Fix 𝜂 ∈ [0, 1/2) and 𝜖, 𝛿 ∈ (0, 1). Let 𝒟 be an 𝜂-noisy
linear label ranking distribution satisfying the assumptions of Definition 2. ProperLSF (Algorithm 2)
draws 𝑁 = ̃︀𝑂 (︁ 𝑑

𝜖(1−2𝜂)6 log(𝑘/𝛿)
)︁

samples from 𝒟, runs in poly(𝑑, 𝑘, 1/𝜖, log(1/𝛿)) time and, with

probability at least 1 − 𝛿, outputs a Linear Sorting function ℎ : R𝑑 → S𝑘 that is 𝜖-close in KT
distance to the target.

We are now ready to provide the proof of our efficient proper learning algorithm for the class of
Linear Sorting functions in the presence of bounded noise with respect to the standard Gaussian
probability measure.

Proof. As a first step, the algorithm calls the improper learning algorithm ImproperLSF (Algo-
rithm 1) with parameters 𝜖, 𝛿 and 𝜂 < 1/2 and obtains a list of linear classifiers with normal vectors
𝑣𝑖𝑗 for 𝑖 < 𝑗. The utility of this step implies that, with probability at least 1 − 𝛿, each one of the
classifiers 𝜖-learns the associated true halfspace, i.e., it holds

Pr
𝑥∼𝒩𝑑

[sgn(𝑣𝑖𝑗 · 𝑥) ̸= sgn((𝑊 ⋆
𝑖 −𝑊 ⋆

𝑗 ) · 𝑥)] ≤ 𝜖 ,
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where 𝑊 ⋆ is the matrix of the target Linear Sorting function. Without loss of generality, assume that
‖𝑣𝑖𝑗‖2 = 1. In order to make the learner proper, it suffices to solve the following convex program on
𝑊 :

Find 𝑊 ∈ R𝑘×𝑑, (1)
such that (𝑊𝑖 −𝑊𝑗) · 𝑣𝑖𝑗 ≥ (1− 𝜑) · ‖𝑊𝑖 −𝑊𝑗‖2 for any 1 ≤ 𝑖 < 𝑗 ≤ 𝑘 , (CP) (2)

‖𝑊 ‖𝐹 ≤ 1 , (3)

for some 𝜑 ∈ (0, 1) to be decided. The main key ideas are summarized in the next claim.

Claim 5. The following properties hold true for 𝜑 = 𝑂(𝜖2) with probability at least 1− 𝛿.

1. The convex program 1 is feasible.

2. Any solution of the convex program 1 induces an LSF that is 𝜖-close in KT distance to the
true target 𝜎𝑊 ⋆(·).

3. The feasible set of the convex program 1 contains a ball of radius 𝑟 = 2−poly(𝑑,𝑘,1/𝜖,log(1/𝛿))

and is contained in a ball of radius 1. Both balls are with respect to the Frobenius norm.

4. The convex program 1 can be solved in time poly(𝑑, 𝑘, 1/𝜖, log(1/𝛿)) using the ellipsoid
algorithm.

Proof of Item 1. First, we can choose the error 𝜑 so that this convex program is feasible. Let us
set 𝑊 = 𝑊 ⋆, where 𝑊 ⋆ is the underlying matrix of the target Linear Sorting function 𝜎⋆ with
𝜎⋆(𝑥) = argsort(𝑊 ⋆𝑥). Recall that, by the guarantees of the improper learning algorithm, for the
pair 1 ≤ 𝑖 < 𝑗 ≤ 𝑘, it holds

Pr
𝑥∼𝒩𝑑

[sgn(𝑣𝑖𝑗 · 𝑥) ̸= sgn((𝑊 ⋆
𝑖 −𝑊 ⋆

𝑗 ) · 𝑥)] ≤ 𝜖 . (4)

Since the standard Gaussian is rotationally symmetric, the angle 𝜃(𝑢,𝑣) between two vectors
𝑢,𝑣 ∈ R𝑑 is equal to 𝜋 · Pr𝑥∼𝒩𝑑

[sgn(𝑢 · 𝑥) ̸= sgn(𝑣 · 𝑥)]. Hence, using this observation and
Equation (4), we get that the angle between the guess vector 𝑣𝑖𝑗 and the true normal vector 𝑊 ⋆

𝑖 −𝑊 ⋆
𝑗

is
𝜃(𝑊 ⋆

𝑖 −𝑊 ⋆
𝑗 ,𝑣𝑖𝑗) ≤ 𝑐 · 𝜖 ,

for some constant 𝑐 > 0. For sufficiently small 𝜖, this bound implies that the cosine of the above
angle is of order 1− (𝑐𝜖)2 and so the following inequality will hold

(𝑊 ⋆
𝑖 −𝑊 ⋆

𝑗 ) · 𝑣𝑖𝑗 ≥ (1− 2(𝑐𝜖)2) · ‖𝑊 ⋆
𝑖 −𝑊 ⋆

𝑗 ‖2 ,

since 𝑣𝑖𝑗 is unit. Hence, by setting 𝜑 = 2(𝑐𝜖)2, the convex program with variables 𝑊 ∈ R𝑘×𝑑 will
be feasible; 𝑊 ⋆ will be a solution with probability 1− 𝛿, where the randomness is over the output of
the algorithm dealing with the Massart linear classifiers. Note that we can assume that ‖𝑊 ⋆‖𝐹 ≤ 1
without loss of generality, since we can divide each row with the Frobenius norm.

Proof of Item 2. Let ̃︁𝑊 be a solution of the convex program.We will make use of the observation
that the angle between two vectors is equal to the disagreement of the associated linear threshold
functions with respect to the standard normal times 𝜋. Observe that any solution ̃︁𝑊 to the convex
program will satisfy that

(∀𝑖, 𝑗) 𝜃(𝑣𝑖𝑗 ,̃︁𝑊𝑖 − ̃︁𝑊𝑗) ≤ 𝑂(
√︀
𝜑) = 𝑐𝜖 .

and
(∀𝑖, 𝑗) 𝜃(𝑊 ⋆

𝑖 −𝑊 ⋆
𝑗 ,𝑣𝑖𝑗) ≤ 𝜖 .

This implies that
𝑑angle(𝑊

⋆,̃︁𝑊 ) ≤ 𝑐′ 𝜖

Claim 6. For the matrices 𝑊 ,𝑊 ⋆ ∈ R𝑘×𝑑, it holds that

E
𝑥∼𝒩𝑑

[∆KT(𝜎𝑊 (𝑥), 𝜎𝑊 ⋆(𝑥))] ≤ 𝑑angle(𝑊 ,𝑊 ⋆) .
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Proof. We have that

E
𝑥∼𝒩𝑑

[∆KT(𝜎𝑊 (𝑥), 𝜎𝑊 ⋆(𝑥))] =
1(︀
𝑘
2

)︀ · E
𝑥∼𝒩𝑑

[
∑︁

1≤𝑖<𝑗≤𝑘

1{((𝑊𝑖 −𝑊𝑗) · 𝑥) ((𝑊 ⋆
𝑖 −𝑊 ⋆

𝑗 ) · 𝑥) < 0}

=
1(︀
𝑘
2

)︀ · ∑︁
1≤𝑖<𝑗≤𝑘

Pr
𝑥∼𝒩𝑑

[sgn(𝑊𝑖 −𝑊𝑗) · 𝑥) ̸= sgn((𝑊 ⋆
𝑖 −𝑊 ⋆

𝑗 ) · 𝑥)]

=
1

𝜋
max
𝑖,𝑗

𝜃(𝑊𝑖 −𝑊𝑗 ,𝑊
⋆
𝑖 −𝑊 ⋆

𝑗 )

≤ 𝑑angle(𝑊 ,𝑊 ⋆) .

Using the above claim, we get an expected KT distance bound of order 𝑂(𝜖). This gives the desired
result.

Proof of Item 3. We will make use of the next lemma.

Lemma 8. Fix 𝜖, 𝛿 ∈ (0, 1). Let 𝑊 ⋆ ∈ R𝑘×𝑑 be the true parameter matrix. There exists a matrix̃︁𝑊 ⋆ ∈ R𝑘×𝑑 such that, with probability at least 1− 𝛿:

• Pr𝑥∼𝒩𝑑
[sgn((𝑊 ⋆

𝑖 −𝑊 ⋆
𝑗 ) · 𝑥) ̸= sgn((̃︁𝑊 ⋆

𝑖 − ̃︁𝑊 ⋆
𝑗 ) · 𝑥)] ≤ 𝜖 for all 𝑖 ̸= 𝑗, and,

• ‖̃︁𝑊 ⋆
𝑖 − ̃︁𝑊 ⋆

𝑗 ‖2 ≥ 2−poly(𝑑,𝑘,1/𝜖,log(1/𝛿)) for any 𝑖 ̸= 𝑗.

Proof of Lemma 8. The above lemma is a result of the next Appendix A.2.1. In particular, it is a
direct implication of Lemma 10 and Corollary 1.

Note that the above lemma implies that

(∀𝑖, 𝑗) Pr
𝑥∼𝒩𝑑

[sgn(𝑣𝑖𝑗 · 𝑥) ̸= sgn((̃︁𝑊 ⋆
𝑖 − ̃︁𝑊 ⋆

𝑗 ) · 𝑥)] ≤ 2𝜖 ,

with probability at least 1− 2𝛿. Hence, up to constants, the analysis concerning the feasibility of the
true matrix 𝑊 ⋆ (see Item 1) will still hold for ̃︁𝑊 ⋆. From now on we can work with this matrix ̃︁𝑊 ⋆

which enjoys the “well-conditionedness” property of the second item of the lemma.

We will use the above lemma in order to prove Item 3 which controls the volume of the feasible
region: it states that there exist 0 < 𝑟 < 𝑅 so that the feasible region of the convex program contains
a ball of radius 𝑟 and is contained in a ball of radius 𝑅 (where the balls are with respect to the
Frobenius norm). Moreover, 𝑟 = 2−poly(𝑑,𝑘,1/𝜖,log(1/𝛿)) and 𝑅 = 1.

For the chosen 𝜑 ∈ (0, 1), the feasible set contains matrices 𝑊 ∈ R𝑘×𝑑 that satisfy ‖𝑊 −̃︁𝑊 ⋆‖𝐹 ≤
2𝑟, 𝑟 to be decided. For any 𝑖 ̸= 𝑗, we have that the following properties hold:

1. ‖̃︁𝑊 ⋆
𝑖 − ̃︁𝑊 ⋆

𝑗 ‖2 ≥ 2−poly(𝑑,𝑘,1/𝜖,log(1/𝛿)) (well-conditionedness).

2. (̃︁𝑊 ⋆
𝑖 − ̃︁𝑊 ⋆

𝑗 ) · 𝑣𝑖𝑗 ≥ (1− 𝜑) ‖̃︁𝑊 ⋆
𝑖 − ̃︁𝑊 ⋆

𝑗 ‖2 (feasibility).

3. ‖𝑊 − ̃︁𝑊 ⋆‖𝐹 ≤ 2𝑟 which implies that ‖𝑊𝑖 − ̃︁𝑊 ⋆
𝑖 ‖2 ≤ 2𝑟 for any 𝑖 ∈ [𝑘] (ball around

feasible point).

4. ‖𝑣𝑖𝑗‖2 = 1.

Our goal is to prove that for a matrix in the above ball it holds (𝑊𝑖−𝑊𝑗)·𝑣𝑖𝑗 ≥ (1−𝜑) ‖𝑊𝑖−𝑊𝑗‖2.

We have that
(̃︁𝑊 ⋆

𝑖 − ̃︁𝑊 ⋆
𝑗 ) · 𝑣𝑖𝑗 = (̃︁𝑊 ⋆

𝑖 −𝑊𝑖) · 𝑣𝑖𝑗 + (𝑊𝑗 − ̃︁𝑊 ⋆
𝑗 ) · 𝑣𝑖𝑗 + (𝑊𝑖 −𝑊𝑗) · 𝑣𝑖𝑗

≤ ‖̃︁𝑊 ⋆
𝑖 −𝑊𝑖‖2 + ‖𝑊𝑗 − ̃︁𝑊 ⋆

𝑗 ‖2 + (𝑊𝑖 −𝑊𝑗) · 𝑣𝑖𝑗

≤ 4𝑟 + (𝑊𝑖 −𝑊𝑗) · 𝑣𝑖𝑗 .
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More to that

‖𝑊𝑖 −𝑊𝑗‖2 = ‖𝑊𝑖 − ̃︁𝑊 ⋆
𝑖 + ̃︁𝑊 ⋆

𝑖 − ̃︁𝑊 ⋆
𝑗 + ̃︁𝑊 ⋆

𝑗 −𝑊𝑗‖2
≤ ‖𝑊𝑖 − ̃︁𝑊 ⋆

𝑖 ‖2 + ‖̃︁𝑊 ⋆
𝑖 − ̃︁𝑊 ⋆

𝑗 ‖2 + ‖̃︁𝑊 ⋆
𝑗 −𝑊𝑗‖2

≤ 4𝑟 + ‖̃︁𝑊 ⋆
𝑖 − ̃︁𝑊 ⋆

𝑗 ‖2 ,

and similarly: ‖𝑊𝑖 −𝑊𝑗‖2 ≥ ‖̃︁𝑊 ⋆
𝑖 − ̃︁𝑊 ⋆

𝑗 ‖2 − 4𝑟.

Combining the above inequalities, we get that

(𝑊𝑖 −𝑊𝑗) · 𝑣𝑖𝑗 ≥ (̃︁𝑊 ⋆
𝑖 − ̃︁𝑊 ⋆

𝑗 ) · 𝑣𝑖𝑗 − 4𝑟

≥ (1− 𝜑) ‖̃︁𝑊 ⋆
𝑖 − ̃︁𝑊 ⋆

𝑗 ‖2 − 4𝑟

≥ (1− 𝜑) (‖𝑊𝑖 −𝑊𝑗‖2 − 4𝑟)− 4𝑟

= (1− 𝜑) ‖𝑊𝑖 −𝑊𝑗‖2 − 8𝑟 .

We pick 𝑟 sufficiently small and of order 2−poly(𝑑,𝑘,1/𝜖,log(1/𝛿)) and get that 𝑊 is a feasible solution
of the convex program. Moreover, we can select 𝑅 = 1 since ‖̃︁𝑊 ⋆‖𝐹 = 1 without loss of generality,
since we can normalize the row differences of ̃︁𝑊 ⋆ with the norm ‖̃︁𝑊 ⋆‖𝐹 .

Proof of Item 4. We apply the ellipsoid algorithm in order to solve the convex program 1 and
compute a matrix ̃︁𝑊 ∈ R𝑘×𝑑. The algorithm ProperLSF outputs the linear sorting function
ℎ(·) = 𝜎̃︁𝑊 (·).

Lemma 9 (Efficiency of the Ellipsoid Algorithm [Vis21]). Suppose that 𝑃 ⊆ R𝑑 is a full-dimensional
polytope that is contained in a 𝑑-dimensional Euclidean ball of radius 𝑅 > 0 and contains a 𝑑-
dimensional Euclidean ball of radius 𝑟 > 0. Then, the ellipsoid method outputs a point ̃︀𝑥 ∈ 𝑃
after 𝑂(𝑑2 log(𝑅/𝑟)) iterations. Moreover, every iteration can be implemented in 𝑂(𝑑2 + 𝑇sep) time,
where 𝑇sep is the time required to answer a single query by the separation oracle.

Assume that Item 3 holds true. Then the algorithm can be used with 𝑟 = 2−poly(𝑑,𝑘,1/𝜖,log(1/𝛿)) and
𝑅 = 1. Hence, the ellipsoid algorithm will provide in time poly(𝑑, 𝑘, 1/𝜖, log(1/𝛿)) a point ̃︁𝑊 that
lies in the feasible region of the convex program 15.

Remark 2. We remark that both the improper (Algorithm 1) and the proper (Algorithm 2) learning
algorithms hold for the more general case where the 𝑥-marginal lies in the class of isotropic
log-concave distributions [LV07]: A distribution 𝒟𝑥 lies inside the class of isotropic log-concave
distributions ℱLC over R𝑑 if 𝒟𝑥 has a probability density function 𝑓 over R𝑑 such that log 𝑓 is
concave, its mean is zero, and its covariance is identity, i.e., E𝑥∼𝒟𝑥 [𝑥𝑥

⊤] = 𝐼 .

A.2.1 The proof of Lemma 8

We provide the following result.

Lemma 10. Fix 𝜖, 𝛿 ∈ (0, 1). Let 𝑊 ⋆ ∈ R𝑘×𝑑 be the true parameter matrix. There exists a matrix
𝑊 ∈ R𝑘×𝑑 such that, with probability at least 1− 𝛿:

• Pr𝑥∼𝒩𝑑
[sgn((𝑊 ⋆

𝑖 −𝑊 ⋆
𝑗 ) · 𝑥) ̸= sgn((𝑊𝑖 −𝑊𝑗) · 𝑥)] ≤ 𝜖 for all 𝑖 ̸= 𝑗, and,

• The bit complexity of 𝑊 is poly(𝑘, 𝑑, 1/𝜖, log(1/𝛿))

Proof. The matrix 𝑊 will be the output of a linear program that can be used to learn the LSF 𝜎𝑊 ⋆(·)
in the noiseless setting.

5We remark that the runtime will also depend on the time required to answer a single query by the separation
oracle. We assume that this time is polynomial in the parameters of our problem and we opt not to track these
details in this work.
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Consider the unit sphere 𝒮𝑑−1 and a 𝛿0-cover of the unit sphere with parameter 𝛿0 > 0 to be decided.
For any sample (𝑥, 𝜋) ∼ 𝒟 of the 0-noisy linear label ranking distribution, i.e., 𝑥 ∼ 𝒩𝑑 and
𝜋 = 𝜎𝑊 ⋆(𝑥), we consider the rounded sample (̃︀𝑥, 𝜋) where ̃︀𝑥 is obtained by first projecting 𝑥 ∈ R𝑑

to 𝒮𝑑−1 and then by obtaining the closest point of ̂︀𝑥 in the cover. The cover’s size is 𝑂(1/𝛿0)
𝑑.

Let us fix 1 ≤ 𝑖 < 𝑗 ≤ 𝑘 and set 𝑦𝑖𝑗 = sgn(𝜋(𝑖) − 𝜋(𝑗)). For a training set {(𝑥(𝑡), 𝜋(𝑡))}𝑡∈[𝑁 ] of
size 𝑁 , we create the following linear system L𝑖𝑗 with variables 𝑊 ∈ R𝑘×𝑑:

𝑦
(𝑡)
𝑖𝑗 (𝑊𝑖 −𝑊𝑗) · ̃︀𝑥(𝑡) ≥ 0 , 𝑡 ∈ [𝑁 ] (L𝑖𝑗) .

Consider the concatenation of the linear systems L = ∪𝑖<𝑗L𝑖𝑗 . The number of equations in the linear
system of equations L is 𝑁 ·

(︀
𝑘
2

)︀
.

We first have to show that, with high probability, the system L is feasible, i.e., there exists 𝑊 that
satisfies the system’s equations. Note that if we replace ̃︀𝑥(𝑡) with the original points 𝑥(𝑡), the true
matrix 𝑊 ⋆ is a solution to the system. We now have to study the rounded linear system.

Claim 7. The (rounded) linear system L is feasible with high probability.

Proof. In order to show the feasibility of L, we will use the anti-concentration properties of the
Gaussian.

Fact 1 ([DKM05]). Let 𝒫 be the standard normal distribution over R𝑑. For any fixed unit vector
𝑎 ∈ R𝑑 and any 𝛾 ≤ 1,

𝛾/4 ≤ Pr
𝑥∼𝒫

[︂
|𝑎 · 𝑥

‖𝑥‖2
| ≤ 𝛾√

𝑑

]︂
≤ 𝛾 .

Let us focus on the pair 1 ≤ 𝑖 < 𝑗 ≤ 𝑘. We first observe that scaling all samples to lie on the unit
sphere does not affect the feasibility of the system. It suffices to focus on that single halfspace with
normal vector 𝑣𝑖𝑗 = 𝑊 ⋆

𝑖 −𝑊 ⋆
𝑗 ∈ R𝑑 and consider the probability of the event that the collection of

the 𝑁 rounded points {̃︀𝑥(𝑡)}𝑡 with labels {𝑦(𝑡)𝑖𝑗 }𝑡, that come from 𝑁 Gaussian vectors {𝑥(𝑡)}𝑡 which

are linearly separable (with labels {𝑦(𝑡)𝑖𝑗 }𝑡), becomes non-linearly separable. For this it suffices to
control the probability that the rounding procedure flips the label of the data point. Using the union
bound, we have that, if the rounding has accuracy 𝛿0, the described bad event has probability

Pr
𝑥(1),...,𝑥(𝑁)∼𝒩𝑑

[∃𝑡 ∈ [𝑁 ] : sgn(𝑣𝑖𝑗 ·̃︀𝑥(𝑡)) ̸= sgn(𝑣𝑖𝑗 ·𝑥(𝑡))] ≤ 𝑁 · Pr
𝑥∼𝒩𝑑

[|𝑣𝑖𝑗 · 𝑥/‖𝑥‖2| ≤ 2𝛿0] ≤ 𝑁 ·𝑂(𝛿0
√
𝑑) ,

where we remark that the first event is scale invariant and so we can assume that the normal vector is
unit, the first inequality follows from the fact that it suffices to control the mass assigned to a strip of
width 2𝛿0 (due to the discretization) and the second inequality follows from Fact 1. We now have to
select the discretization. Let 𝛿 ∈ (0, 1). By choosing 𝛿0 = 𝑂( 𝛿

𝑁
√
𝑑𝑘2

), the bad event for all the pairs
𝑖 < 𝑗 occurs with probability at most 𝛿, i.e., with probability at least 1− 𝛿, each one of the 𝑁 drawn
i.i.d. samples does not fall in any one of the

(︀
𝑘
2

)︀
“bad” strips.

We can now consider the case that the system L is feasible (with the target matrix 𝑊 ⋆ being
a feasible point) that occurs with probability 1 − 𝛿. The class of homogenous halfspaces in 𝑑
dimensions has VC dimension 𝑑; therefore, the sample complexity of learning halfspaces using ERM
is 𝑂((𝑑 + log(1/𝛿))/𝜖). Moreover, in the realizable case, we can implement the ERM using e.g.,
linear programming and find a solution in poly(𝑑, 1/𝜖, log(1/𝛿)) time. We next focus on the quality
of the solution which will give the desired sample complexity.

Claim 8. Assume that the algorithm draws 𝑁 = ̃︀𝑂(𝑑+log(𝑘/𝛿)
𝜖 ) i.i.d. samples of the form (𝑥, 𝜋) with

𝑥 ∼ 𝒩𝑑 and 𝜋 = 𝜎𝑊 ⋆(𝑥). For any 𝑖 ̸= 𝑗 and with probability at least 1− 2𝛿, the solution 𝑊 of
the linear system L satisfies

Pr
𝑥∼𝒩𝑑

[sgn((𝑊 ⋆
𝑖 −𝑊 ⋆

𝑗 ) · 𝑥) ̸= sgn((𝑊𝑖 −𝑊𝑗) · 𝑥)] ≤ 𝜖 .

Proof. Since the matrix 𝑊 satisfies the sub-system L𝑖𝑗 , the result follows using a union bound on
the events that (i) the linear system is feasible and (ii) the ERM is a successful PAC learner.
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Claim 9. Consider the solution 𝑊 of the linear system. Then, 𝑊 has bounded bit complexity of
order poly(𝑑, 𝑘, 1/𝜖, log(1/𝛿)).

Proof. We will make use of the following result that relates the size of the input and the output of a
linear program using Cramer’s rule.

Lemma 11 ([Sch98, Pap81]). Let 𝐴 ∈ Z𝑚×𝑛, 𝑏 ∈ Z𝑚, 𝑐 ∈ Z𝑛. Consider a linear program min 𝑐·𝑥
subject to 𝐴𝑥 ≤ 𝑏 and 𝑥 ≥ 0. Let 𝑈 be the maximum size of 𝐴𝑖𝑗 , 𝑏𝑖, 𝑐𝑗 . The output of the linear
program has size 𝑂(𝑚(𝑛𝑈 + 𝑛 log(𝑛))) bits.

We will apply the above lemma (which holds even by dropping the constraint 𝑥 ≥ 0) to our setting
where 𝐴𝑤 ≥ 0 where 𝑤 = (𝑊𝑖)𝑖∈[𝑘] ∈ Q𝑘𝑑, i.e., 𝑤 is the vectorization of the matrix 𝑊 . Moreover,
𝐴 is the matrix containing the 𝑁 (rounded) Gaussian samples ̃︀𝑥(𝑡). We have that the matrix 𝐴 has
dimension 𝑁

(︀
𝑘
2

)︀
× 𝑘𝑑 and each entry 𝐴𝑖𝑗 is an integer and has size at most 𝑈 = poly(𝑑, 𝑘) (since

the samples are rounded on the 𝛿0-cover of the sphere. Recall that the labels 𝑦(𝑡)𝑖𝑗 ∈ {−1,+1} and̃︀𝑥(𝑡) lie in the unit sphere. In particular, each row of the matrix 𝐴 has 2𝑑 non-zero entries and is
associated with a tuple (𝑖, 𝑗, 𝑡) for 1 ≤ 𝑖 < 𝑗 ≤ 𝑘 and 𝑡 ∈ [𝑁 ]. Then, it holds that the output has
size at most 𝑂(𝑁𝑘2(𝑑𝑈 + 𝑑𝑘 log(𝑑𝑘))) bits. So, we get that the output 𝑊 can be described using
at most poly(𝑑, 𝑘, 1/𝜖, 𝑈, log(1/𝛿)) = poly(𝑑, 𝑘, 1/𝜖, log(1/𝛿)) bits (due to the size of the entries of
the matrix 𝐴).

Combining the above claims, we conclude the proof.

As a corollary of the bounded bit complexity, we obtain the following key result.

Corollary 1. Let 𝜖 > 0. Assume that 𝑊 ∈ R𝑘×𝑑 has bit complexity at most poly(𝑑, 𝑘, 1/𝜖, log(1/𝛿)).
Then, for any 𝑖, 𝑗 ∈ [𝑘] with 𝑖 ̸= 𝑗, it holds that ‖𝑊𝑖 −𝑊𝑗‖2 > 2−poly(𝑑,𝑘,1/𝜖,log(1/𝛿)).

Proof. First, we can assume that 𝑊𝑖 ̸= 𝑊𝑗 for any 𝑖 ̸= 𝑗; in case of equal rows, we obtain a
low-dimensional instance. Then, since any vector 𝑊𝑖 has bounded bit complexity, we have that the
difference of any two such vectors, provided that it is non-zero, has a lower bound in its norm, i.e.,
‖𝑊𝑖 −𝑊𝑗‖2 > 2−poly(𝑑,𝑘,1/𝜖,log(1/𝛿)) for any 𝑖, 𝑗 ∈ [𝑘].

B Learning in Top-1 Disagreement from Label Rankings

Let us set 𝜎1(𝑊𝑥) = argmax𝑖∈[𝑘] 𝑊𝑖 · 𝑥 for 𝑥 ∈ R𝑑. The main result of this section follows.

Theorem 5 (Proper Top-1 Learning Algorithm). Fix 𝜂 ∈ [0, 1/2) and 𝜖, 𝛿 ∈ (0, 1). Let 𝒟 be an
𝜂-noisy linear label ranking distribution satisfying the assumptions of Definition 2. There exists an
algorithm that draws 𝑁 = 𝑂

(︁
𝑑𝑘

√
log 𝑘

𝜖(1−2𝜂)6 log(𝑘/𝛿)
)︁

samples from 𝒟, runs in poly(𝑁) time and, with

probability at least 1 − 𝛿, outputs a Linear Sorting function ℎ : R𝑑 → S𝑘 that is 𝜖-close in top-1
disagreement to the target.

Proof. Note that the MassartLTF algorithm (see Lemma 6) has the guarantee that it returns a vector
𝑤 so that

Pr
𝑥∼𝒩𝑑

[sgn(𝑤 · 𝑥) ̸= sgn(𝑤⋆ · 𝑥)] ≤ 𝜖 ,

with probability 1 − 𝛿, where 𝑤⋆ is the target normal vector. Since the above misclassification
probability with respect to 𝒩𝑑 is directly connected with the angle 𝜃(𝑤,𝑤⋆), we get that we can
control the angle between 𝑤 and 𝑤⋆ efficiently. Moreover, in our setting, for a matrix 𝑊 ∈ R𝑘×𝑑,
there exist

(︀
𝑘
2

)︀
homogeneous halfspaces with normal vectors 𝑊𝑖 −𝑊𝑗 and so we can control the

angles 𝜃(𝑊𝑖 −𝑊𝑗 ,𝑊
⋆
𝑖 −𝑊 ⋆

𝑗 ). In order to deduce the sample complexity bound of Theorem 5,
we show the next lemma which essentially bounds the top-1 misclassification error using the angles
of these 𝑂(𝑘2) halfspaces. We apply Lemma 12 with 𝑈 = 𝑊 and 𝑉 = 𝑊 ⋆ and so we can take
𝜖′ = 𝜖/(𝑘

√
log 𝑘) and invoke the proper learning algorithm of Algorithm 2. This completes the

proof.
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We continue with the proof of our key lemma.
Lemma 12 (Misclassification Error). Consider two matrices 𝑈 ,𝑉 ∈ R𝑘×𝑑 and let 𝒩𝑑 be the
standard Gaussian in 𝑑 dimensions. We have that

Pr
𝑥∼𝒩𝑑

[𝜎1(𝑈𝑥) ̸= 𝜎1(𝑉 𝑥)] ≤ 𝑐 · 𝑘 ·
√︀

log 𝑘 ·max
𝑖 ̸=𝑗

𝜃(𝑈𝑖 −𝑈𝑗 ,𝑉𝑖 − 𝑉𝑗) ,

where 𝑐 > 0 is some universal constant.

Proof. We have that

Pr
𝑥∼𝒩𝑑

[𝜎1(𝑈𝑥) ̸= 𝜎1(𝑉 𝑥)] =
∑︁
𝑖∈[𝑘]

Pr
𝑥∼𝒩𝑑

[𝜎1(𝑈𝑥) = 𝑖, 𝜎1(𝑉 𝑥) ̸= 𝑖] .

We have that 𝒞(𝑖)
𝑈 = 1{𝑥 : 𝜎1(𝑈𝑥) = 𝑖} =

∏︀
𝑗 ̸=𝑖 1{(𝑈𝑖 − 𝑈𝑗) · 𝑥 ≥ 0} is the set indicator of

a homogeneous polyhedral cone as the intersection of 𝑘 − 1 homogeneous halfspaces. Similarly,
we consider the cone 𝒞(𝑖)

𝑉 = {𝑥 : 𝜎1(𝑉 𝑥) = 𝑖}. Hence, we have that {𝑥 : 𝜎1(𝑉 𝑥) ̸= 𝑖}
is the complement of a homogeneous polyhedral cone. Let us define 𝐶

(𝑖)
𝑈 : R𝑑 ↦→ {0, 1} and

𝐶
(𝑖)
𝑉 : R𝑑 ↦→ {0, 1} be the associated indicator functions of the two cones. We have that

Pr
𝑥∼𝒩𝑑

[𝜎1(𝑈𝑥) = 𝑖, 𝜎1(𝑉 𝑥) ̸= 𝑖] = Pr
𝑥∼𝒩𝑑

[𝐶
(𝑖)
𝑈 (𝑥) = 1, 𝐶

(𝑖)
𝑉 (𝑥) = 0] .

Finally, we have that

𝒞(𝑖)
𝑈 ∩

(︁
𝒞(𝑖)
𝑉

)︁𝑐
= 𝒞(𝑖)

𝑈 ∖ 𝒞(𝑖)
𝑉 ⊆ 𝒞(𝑖)

𝑈 ∖ 𝒞(𝑖)
𝑉 ∪ 𝒞(𝑖)

𝑉 ∖ 𝒞(𝑖)
𝑈 .

We can hence apply Lemma 13 for the cones 𝒞(𝑖)
𝑈 , 𝒞(𝑖)

𝑉 for each 𝑖 ∈ [𝑘].

Lemma 13 (Cone Disagreement). Let 𝐶1 : R𝑑 ↦→ {0, 1} be the indicator function of the homoge-
neous polyhedral cone defined by the 𝑘 unit vectors 𝑣1, . . . ,𝑣𝑘 ∈ R𝑑, i.e., 𝐶1(𝑥) =

∏︀𝑘
𝑖=1 1{𝑣𝑖 ·𝑥 ≥

0}. Similarly, define 𝐶2 : R𝑑 ↦→ {0, 1} to be the homogeneous polyhedral cone with normal vectors
𝑢1, . . . ,𝑢𝑘. It holds that

Pr
𝑥∼𝒩𝑑

[𝐶1(𝑥) ̸= 𝐶2(𝑥)] ≤ 𝑐
√︀
log(𝑘) max

𝑖∈[𝑘]
𝜃(𝑣𝑖,𝑢𝑖) ,

where 𝑐 > 0 is some universal constant.

Proof. To simplify notation, denote 𝜃 = max𝑖∈[𝑘] 𝜃(𝑣𝑖,𝑢𝑖). We first observe that it suffices to prove
the upper bound on the probability of 𝐶1(𝑥) ̸= 𝐶2(𝑥) for sufficiently small values of 𝜃. Indeed, if
we have that the bound is true for 𝜃 smaller than some 𝜃0 we can then form a path of sufficiently large
length 𝑁 (in particular we need 𝜃/𝑁 ≤ 𝜃0) starting from the vectors 𝑣1, . . . ,𝑣𝑘 to the final vectors
𝑢1, . . . ,𝑢𝑘, where at each step we only rotate the vectors by at most 𝜃/𝑁 ≤ 𝜃0. By the triangle
inequality, we immediately obtain that the probability that 𝐶1(𝑥) ̸= 𝐶2(𝑥) is at most equal to the
sum of the probabilities of the intermediate steps which is at most

∑︀𝑁
𝑖=1 𝑐

√︀
log(𝑘) 𝜃

𝑁 = 𝑐
√︀

log(𝑘)𝜃.
Notice in the above argument the constant 𝜃0 can be arbitrarily small and may also depend on 𝑘 and
𝑑.

We define the indicator of the positive orthant in 𝑘 dimensions to be 𝑅(𝑡) =
∏︀𝑘

𝑖=1 1{𝑡𝑖 ≥ 0}. Using
this notation, we have that the cone indicator can be written as 𝐶1(𝑥) = 𝑅(𝑣1 · 𝑥, . . . ,𝑣𝑘 · 𝑥) =
𝑅(𝑉 𝑥), where 𝑉 is the 𝑘 × 𝑑 matrix whose 𝑖-th row is the vector 𝑣𝑖. Moreover, we define the 𝑖-th
face of the cone 𝑅(𝑉 𝑥) to be

𝐹𝑖(𝑉 𝑥) = 𝑅(𝑉 𝑥) 1{𝑣𝑖 · 𝑥 = 0} .

We will first handle the case where only one of the normal vectors 𝑣𝑖 changes. We show the following
claim.

Claim 10. Let 𝑣1, . . . ,𝑣𝑘 ∈ R𝑑 and 𝑟 ∈ R𝑑 with 𝜃(𝑣1, 𝑟) ≤ 𝜃 for some sufficiently small 𝜃 ∈
(0, 𝜋/2). It holds that

Pr
𝑥∼𝒩𝑑

[𝑅(𝑣1 · 𝑥, . . . ,𝑣𝑘 · 𝑥) ̸= 𝑅(𝑟 · 𝑥,𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥)] ≤ 𝑐 · 𝜃 · Γ(𝐹1)

√︃
log

(︂
1

Γ(𝐹1)
+ 1

)︂
,

where 𝐹1 is the face with 𝑣1 · 𝑥 = 0 of the cone 𝑅(𝑉 𝑥) and 𝑐 is some universal constant.
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𝑟

𝑣1𝑞

Figure 1: The vectors 𝑟,𝑣1 and 𝑞 and the disagreement region of the halfspaces with normal vectors
𝑟 and 𝑣1.

Proof. We have

Pr
𝑥∼𝒩𝑑

[𝑅(𝑣1 · 𝑥, . . . ,𝑣𝑘 · 𝑥) ̸= 𝑅(𝑟 · 𝑥,𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥)]

= E
𝑥∼𝒩𝑑

[|𝑅(𝑣1 · 𝑥, . . . ,𝑣𝑘 · 𝑥)−𝑅(𝑟 · 𝑥,𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥)|]

= E
𝑥∼𝒩𝑑

[𝑅(𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥) |1{𝑣1 · 𝑥 ≥ 0} − 1{𝑟 · 𝑥 ≥ 0}|] .

We have that |1{𝑣1 · 𝑥 ≥ 0} − 1{𝑟 · 𝑥 ≥ 0}| = 1{(𝑣1 · 𝑥)(𝑟 · 𝑥) < 0}, i.e., this is the event
that the halfspaces 1{𝑣1 · 𝑥 ≥ 0} and 1{𝑟 · 𝑥 ≥ 0} disagree. Let 𝑞 be the normalized projection
of 𝑟 onto the orthogonal complement of 𝑣1, i.e., 𝑞 = proj𝑣⊥

1
𝑟/‖proj𝑣⊥

1
𝑟‖2. We have that 𝑣1

and 𝑞 is an orthonormal basis of the subspace spanned by the vectors 𝑣1 and 𝑟. We have that
𝑟 = cos 𝜃(𝑣1, 𝑟)𝑣1 + sin 𝜃(𝑣1, 𝑟)𝑞. Moreover, we have that the region (𝑣1 · 𝑥)(𝑟 · 𝑥) < 0 is equal
to

{0 < 𝑣1 · 𝑥 < −(𝑞 · 𝑥) tan 𝜃(𝑣1, 𝑟)} ∪ {−(𝑞 · 𝑥) tan 𝜃(𝑣1, 𝑟) < 𝑣1 · 𝑥 < 0} .

Thus, we have that the disagreement region (𝑣1 · 𝑥)(𝑟 · 𝑥) < 0 is a subset of the region {|𝑣1 · 𝑥| ≤
|𝑞 · 𝑥| tan 𝜃(𝑣1, 𝑟)}. Since tan 𝜃(𝑣1, 𝑟) ≤ 𝜃 and we have that 𝜃 is sufficiently small we can also
replace the above region by the larger region: {|𝑣1 · 𝑥| ≤ 2𝜃|𝑞 · 𝑥|}. Therefore, we have

E
𝑥∼𝒩𝑑

[𝑅(𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥) 1{(𝑣1 · 𝑥)(𝑟 · 𝑥) < 0}}]

≤ E
𝑥∼𝒩𝑑

[𝑅(𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥) 1{|𝑣1 · 𝑥| ≤ 2𝜃|𝑞 · 𝑥|}] .

The derivative of the above expression with respect to 𝜃 is equal to

E
𝑥∼𝒩𝑑

[︂
𝑅(𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥) 𝛿

(︂
|𝑣1 · 𝑥|
2|𝑞 · 𝑥|

− 𝜃

)︂]︂
,

where 𝛿(𝑡) is the Dirac delta function. At 𝜃 = 0 and using the property that 𝛿(𝑡/𝑎) = 𝑎𝛿(𝑡), we have
that the above derivative is equal to

2 E
𝑥∼𝒩𝑑

[𝑅(𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥) |𝑞 · 𝑥| 𝛿(|𝑣1 · 𝑥|)] .

Notice that, if we did not have the term |𝑞 · 𝑥|, the above expression would be exactly equal to two
times the Gaussian surface area of the face with 𝑣1 · 𝑥 = 0, i.e., it would be equal to 2Γ(𝐹1). We
now show that this extra term of |𝑞 · 𝑥| can only increase the above surface integral by at most a
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logarithmic factor. We have that

E
𝑥∼𝒩𝑑

[𝑅(𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥) |𝑞 · 𝑥| 𝛿(|𝑣1 · 𝑥|)] =
∫︁
𝑥∈𝐹1

𝜑𝑑(𝑥)|𝑞 · 𝑥|𝑑𝜇(𝑥)

≤
∫︁
𝑥∈𝐹1

𝜑𝑑(𝑥)|𝑞 · 𝑥|1{|𝑞 · 𝑥| ≤ 𝜉}𝑑𝜇(𝑥) +
∫︁
𝑥∈𝐹1

𝜑𝑑(𝑥)|𝑞 · 𝑥|1{|𝑞 · 𝑥| ≥ 𝜉}𝑑𝜇(𝑥)

≤ 𝜉

∫︁
𝑥∈𝐹1

𝜑𝑑(𝑥)𝑑𝜇(𝑥) +

∫︁
𝑥∈𝐹1

𝜑𝑑(𝑥)|𝑞 · 𝑥|1{|𝑞 · 𝑥| ≥ 𝜉}𝑑𝜇(𝑥) ,

where 𝑑𝜇(𝑥) is the standard surface measure in R𝑑. The first term above is exactly equal to the
Gaussian surface area of the face 𝐹1. To bound from above the second term we can use the fact that
the face 𝐹1 is a subset of the hyperplane 𝑣1 · 𝑥 = 0, i.e., it holds that 𝐹1 ⊆ {𝑥 : |𝑣1 · 𝑥| = 0}. To
simplify notation we may assume that 𝑣1 = 𝑒1 and 𝑞 = 𝑒2 (recall that 𝑣1 and 𝑞 are orthogonal unit
vectors), and in this case we obtain∫︁

𝑥∈𝐹1

𝜑𝑑(𝑥)|𝑞 · 𝑥|1{|𝑞 · 𝑥| ≥ 𝜉}𝑑𝜇(𝑥) ≤
∫︁
𝑥1=0

𝜑𝑑(𝑥)|𝑥2|1{|𝑥2| ≥ 𝜉}𝑑𝜇(𝑥)

=
1√
2𝜋

∫︁ +∞

−∞
|𝑥2|1{|𝑥2| ≥ 𝜉}𝑒

−𝑥2
2/2

√
2𝜋

𝑑𝑥2

=
1

𝜋
𝑒−𝜉2/2 .

Combining the above bounds we obtain that the derivative with respect to 𝜃 of the expression
E𝑥∼𝒩𝑑

[𝑅(𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥) 1{|𝑣1 · 𝑥| ≤ 2𝜃|𝑞 · 𝑥|}] is equal to

𝑑

𝑑𝜃

(︁
E

𝑥∼𝒩𝑑

[𝑅(𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥) 1{|𝑣1 · 𝑥| ≤ 2𝜃|𝑞 · 𝑥|}]
)︁⃒⃒⃒

𝜃=0
≤ 2𝜉Γ(𝐹1) +

2𝑒−𝜉2/2

𝜋
.

By picking 𝜉 =
√︀
2 log(1 + 1/Γ(𝐹1)), the result follows since up to introducing 𝑜(𝜃) error we can

bound the term Pr𝑥∼𝒩𝑑
[𝑅(𝑣1 · 𝑥, . . . ,𝑣𝑘 · 𝑥) ̸= 𝑅(𝑟 · 𝑥,𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥)] by its derivative with

respect to 𝜃 (evaluated at 0) times 𝜃.

We can complete the proof of Lemma 13 using Claim 10. In order to bound the disagreement of the
cones 𝐶1 and 𝐶2 we can start from 𝐶1 and change one of its vectors at a time so that we can use
Claim 10 that can handle this case. For example, at the first step, we can swap 𝑣1 for 𝑢1 and use the
triangle inequality to obtain that

Pr
𝑥∼𝒩𝑑

[𝐶1(𝑥) ̸= 𝐶2(𝑥)] ≤ Pr
𝑥∼𝒩𝑑

[𝑅(𝑣1 · 𝑥, . . . ,𝑣𝑘 · 𝑥) ̸= 𝑅(𝑢1 · 𝑥,𝑣2 · 𝑥 . . . ,𝑣𝑘 · 𝑥)]

+ Pr
𝑥∼𝒩𝑑

[𝑅(𝑢1 · 𝑥,𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥) ̸= 𝑅(𝑢1 · 𝑥,𝑢2 · 𝑥 . . . ,𝑢𝑘 · 𝑥)]

≤ 𝑐 · 𝜃 Γ(𝐹1)
√︀

log(1/Γ(𝐹1) + 1)

+ Pr
𝑥∼𝒩𝑑

[𝑅(𝑢1 · 𝑥,𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥) ̸= 𝑅(𝑢1 · 𝑥,𝑢2 · 𝑥 . . . ,𝑢𝑘 · 𝑥)] ,

where 𝐹1 = 𝐹1(𝑉 𝑥) is the face with 𝑣1 · 𝑥 = 0 of the cone 𝐶1. Notice that we have replaced 𝑣1 by
𝑢1 in the above bound. Our plan is to use the triangle inequality and continue replacing the vectors of
𝐶1 by the vectors of 𝐶2 sequentially. To make this formal we define the matrix 𝐴(𝑖) ∈ R𝑘×𝑑 whose
first 𝑖− 1 rows are the vectors 𝑢1, . . . ,𝑢𝑖−1 and its last 𝑘 − 𝑖+ 1 rows are the vectors 𝑣𝑖, . . . ,𝑣𝑘,
i.e.,

𝐴
(𝑖)
𝑗 =

{︂
𝑢𝑗 if 1 ≤ 𝑗 ≤ 𝑖− 1,

𝑣𝑗 if 𝑖 ≤ 𝑗 ≤ 𝑘 .

Notice that 𝐴(1) = 𝑉 and 𝐴(𝑘+1) = 𝑈 . Using the triangle inequality we obtain that

Pr
𝑥∼𝒩𝑑

[𝐶1(𝑥) ̸= 𝐶2(𝑥)] ≤
𝑘∑︁

𝑖=1

Pr
𝑥∼𝒩𝑑

[𝑅(𝐴(𝑖)𝑥) ̸= 𝑅(𝐴(𝑖+1)𝑥)].
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Since the matrices 𝐴(𝑖) and 𝐴(𝑖+1) only differ on one row, we can use Claim 10 to obtain the
following bound:

Pr
𝑥∼𝒩𝑑

[𝐶1(𝑥) ̸= 𝐶2(𝑥)] ≤ 𝑐 · 𝜃 ·
𝑘∑︁

𝑖=1

Γ(𝐹𝑖(𝐴
(𝑖)𝑥))

√︃
1

Γ(𝐹𝑖(𝐴(𝑖)𝑥))
+ 1 .

We now observe that the Gaussian surface area Γ(𝐹𝑖(𝐴
(𝑖)𝑥)) is a continuous function of the matrix

𝐴(𝑖). By flattening the matrix 𝐴(𝑖) (since it is isomorphic to a vector 𝑧 ∈ R𝑛2

) and letting 𝑆𝑧 be the
induced surface {𝑥 : 𝑅(𝐴(𝑖)𝑥) = 1 ∧ 𝑣𝑖 · 𝑥 = 0}, it suffices to show that

lim
𝑤→𝑧

∫︁
𝜑𝑛(𝑥)1{𝑥 ∈ 𝑆𝑤}𝑑𝜇(𝑥) =

∫︁
𝜑𝑛(𝑥)1{𝑥 ∈ 𝑆𝑧}𝑑𝜇(𝑥) ,

by the smoothness of the surface 𝑆𝑧 . Consider a sequence of functions (𝑔𝑚) and vectors (𝑤𝑚) so
that 𝑔𝑚(𝑥) = 𝜑𝑛(𝑥)1{𝑥 ∈ 𝑆𝑤𝑚

} and lim𝑚→∞ 𝑤𝑚 = 𝑧. Note that |𝑔𝑚(𝑥)| ≤ 1 everywhere.
Hence, by the dominated convergence theorem, we have that

lim
𝑚→∞

∫︁
𝑔𝑚(𝑥)𝑑𝜇(𝑥) =

∫︁
lim

𝑚→∞
𝑔𝑚(𝑥)𝑑𝜇(𝑥) =

∫︁
𝜑𝑛(𝑥) lim

𝑚→∞
1{𝑥 ∈ 𝑆𝑤𝑚

}𝑑𝜇(𝑥) .

Since the sequence consists of smooth surfaces, we have that lim𝑚→∞ 1{𝑥 ∈ 𝑆𝑤𝑚
} = 1{𝑥 ∈ 𝑆𝑧}

and so the Gaussian surface area is continuous with respect to the matrix 𝐴(𝑖) for any 𝑖 ∈ [𝑘].

Also, as 𝜃 → 0, we have that 𝐴(𝑖) → 𝑉 . This is because the sequence of matrices 𝐴(𝑖) de-
pends only on the vectors 𝑢𝑗 and 𝑣𝑗 for 𝑗 ∈ [𝑘] and the following two properties hold true:
𝜃 = max𝑗∈[𝑘] 𝜃(𝑣𝑗 ,𝑢𝑗) and all the vectors are unit. Hence, as 𝜃 tends to zero, they tend to be-
come the same vectors and so any matrix 𝐴(𝑖) tends to become 𝑉 . Therefore, taking this limit we
obtain that for 𝜃 → 0 it holds that

lim
𝜃→0

Pr𝑥∼𝒩𝑑
[𝐶1(𝑥) ̸= 𝐶2(𝑥)]

𝜃
≤ 𝑐 ·

𝑘∑︁
𝑖=1

Γ(𝐹𝑖(𝑉 𝑥))
√︀

log (1/Γ(𝐹𝑖(𝑉 𝑥)) + 1) . (1)

We will now use the following lemma that shows that the surface area of any homogeneous polyhedral
cone is independent of the number of faces 𝑘 and in fact is at most 1 for all 𝑘.

Lemma 14 (Gaussian Surface Area of Homogeneous Cones [Naz03]). Let 𝐶 be a cone with apex at
the origin (i.e., an intersection of arbitrarily many halfspaces all of whose boundaries contain the
origin). Then 𝐶 has Gaussian surface area Γ(𝐶) at most 1.

Using Lemma 14 we obtain that
∑︀𝑘

𝑖=1 Γ(𝐹𝑖(𝑉 𝑥)) ≤ 1. Next, we observe that, when
the positive numbers 𝑎1, . . . , 𝑎𝑘 satisfy

∑︀𝑘
𝑖=1 𝑎𝑖 ≤ 1, it holds that

∑︀𝑘
𝑖=1 𝑎𝑖

√︀
log(1/𝑎𝑖) ≤√︁∑︀𝑘

𝑖=1 𝑎𝑖 log(1/𝑎𝑖) ≤
√︀
log(𝑘) (using the fact that the uniform distribution maximizes the entropy).

Using this fact and Equation (1), we obtain

lim
𝜃→0

Pr𝑥∼𝒩𝑑
[𝐶1(𝑥) ̸= 𝐶2(𝑥)]

𝜃
≤ 𝑐
√︀
log(𝑘) .

Thus, we have shown that, for sufficiently small 𝜃, it holds that Pr𝑥∼𝒩𝑑
[𝐶1(𝑥) ̸= 𝐶2(𝑥)] ≤

𝑐
√︀

log(𝑘)𝜃, but, as we discussed in the start of the proof, the general bound follows directly from the
bound for sufficiently small values of 𝜃 > 0.

C Learning in Top-𝑟 Disagreement from Label Rankings

We prove the next result which corresponds to a proper learning algorithm for LSF in the presence of
bounded noise with respect to the top-𝑟 disagreement.
Theorem 6 (Proper Top-𝑟 Learning Algorithm). Fix 𝜂 ∈ [0, 1/2), 𝑟 ∈ [𝑘] and 𝜖, 𝛿 ∈ (0, 1). Let 𝒟 be
an 𝜂-noisy linear label ranking distribution satisfying the assumptions of Definition 2. There exists
an algorithm that draws 𝑁 = ̃︀𝑂 (︁ 𝑑 𝑟𝑘

𝜖(1−2𝜂)6 log(1/𝛿)
)︁

samples from 𝒟, runs in poly(𝑁) time and,

with probability at least 1− 𝛿, outputs a Linear Sorting function ℎ : R𝑑 → S𝑘 that is 𝜖-close in top-𝑟
disagreement to the target.
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The main result of this section is the next lemma, which directly implies the above theorem (using
the same steps as the proof of Theorem 5).
Lemma 15 (Top-𝑟 Misclassification). Let 𝑟 ∈ [𝑘]. Consider two matrices 𝑈 ,𝑉 ∈ R𝑘×𝑑 and let 𝒩𝑑

be the standard Gaussian in 𝑑 dimensions. We have that

Pr
𝑥∼𝒩𝑑

[𝜎1..𝑟(𝑈𝑥) ̸= 𝜎1..𝑟(𝑉 𝑥)] ≤ 𝑐 · 𝑘 · 𝑟 ·
√︀
log(𝑘𝑟) ·max

𝑖 ̸=𝑗
𝜃(𝑈𝑖 −𝑈𝑗 ,𝑉𝑖 − 𝑉𝑗) ,

where 𝑐 > 0 is some universal constant.

Proof. Let us set 𝜎1..𝑟(𝑊𝑥) denote the ordering of the top-𝑟 alternatives in the ranking 𝜎(𝑊𝑥).
Moreover, recall that 𝜎ℓ(𝑊𝑥) denotes the alternative in the ℓ-th position of the ranking 𝜎(𝑊𝑥). For
two matrices 𝑈 ,𝑉 ∈ R𝑘×𝑑, we have that

Pr
𝑥∼𝒩𝑑

[𝜎1..𝑟(𝑈𝑥) ̸= 𝜎1..𝑟(𝑉 𝑥)] =

𝑘∑︁
𝑗=1

Pr
𝑥∼𝒩𝑑

[︃
𝑟⋃︁

ℓ=1

{𝑗 = 𝜎ℓ(𝑈𝑥), 𝑗 ̸= 𝜎ℓ(𝑉 𝑥)}

]︃
.

The first step is to understand the geometry of the set
⋃︀𝑟

ℓ=1{𝑥 : 𝑗 = 𝜎ℓ(𝑈𝑥)} = {𝑥 : 𝑗 ∈
𝜎1..𝑟(𝑈𝑥)} for 𝑗 ∈ [𝑘]. We have that this set is equal to

𝒯 (𝑗)
𝑈 =

⋃︁
𝑆⊆[𝑘]:|𝑆|≤𝑟−1

⋂︁
𝑖∈𝑆

{𝑥 : (𝑈𝑖 −𝑈𝑗) · 𝑥 ≥ 0} ∩
⋂︁
𝑖/∈𝑆

{𝑥 : (𝑈𝑖 −𝑈𝑗) · 𝑥 ≤ 0} .

In words, 𝒯 (𝑗)
𝑈 iterates over any possible collection of alternatives that can win the element 𝑗

(they lie in the set of top elements 𝑆) and the remaining elements lose when compared with 𝑗
(they lie in the complement set [𝑘] ∖ 𝑆). Overloading the notation, let us define the mapping
𝑇 (𝑡) = 𝑇 (𝑡1, ..., 𝑡𝑘) =

∑︀
𝑆⊆[𝑘]:|𝑆|≤𝑟−1

∏︀
𝑖∈𝑆 1{𝑡𝑖 ≥ 0}

∏︀
𝑖/∈𝑆 1{𝑡𝑖 ≤ 0}. Using this mapping,

we can define the indicator of the set 𝑇 (𝑗)
𝑈 as 𝑇 ((𝑈1 − 𝑈𝑗) · 𝑥, . . . , (𝑈𝑘 − 𝑈𝑗) · 𝑥). The top-𝑟

disagreement Pr𝑥∼𝒩𝑑
[𝑗 ∈ 𝜎1..𝑟(𝑈𝑥), 𝑗 /∈ 𝜎1..𝑟(𝑉 𝑥)] is equal to:

Pr
𝑥∼𝒩𝑑

[𝑇 ((𝑈1 −𝑈𝑗) · 𝑥, ..., (𝑈𝑘 −𝑈𝑗) · 𝑥) = 1, 𝑇 ((𝑉1 − 𝑉𝑗) · 𝑥, ..., (𝑉𝑘 − 𝑉𝑗) · 𝑥) = 0] .

So we have that

Pr
𝑥∼𝒩𝑑

[𝜎1..𝑟(𝑈𝑥) ̸= 𝜎1..𝑟(𝑉 𝑥)] =

𝑘∑︁
𝑗=1

Pr
𝑥∼𝒩𝑑

[𝑇𝑗(𝑈𝑥) = 1, 𝑇𝑗(𝑉 𝑥) = 0] ≤
𝑘∑︁

𝑗=1

Pr
𝑥∼𝒩𝑑

[𝑇𝑗(𝑈𝑥) ̸= 𝑇𝑗(𝑉 𝑥)] .

In order to show the desired bound, it suffices to prove the following two lemmas.

Lemma 16 (Disagreement Region). Consider a positive integer 𝑟 ≤ 𝑘. Fix 𝑗 ∈ [𝑘] and let
𝜃 = max𝑖∈[𝑘] 𝜃(𝑈𝑖 −𝑈𝑗 ,𝑉𝑖 − 𝑉𝑗). Then it holds that

lim
𝜃→0

Pr𝑥∼𝒩𝑑
[𝑇𝑗(𝑈𝑥) ̸= 𝑇𝑗(𝑉 𝑥)]

𝜃
≤ 𝑐 ·

∑︁
𝑖∈[𝑘]

Γ(𝐹 𝑗
𝑖 )

⎯⎸⎸⎷log

(︃
1

Γ(𝐹 𝑗
𝑖 )

+ 1

)︃
,

where 𝑐 > 0 is some constant and 𝐹 𝑗
𝑖 is the surface {𝑥 : 𝑗 ∈ 𝜎1..𝑟(𝑉 𝑥)} ∩ {𝑥 : 𝑉𝑖 · 𝑥 = 𝑉𝑗 · 𝑥}

for the matrix 𝑉 ∈ R𝑘×𝑑.

and,

Lemma 17. Let 𝐹 𝑗
𝑖 , 𝑟, 𝑘 as in the previous lemma. It holds that∑︁

𝑖∈[𝑘]

∑︁
𝑗∈[𝑘]

Γ(𝐹 𝑗
𝑖 ) ≤ 2𝑘𝑟 .

Applying these two lemmas with 𝜃 = max�̸�=𝑗 𝜃(𝑈𝑖 −𝑈𝑗 ,𝑉𝑖 − 𝑉𝑗), we get that

𝑍 := lim
𝜃→0

∑︀
𝑗∈[𝑘] Pr𝑥∼𝒩𝑑

[𝑇𝑗(𝑈𝑥) ̸= 𝑇𝑗(𝑉 𝑥)]

𝜃
≤ 𝑐 ·

∑︁
𝑗∈[𝑘]

∑︁
𝑖∈[𝑘]

Γ(𝐹 𝑗
𝑖 )

⎯⎸⎸⎷log

(︃
1

Γ(𝐹 𝑗
𝑖 )

+ 1

)︃
.
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Let us set Γ′(𝐹 𝑗
𝑖 ) = Γ(𝐹 𝑗

𝑖 )/(2𝑘𝑟). Then we have that

𝑍 ≤ 2𝑐𝑘𝑟 ·
∑︁
𝑗∈[𝑘]

∑︁
𝑖∈[𝑘]

Γ′(𝐹 𝑗
𝑖 )

⎯⎸⎸⎷log

(︃
1

2𝑘𝑟 · Γ′(𝐹 𝑗
𝑖 )

+ 1

)︃
.

It suffices to bound the quantity∑︁
𝑗∈[𝑘]

∑︁
𝑖∈[𝑘]

Γ′(𝐹 𝑗
𝑖 )

⎯⎸⎸⎷log

(︃
1

Γ′(𝐹 𝑗
𝑖 )

+ 1

)︃
= 𝑂

(︁
𝑘𝑟
√︀

log(𝑘𝑟)
)︁
,

where we used a similar “entropy-like” inequality as we did in the top-1 case. This yields (by recalling
that it is sufficient to consider only the case of arbitrarily small angles, as in the top-1 case) that

Pr
𝑥∼𝒩𝑑

[𝜎1..𝑟(𝑈𝑥) ̸= 𝜎1..𝑟(𝑉 𝑥)] ≤ 𝑐 𝑟𝑘
√︀
log(𝑘𝑟) ·max

𝑖 ̸=𝑗
𝜃(𝑈𝑖 −𝑈𝑗 ,𝑉𝑖 − 𝑉𝑗) ,

for some universal constant 𝑐.

C.1 The proof of Lemma 16

We proceed with the proof of the key lemma concerning the disagreement region. We first show the
following claim where we only change a single vector. Recall that

𝑇 (𝑉 𝑥) =
∑︁

𝑆:|𝑆|≤𝑟−1

∏︁
𝑖∈𝑆

1{𝑣𝑖 · 𝑥 ≥ 0}
∏︁
𝑖/∈𝑆

1{𝑣𝑖 · 𝑥 ≤ 0} .

We will be interested in the surface 𝐹1 := 𝐹1(𝑉 𝑥) = 𝑇 (𝑉 𝑥)1{𝑣1 · 𝑥 = 0}.
Claim 11. Let 𝑣1, . . . ,𝑣𝑘 ∈ R𝑑 and 𝑟 ∈ R𝑑 with 𝜃(𝑣1, 𝑟) ≤ 𝜃 for some sufficiently small 𝜃 ∈
(0, 𝜋/2). It holds that

Pr
𝑥∼𝒩𝑑

[𝑇 (𝑣1 · 𝑥, . . . ,𝑣𝑘 · 𝑥) ̸= 𝑇 (𝑟 · 𝑥,𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥)] ≤ 𝑐 · 𝜃 · Γ(𝐹1)

√︃
log

(︂
1

Γ(𝐹1)
+ 1

)︂
,

where 𝐹1 is the surface 𝑇 (𝑉 𝑥) ∩ {𝑥 : 𝑣1 · 𝑥 = 0} and 𝑐 is some universal constant.

Proof. We first decompose the sum of 𝑇 (𝑉 𝑥) depending on whether 1 ∈ 𝑆 or not. Hence, we have
that 𝑇 (𝑣1 · 𝑥, . . . ,𝑣𝑘 · 𝑥) = 𝑇+(𝑣1 · 𝑥, . . . ,𝑣𝑘 · 𝑥) + 𝑇−(𝑣1 · 𝑥, . . . ,𝑣𝑘 · 𝑥) where

𝑇+(𝑣1 · 𝑥, . . . ,𝑣𝑘 · 𝑥) =
∑︁

𝑆⊆[𝑘]:|𝑆|≤𝑟−1,1∈𝑆

∏︁
𝑖∈𝑆

1{𝑣𝑖 · 𝑥 ≥ 0}
∏︁
𝑖/∈𝑆

1{𝑣𝑖 · 𝑥 ≤ 0}

=
∑︁

𝑆⊆[𝑘]:|𝑆|≤𝑟−1,1∈𝑆

1{𝑣1 · 𝑥 ≥ 0} ·
∏︁

𝑖∈𝑆∖{1}

1{𝑣𝑖 · 𝑥 ≥ 0}
∏︁
𝑖/∈𝑆

1{𝑣𝑖 · 𝑥 ≤ 0}

= 1{𝑣1 · 𝑥 ≥ 0} ·
∑︁

𝑆⊆[𝑘]:|𝑆|≤𝑟−1,1∈𝑆

∏︁
𝑖∈𝑆∖{1}

1{𝑣𝑖 · 𝑥 ≥ 0}
∏︁
𝑖/∈𝑆

1{𝑣𝑖 · 𝑥 ≤ 0}

=: 1{𝑣1 · 𝑥 ≥ 0} ·𝐺+(𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥) ,
and similarly

𝑇−(𝑣1 · 𝑥, . . . ,𝑣𝑘 · 𝑥) = 1{𝑣1 · 𝑥 ≤ 0} ·
∑︁

𝑆⊆[𝑘]:|𝑆|≤𝑟−1,1/∈𝑆

∏︁
𝑖∈𝑆

1{𝑣𝑖 · 𝑥 ≥ 0}
∏︁

𝑖/∈𝑆∖{1}

1{𝑣𝑖 · 𝑥 ≤ 0}

=: 1{𝑣1 · 𝑥 ≤ 0} ·𝐺−(𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥) .
Notice that the indicator 𝐺𝑠 does not depend on the alternative 1 for 𝑠 ∈ {−,+}. Since 𝑇 : R𝑘 →
{0, 1}, we have that

Pr
𝑥∼𝒩𝑑

[𝑇 (𝑣1 · 𝑥, . . . ,𝑣𝑘 · 𝑥) ̸= 𝑇 (𝑟 · 𝑥,𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥)]

= E
𝑥∼𝒩𝑑

[|𝑇 (𝑣1 · 𝑥, . . . ,𝑣𝑘 · 𝑥)− 𝑇 (𝑟 · 𝑥,𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥)|]

≤
∑︁

𝑠∈{−,+}

E
𝑥∼𝒩𝑑

[|𝑇 𝑠(𝑣1 · 𝑥, . . . ,𝑣𝑘 · 𝑥)− 𝑇 𝑠(𝑟 · 𝑥,𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥)|]

=
∑︁

𝑠∈{−,+}

E
𝑥∼𝒩𝑑

[𝐺𝑠(𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥) · |1{𝑠 · 𝑣1 · 𝑥 ≥ 0} − 1{𝑠 · 𝑟 · 𝑥 ≥ 0}|] .
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Let us focus on the case 𝑠 = +. The difference between the two indicators in the last line of the
above equation corresponds to the event that the halfspaces 1{𝑣1 ·𝑥 ≥ 0} and 1{𝑟 ·𝑥 ≥ 0} disagree.
Hence, we have that |1{𝑣1 · 𝑥 ≥ 0} − 1{𝑟 · 𝑥 ≥ 0}| = 1{(𝑣1 · 𝑥)(𝑟 · 𝑥) < 0}. Note that the above
indicator depends on both 𝑣1 and 𝑟. We would like to work only with one of these two vectors. To
this end, let us introduce 𝑞, the normalized projection of 𝑟 onto the orthogonal complement of 𝑣1, i.e.,
𝑞 = proj𝑣⊥

1
𝑟/‖proj𝑣⊥

1
𝑟‖2. We have that 𝑣1 and 𝑞 is an orthonormal basis of the subspace spanned

by the vectors 𝑣1 and 𝑟. Notice that 𝑟 = cos 𝜃(𝑣1, 𝑟)𝑣1 + sin 𝜃(𝑣1, 𝑟)𝑞, by the construction of 𝑞.
Our goal is to understand the structure of the region (𝑣1 · 𝑥)(𝑟 · 𝑥) < 0. This set is equal to

{0 < 𝑣1 · 𝑥 < −(𝑞 · 𝑥) tan 𝜃(𝑣1, 𝑟)} ∪ {−(𝑞 · 𝑥) tan 𝜃(𝑣1, 𝑟) < 𝑣1 · 𝑥 < 0} .

To see this, we have that (𝑣1 ·𝑥)(𝑟 ·𝑥) = (𝑣1 ·𝑥)(cos 𝜃(𝑣1, 𝑟)𝑣1 ·𝑥+sin 𝜃(𝑣1, 𝑟)𝑞 ·𝑥). This quantity
must be negative. The left-hand set considers the case where 𝑣1 ·𝑥 > 0 and so tan 𝜃(𝑣1, 𝑟)(𝑞 ·𝑥) <
−𝑣1 · 𝑥. We obtain the right-hand set in a similar way. Thus, we have that the disagreement region
(𝑣1 · 𝑥)(𝑟 · 𝑥) < 0 is a subset of the region {|𝑣1 · 𝑥| ≤ |𝑞 · 𝑥| tan 𝜃(𝑣1, 𝑟)}. Since tan 𝜃(𝑣1, 𝑟) ≤ 𝜃
and we have that 𝜃 is sufficiently small we can also replace the above region by the larger region:
{|𝑣1 · 𝑥| ≤ 2𝜃|𝑞 · 𝑥|}. Therefore, we have

E
𝑥∼𝒩𝑑

[︀
𝐺+(𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥) 1{(𝑣1 · 𝑥)(𝑟 · 𝑥) < 0}}

]︀
≤ E

𝑥∼𝒩𝑑

[︀
𝐺+(𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥) 1{|𝑣1 · 𝑥| ≤ 2𝜃|𝑞 · 𝑥|}

]︀
.

From this point, the proof goes as in the top-1 case. In total, we will get that

Pr
𝑥∼𝒩𝑑

[𝑇 (𝑣1 · 𝑥, . . . ,𝑣𝑘 · 𝑥) ̸= 𝑇 (𝑟 · 𝑥,𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥)]

= E
𝑥∼𝒩𝑑

[︀
(𝐺+(𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥) +𝐺−(𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥)) |𝑞 · 𝑥| 𝛿(|𝑣1 · 𝑥|)

]︀
≤ 2

∫︁
𝑥∈𝐹1

𝜑𝑑(𝑥)|𝑞 · 𝑥|𝑑𝜇(𝑥)

≤ 2

∫︁
𝑥∈𝐹1

𝜑𝑑(𝑥)|𝑞 · 𝑥|1{|𝑞 · 𝑥| ≤ 𝜉}𝑑𝜇(𝑥) + 2

∫︁
𝑥∈𝐹1

𝜑𝑑(𝑥)|𝑞 · 𝑥|1{|𝑞 · 𝑥| ≥ 𝜉}𝑑𝜇(𝑥)

≤ 2𝜉

∫︁
𝑥∈𝐹1

𝜑𝑑(𝑥)𝑑𝜇(𝑥) + 2

∫︁
𝑥∈𝐹1

𝜑𝑑(𝑥)|𝑞 · 𝑥|1{|𝑞 · 𝑥| ≥ 𝜉}𝑑𝜇(𝑥) ,

where 𝑑𝜇(𝑥) is the standard surface measure in R𝑑. Let us explain the first inequality above. Note
that the space induced by 𝐺−(𝑣2 ·𝑥, . . . ,𝑣𝑘 ·𝑥) contains the space induced by 𝐺+(𝑣2 ·𝑥, . . . ,𝑣𝑘 ·𝑥).
Hence, in the integration, we can integrate over the surface 𝐹1 = 𝑇 (𝑉 𝑥) ∩ 1{𝑥 : 𝑣1 · 𝑥 = 0}
twice. Essentially, this surface corresponds to 1{𝑣1 · 𝑥 = 0} ·

∑︀
𝑆⊆[𝑘]∖{1}:|𝑆|≤𝑟−1

∏︀
𝑖∈𝑆 1{𝑣𝑖 · 𝑥 ≥

0}
∏︀

𝑖/∈𝑆 1{𝑣𝑖 · 𝑥 ≤ 0}. Applying the steps of the top-1 case, we can obtain the desired bound in
terms of the Gaussian surface area of 𝐹1.

Next, for fixed 𝑗 ∈ [𝑘], we can apply the above claim sequentially (as we did in the end of the top-1
case) to get

lim
𝜃→0

Pr𝑥∼𝒩𝑑
[𝑇𝑗(𝑈𝑥) ̸= 𝑇𝑗(𝑉 𝑥)]

𝜃
≤ 𝑐 ·

∑︁
𝑖∈[𝑘]

Γ(𝐹 𝑗
𝑖 )

⎯⎸⎸⎷log

(︃
1

Γ(𝐹 𝑗
𝑖 )

+ 1

)︃
,

for some small constant 𝑐 > 0.

C.2 The proof of Lemma 17

Using the above result, we get that it suffices to control the value Γ(𝐹 𝑗
𝑖 ), where 𝐹 𝑗

𝑖 is the surface
of 𝑇𝑗(𝑉 𝑥) ∩ {𝑥 : 𝑉𝑖 · 𝑥 = 𝑉𝑗 · 𝑥} for the matrix 𝑉 and 𝑖, 𝑗 ∈ [𝑘]. We next have to control the
Gaussian surface area of the induced shape, i.e., the quantity

Γ({𝑥 : 𝑗 ∈ 𝜎1..𝑟(𝑉 𝑥)} ∩ {𝑥 : 𝑉𝑖 · 𝑥 = 𝑉𝑗 · 𝑥}) .

To this end, we give the next lemma.
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Lemma 18. Let 𝑟 ≤ 𝑘 with 𝑟, 𝑘 ∈ N. For any matrix 𝑉 ∈ R𝑘×𝑑 and 𝑖, 𝑗 ∈ [𝑘], there exists a matrix
𝑄 = 𝑄(𝑖) ∈ R𝑘×𝑑 which depends only on 𝑖 such that

Γ(𝐹 𝑗
𝑖 ) := Γ({𝑥 : 𝑗 ∈ 𝜎1..𝑟(𝑉 𝑥)} ∩ {𝑥 : 𝑉𝑖 · 𝑥 = 𝑉𝑗 · 𝑥}) ≤ 2 · Pr

𝑥∼𝒩𝑑

[𝑗 ∈ 𝜎1..𝑟(𝑄𝑥)] .

Before proving this result, let us see how to apply it in order to get Lemma 17. We will have that∑︁
𝑖∈[𝑘]

∑︁
𝑗∈[𝑘]

Γ(𝐹 𝑗
𝑖 ) =

∑︁
𝑖∈[𝑘]

∑︁
𝑗∈[𝑘]

Γ({𝑥 : 𝑗 ∈ 𝜎1..𝑟(𝑉 𝑥)} ∩ {𝑥 : 𝑉𝑖 · 𝑥 = 𝑉𝑗 · 𝑥})

≤ 2
∑︁
𝑖∈[𝑘]

∑︁
𝑗∈[𝑘]

Pr
𝑥∼𝒩𝑑

[𝑗 ∈ 𝜎1..𝑟(𝑄
(𝑖)𝑥)]

= 2
∑︁
𝑖∈[𝑘]

E
𝑥∼𝒩𝑑

[|𝜎1..𝑟(𝑄
(𝑖)𝑥)|]

= 2
∑︁
𝑖∈[𝑘]

𝑟

= 2𝑘𝑟 .

Proof of Lemma 18. For this proof, we fix 𝑖, 𝑗 ∈ [𝑘]. The first step is to design the matrix 𝑄. As a
first observation, we can subtract the vector 𝑉𝑖 from each weight vector and do not affect the resulting
orderings. Second, we can assume that the weight vectors that correspond to indices which 𝑗 beats
are unit. Let us be more specific Assume that initially we have that

(𝑉𝑗 − 𝑉ℓ) · 𝑥 ≥ 0 .

The first observation gives that

(𝑉𝑗 − 𝑉𝑖) · 𝑥 ≥ (𝑉ℓ − 𝑉𝑖) · 𝑥 .

Let us set ̃︀𝑄 the intermediate matrix with rows 𝑉𝑗 − 𝑉𝑖. The second observation states that the
inequalities where 𝑗 beats some index ℓ are not affected by normalization. Note that ̃︀𝑄𝑗 · 𝑥 = 0 and
hence ̃︀𝑄ℓ · 𝑥 ≤ 0. Hence, dividing with non-negative numbers will not affect the order of these two
values, i.e., ̃︀𝑄𝑗 · 𝑥

‖ ̃︀𝑄𝑗‖2
≥
̃︀𝑄ℓ · 𝑥
‖ ̃︀𝑄ℓ‖2

.

Note that the above ordering is 𝑥-dependent, since the indices that 𝑗 beats depend on 𝑥. However,
we can normalize any row of ̃︀𝑄 without affecting the fact that the element 𝑗 is top-𝑟 (since the sign
of the inner products is not affected by normalization). This transformation yields a matrix 𝑄 = 𝑄(𝑖)

and depends only on 𝑖 (crucially, it is independent of 𝑗). For simplicity, we will omit the index 𝑖 in
what follows. For this matrix, we have that

{𝑥 : 𝑗 ∈ 𝜎1..𝑟(𝑄𝑥),𝑄𝑗 · 𝑥 = 0} = {𝑥 : 𝑗 ∈ 𝜎1..𝑟(𝑉 𝑥),𝑉𝑖 · 𝑥 = 𝑉𝑗 · 𝑥} .

We will now prove that

Pr
𝑥∼𝒩𝑑

[𝑗 ∈ 𝜎1..𝑟(𝑄𝑥)] ≥ Γ(𝐹 𝑗
𝑖 )

2
.

Let us fix some 𝑥 and set 𝑥‖ = proj𝑄𝑗
𝑥 and 𝑥⊥ = proj𝑄⊥

𝑗
𝑥. We assume that 𝑥 lies in the set

{𝑥 : 𝑗 ∈ 𝜎1..𝑟(𝑄𝑥)}. This implies that there exist an index set 𝐼 of size at least 𝑘− 𝑟 so that if ℓ ∈ 𝐼
then

𝑄𝑗 · 𝑥‖ +𝑄𝑗 · 𝑥⊥ ≥ 𝑄ℓ · 𝑥‖ +𝑄ℓ · 𝑥⊥ .

Let us condition on the event
𝑄𝑗 · 𝑥⊥ ≥ 𝑄ℓ · 𝑥⊥ .

We hence get that

𝑄𝑗 · 𝑥‖ = (𝑄𝑗 ·𝑄𝑗) · (𝑄𝑗 · 𝑥) ≥ 𝑄ℓ · 𝑥‖ = (𝑄ℓ ·𝑄𝑗) · (𝑄𝑗 · 𝑥)
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Using that 𝑄𝑗 is unit, that the inner product between 𝑄ℓ and 𝑄𝑗 is at most one and that 𝑄𝑗 · 𝑥 is a
univariate Gaussian, we get that

Pr
𝑧∼𝒩 (0,1)

[𝑧 · (1−𝑄ℓ ·𝑄𝑗) ≥ 0] = 1/2 .

The above discussion implies that

Pr
𝑥∼𝒩𝑑

[𝑗 ∈ 𝜎1..𝑟(𝑄𝑥)] = Pr
𝑥∼𝒩𝑑

[(∀ℓ ∈ 𝐼)𝑄𝑗 · 𝑥‖ +𝑄𝑗 · 𝑥⊥ ≥ 𝑄ℓ · 𝑥‖ +𝑄ℓ · 𝑥⊥]

and so Pr𝑥∼𝒩𝑑
[𝑗 ∈ 𝜎1..𝑟(𝑄𝑥)] equals to

Pr
𝑥∼𝒩𝑑

[(∀ℓ ∈ 𝐼)𝑄𝑗 ·𝑥‖ ≥ 𝑄𝑗 ·𝑥‖ | (∀ℓ ∈ 𝐼)𝑄𝑗 ·𝑥⊥ ≥ 𝑄ℓ ·𝑥⊥]· Pr
𝑥∼𝒩𝑑

[(∀ℓ ∈ 𝐼)𝑄𝑗 ·𝑥⊥ ≥ 𝑄ℓ ·𝑥⊥] .

However, in the above product, we have that the first term is 1/2 and the second term is the probability
that 𝑗 ∈ 𝜎1..𝑟(𝑄𝑥⊥), i.e.,

Pr
𝑥∼𝒩𝑑

[𝑗 ∈ 𝜎1..𝑟(𝑄𝑥)] ≥ Pr[𝑗 ∈ 𝜎1..𝑟(𝑄𝑥⊥)]

2
= Γ(𝐹 𝑗

𝑖 )/2 ,

since the space in the RHS is low-dimensional and corresponds to the desired surface.

D Distribution-Free Lower Bounds for Top-1 Disagreement Error

We begin with some definitions concerning the PAC Label Ranking setting. Let 𝒳 be an instance
space and 𝒴 = S𝑘 be the space of labels, which are rankings over 𝑘 elements. A sorting function or
hypothesis is a mapping ℎ : 𝒳 → S𝑘. We denote by ℎ1(𝑥) the top-1 element of the ranking ℎ(𝑥). A
hypothesis class is a set of classifiers ℋ ⊂ S𝒳𝑘 .

Top-1 Disagreement Error. The top-1 disagreement error with respect to a joint distribution 𝒟 over
𝒳 × S𝑘 equals to the probability Pr(𝑥,𝜎)∼𝒟[ℎ1(𝑥) ̸= 𝜎−1(1)]. We mainly consider learning in the
realizable case, which means that there is ℎ⋆ ∈ ℋ which has (almost surely) zero error. Therefore, we
can focus on the marginal distribution 𝒟𝑥 over 𝒳 and denote the top-1 disagreement error of a sorting
function ℎ with respect to the true hypothesis ℎ⋆ by Err𝒟𝑥,ℎ⋆(ℎ) := Pr𝑥∼𝒟𝑥 [ℎ1(𝑥) ̸= ℎ⋆

1(𝑥)].

A learning algorithm is a function 𝒜 that receives a training set of 𝑚 instances, 𝑆 ∈ 𝒳𝑚, together
with their labels according to ℎ⋆. We denote the restriction of ℎ⋆ to the instances in 𝑆 by ℎ⋆|𝑆 . The
output of the algorithm 𝒜, denoted 𝒜(𝑆, ℎ⋆|𝑆) is a sorting function. A learning algorithm is proper
if it always outputs a hypothesis from ℋ.

The top-1 PAC Label Ranking sample complexity of a learning algorithm 𝒜 is the function
𝑚

(1)
𝒜,ℋ defined as follows: for every 𝜖, 𝛿 > 0, 𝑚(1)

𝒜,ℋ(𝜖, 𝛿) is the minimal integer such that for

every 𝑚 ≥ 𝑚
(1)
𝒜,ℋ(𝜖, 𝛿), every distribution 𝒟𝑥 on 𝒳 , and every target hypothesis ℎ⋆ ∈ ℋ,

Pr𝑆∼𝒟𝑚
𝑥
[Err𝒟𝑥,ℎ⋆(𝒜(𝑆, ℎ⋆|𝑆)) > 𝜖] ≤ 𝛿. In this case, we say that the learning algorithm (𝜖, 𝛿)-

learns the class of sorting functions ℋ with respect to the top-1 disagreement error. If no integer
satisfies the inequality above, define 𝑚

(1)
𝒜 (𝜖, 𝛿) = ∞. ℋ is learnable with 𝒜 if for all 𝜖 and 𝛿 the

sample complexity is finite. The top-1 PAC Label Ranking sample complexity of a class ℋ is
𝑚

(1)
PAC,ℋ(𝜖, 𝛿) = inf𝒜 𝑚

(1)
𝒜,ℋ(𝜖, 𝛿), where the infimum is taken over all learning algorithms. Clearly,

the above top-1 definition can be extended to the top-𝑟 setting.

In this section, we show the next result. We denote by ℒ𝑑,𝑘 the class of Linear Sorting functions in 𝑑
dimensions with 𝑘 labels.

Theorem 7. In the realizable PAC Label Ranking setting, any algorithm that (𝜖, 𝛿)-learns the class
ℒ𝑑,𝑘 with respect to the top-1 disagreement error requires at least Ω((𝑑𝑘 + log(1/𝛿))/𝜖) samples.

D.1 Top-1 Ranking Natarajan Dimension

In order to establish the above result, we introduce a variant of the standard Natarajan dimension
[Nat89, BDCBL92, DSBDSS11, DSS14]. For a ranking 𝜋, we will also let 𝐿1(𝜋) its top-1 element
and 𝐿3..𝑘(𝜋) the ranking after deleting its top-2 part.
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Definition 3 (Top-1 Ranking Natarajan Dimension). Let ℋ ⊆ S𝒳𝑘 be a hypothesis class of sorting
functions and let 𝑆 ⊆ 𝒳 . We say that ℋ 𝑁 -shatters 𝑆 if there exist two mappings 𝑓1, 𝑓2 : 𝑆 → S𝑘
such that for every 𝑦 ∈ 𝑆, 𝐿1(𝑓1(𝑦)) ̸= 𝐿1(𝑓2(𝑦)) and 𝐿3..𝑘(𝑓1(𝑦)) = 𝐿3..𝑘(𝑓2(𝑦)) and for every
𝑇 ⊆ 𝑆, there exists a sorting function 𝑔 ∈ ℋ such that

(𝑖) ∀𝑥 ∈ 𝑇, 𝑔(𝑥) = 𝑓1(𝑥), and (𝑖𝑖) ∀𝑥 ∈ 𝑆 ∖ 𝑇, 𝑔(𝑥) = 𝑓2(𝑥) .

The top-1 Ranking Natarajan dimension of ℋ, denoted 𝑑
(1)
𝑁 (ℋ) is the maximal cardinality of a set

that is 𝑁 -shattered by ℋ.

First, we connect PAC Label Ranking learnability to the top-1 disagreement error with the notion of
top-1 Ranking Natarajan dimension.
Theorem 8 (Top-1-Natarajan Lower Bounds Sample Complexity). In the realizable PAC Label
Ranking setting, we have for every hypothesis class ℋ ⊆ S𝒳𝑘

𝑚
(1)
PAC,ℋ(𝜖, 𝛿) = Ω

(︃
𝑑
(1)
𝑁 (ℋ) + ln(1/𝛿)

𝜖

)︃
.

Proof. Let ℋ ⊆ S𝒳𝑘 be a class of sorting functions of top-1-Natarajan dimension 𝑑
(1)
𝑁 = 𝑑𝑁 .

Consider the binary hypothesis class ℋbin = {0, 1}[𝑑𝑁 ] which contains all the classifiers from
[𝑑𝑁 ] = {1, ..., 𝑑𝑁} to {0, 1}. It suffices to show the following.

Claim 12. It holds that 𝑚(1)
PAC,ℋ(𝜖, 𝛿) ≥ 𝑚PAC,ℋbin

(𝜖, 𝛿).

This is sufficient since we have that 𝑚PAC,ℋbin
(𝜖, 𝛿) = Ω

(︁
VC(ℋbin)+ln(1/𝛿)

𝜖

)︁
and VC(ℋbin) = 𝑑𝑁 .

Let us now prove the claim.

We assume that the instance space is the set 𝒳 . Assume that 𝐴 is a learning algorithm for the
hypothesis class ℋ ⊆ S𝒳𝑘 and 𝐴bin is a learning algorithm for the associated binary class ℋbin. It
suffices to show that 𝐴 requires at least as many samples as 𝐴bin. In fact, we will show that whenever
𝐴bin errs, so does 𝐴. Let 𝑆 = {𝑠1, ..., 𝑠𝑑𝑁

}, 𝑓0, 𝑓1 be the set and the two functions that witness that
the top-1-Natarajan dimension of ℋ is 𝑑𝑁 . Given a training set (𝑥𝑖, 𝑦𝑖)𝑖∈[𝑚] ∈ ([𝑑𝑁 ]×{0, 1})𝑚, we
set 𝑔 : 𝒳 → S𝑘 be equal to the output of the algorithm 𝐴 with input (𝑠𝑥𝑖

, 𝑓𝑦𝑖
(𝑥𝑖))𝑖∈[𝑚] ∈ (𝑆×S𝑘)𝑚.

We also set 𝑓 be the output of the algorithm 𝐴bin with input (𝑥𝑖, 𝑦𝑖)𝑖∈[𝑚] by setting 𝑓(𝑖) = 1
if and only if 𝐿1(𝑔(𝑠𝑖)) = 𝐿1(𝑓1(𝑠𝑖)). We will show that whenever 𝐴bin errs, so does 𝐴. Fix
(𝑥𝑖, 𝑦𝑖) ∈ 𝑆 × {0, 1}. Assume that 𝐴bin(𝑥𝑖) ̸= 𝑦𝑖 and say 𝑦𝑖 = 0. Then 𝑓(𝑖) = 1 and so
𝐿1(𝑔(𝑠𝑖)) = 𝐿1(𝑓1(𝑠𝑖)) ̸= 𝐿1(𝑓0(𝑠𝑖)). This implies that 𝐴 errs. The case 𝑦𝑖 = 1 is similar.

D.2 Lower Bound for top-1 disagreement error for LSFs

Theorem 9 (Top-1 Natarajan Dimension of LSFs). Consider the hypothesis class ℒ𝑑,𝑘 = {𝜎𝑊 :

R𝑑 → S𝑘 : 𝜎𝑊 (𝑥) = argsort(𝑊𝑥),𝑊 ∈ R𝑘×𝑑}. Then, 𝑑(1)𝑁 (ℒ𝑑,𝑘) = Ω(𝑑𝑘).

Proof. Fix 𝑘 ∈ N. Let us consider the case 𝑑 = 2 that will correspond as the building block for
the general case 𝑑 > 2. Let us first choose the set of points: Set 𝑃 be the collection of pairs
𝑃 = {(2𝑖 − 1, 2𝑖)}𝑖∈[𝑏] for any 𝑖 ∈ [𝑏] with 𝑏 = ⌊𝑘/2⌋ and 𝑆 = {𝑥𝑚}𝑚∈𝑃 where these points
correspond to |𝑃 | equidistributed points on the unit sphere in R2. This set of points has size
|𝑃 | = Θ(𝑘) and we are going to 𝑁 -shatter it using ℒ2,𝑘.

Consider the matrix 𝑊 ∈ R𝑘×2 so that {𝑊𝑖}𝑖∈[𝑘] correspond to the rows of 𝑊 . The structure of
the problem relies on the hyperplanes with normal vectors (𝑊𝑖 −𝑊𝑗)�̸�=𝑗 and our choice of 𝑊 will
rely on these hyperplanes. For any 𝑚 = (2𝑖− 1, 2𝑖), we set 𝑊2𝑖−1,𝑊2𝑖 on the unit sphere so that
𝑊2𝑖−1 ·𝑊2𝑖 = 1− 𝜑 with 𝜑 ∈ (0, 1) sufficiently small (set arccos(1− 𝜑) = 2𝜋/(100𝑘)) and let
𝐶𝑚 be the cone generated by these two vectors with axis 𝐼𝑚. We place 𝑊2𝑖−1 so that the distance
between 𝑥𝑚 and the hyperplane 𝐼𝑚 is sufficiently small (say that the angle between 𝑥𝑚 and 𝐼𝑚 is
arccos(1− 𝜑)/100). Note that the normal vector of 𝐼𝑚 is 𝑊2𝑖−1 −𝑊2𝑖 and we place 𝑥𝑚 so that
it has positive correlation with this vector. This uniquely identifies the location of 𝑊2𝑖. Crucially,
each vector 𝑥𝑚 has the following properties: (i) 𝑥𝑚 is very close to the boundary of the hyperplane
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with normal vector (𝑊2𝑖−1 −𝑊2𝑖), (ii) 𝑊2𝑖−1 · 𝑥𝑚 > 𝑊2𝑖 · 𝑥 > 𝑊𝑗 · 𝑥𝑚 for any 𝑗 /∈ 𝑚 and
(iii) 𝑥𝑚 is far from any boundary induced by hyperplanes with normal vectors 𝑊𝑗 −𝑊𝑗′ for any
(𝑗, 𝑗′) ̸= 𝑚.

Since the points are well-separated on the unit sphere, for any 𝑚 = (2𝑖 − 1, 2𝑖) ∈ 𝑃 , we have
𝑊2𝑖−1 ·𝑊2𝑖 = 1−𝜑 ≈ 1 and for any other pair of indices (𝑖, 𝑗) /∈ 𝑃 , there exists 𝑐 = 𝑐(𝑘) ∈ (0, 1),
|⟨𝑊𝑖,𝑊𝑗⟩| ≤ 𝑐.

For any 𝑚 = (2𝑖− 1, 2𝑖) ∈ 𝑃 , we set 𝑊 ′
2𝑖−1−𝑊 ′

2𝑖 = 𝑅𝜃(𝑊2𝑖−1−𝑊2𝑖) for some 𝜃 to be chosen,
where 𝑅𝜃 is the 2× 2 rotation matrix. We choose 𝜃 so that each point 𝑥𝑚 for 𝑚 = (2𝑖− 1, 2𝑖) ∈ 𝑃
with (𝑊2𝑖−1 −𝑊2𝑖) · 𝑥𝑚 > 0 satisfies (𝑊 ′

2𝑖−1 −𝑊 ′
2𝑖) · 𝑥𝑚 < 0. The main idea is that since 𝑥𝑚

has the properties (i)-(iii) described above, the rankings induced by the vectors 𝑊𝑥𝑚 and 𝑊 ′𝑥𝑚

will be different in the first two positions but the same in the rest.

Given the training set {𝑥𝑚}𝑚∈𝑃 , we have to construct 𝑓0, 𝑓1 and verify that they satisfy the top-
1 Ranking Natarajan conditions. For 𝑚 = (2𝑖 − 1, 2𝑖), we have that 𝑓0(𝑥𝑚) = (2𝑖 − 1, 2𝑖, 𝜋)
and 𝑓1(𝑥𝑚) = (2𝑖, 2𝑖 − 1, 𝜋) for some ranking 𝜋 of size 𝑘 − 2 that depends on 𝑚. Specifically,
we will set 𝑓0(𝑥) = 𝜎(𝑊𝑥) and 𝑓1(𝑥) = 𝜎(𝑊 ′𝑥), where 𝜎 gives the decreasing ordering of
the elements of the input vector. By the choice of the set 𝑆 and 𝑊 ,𝑊 ′, it remains to show
that the 𝑘 − 2 last elements of the rankings 𝑓0(𝑥𝑚) (say 𝜋0) and of 𝑓1(𝑥𝑚) (say 𝜋1) are in the
same order, i.e., 𝐿3..𝑘(𝑓0(𝑥𝑚)) = 𝐿3..𝑘(𝑓1(𝑥𝑚)) . Assume that 𝑢 ≻ 𝑣 in 𝜋0. It suffices to show
that (𝑊 ′

𝑢 − 𝑊 ′
𝑣) · 𝑥𝑚 ≥ 0, i.e., the order of 𝑢 and 𝑣 is preserved when transforming 𝑊 to

𝑊 ′. We have that (𝑊𝑢 − 𝑊𝑣) · 𝑥𝑚 > 𝑐1 for some constant 𝑐1 > 0 (𝑐1 is the minimum over
(𝑢, 𝑣) ̸= 𝑚 = (2𝑖− 1, 2𝑖)). Hence, we can pick 𝜃 small enough so that (𝑊 ′

𝑢 −𝑊 ′
𝑣) · 𝑥𝑚 > 𝑐2 and

this can be done for any pair 𝑢, 𝑣 that does not correspond to 𝑚. This implies that 𝜋0 = 𝜋1 = 𝜋. In
particular, we have that

(𝑊 ′
𝑢 −𝑊 ′

𝑣) · 𝑥𝑚 = cos(𝜃) · (𝑊𝑢 −𝑊𝑣) · 𝑥𝑚 + sin(𝜃) · (𝑊 (1)
𝑢𝑣 𝑥(2)

𝑚 −𝑊 (2)
𝑢𝑣 𝑥(1)

𝑚 ) > 𝑐2 > 0

for some 𝜃 sufficiently small, where 𝑊 (𝑡)
𝑢𝑣 is the 𝑡-th entry of the vector 𝑊𝑢 −𝑊𝑣 for 𝑡 ∈ {1, 2} and

𝑥𝑚,𝑊𝑢,𝑊𝑣 are unit vectors.

For any subset 𝑇 of 𝑆, it remains to choose a linear classifier in ℒ2,𝑘 (which is allowed to depend
on 𝑇 ). For any 𝑇 ⊆ 𝑆 = {𝑥𝑚}𝑚∈𝑃 , we consider the matrix 𝑊 ∈ R𝑘×2 so that for the 𝑖-th row
𝑊 𝑖 = 𝑊𝑖1{𝑖 ∈ 𝑚 ∈ 𝑇} + 𝑊 ′

𝑖 1{𝑖 ∈ 𝑚 ∈ 𝑆 ∖ 𝑇} for any 𝑖 ∈ [𝑘]. This is valid since the pairs
𝑚 ∈ 𝑃 partition [𝑘]. We have to show the following two properties: (i) 𝜎(𝑊𝑥) = 𝑓0(𝑥) for 𝑥 ∈ 𝑇
and (ii) 𝜎(𝑊𝑥) = 𝑓1(𝑥) for 𝑥 ∈ 𝑆 ∖ 𝑇 .

Assume that 𝑚 = (2𝑖− 1, 2𝑖) and 𝑥𝑚 ∈ 𝑇 . We have that 𝑓0(𝑥𝑚) = (2𝑖− 1, 2𝑖, 𝜋) and 𝑊 2𝑖−1 −
𝑊 2𝑖 = 𝑊2𝑖−1 − 𝑊2𝑖 and so 2𝑖 − 1 ≻ 2𝑖 in the ranking 𝜎(𝑊𝑥𝑚). It remains to show that the
remaining

(︀
𝑘
2

)︀
− 1 pairwise comparisons are the same in the two rankings. Let us consider a pair of

points 𝑢 ̸= 𝑣 so that 𝑢 ≻ 𝑣 in 𝑓0(𝑥𝑚). It suffices to show that 𝑢 ≻ 𝑣 in 𝜎(𝑊𝑥𝑚).

1. If 𝑢, 𝑣 are so that 𝑊 𝑢 −𝑊 𝑣 = 𝑊𝑢 −𝑊𝑣 , the result holds.

2. If 𝑢, 𝑣 are so that 𝑊 𝑢 −𝑊 𝑣 = 𝑊𝑢 −𝑊 ′
𝑣: In this case, 𝑢 and 𝑣 lie in a different pair of

𝑃 and this implies that the correct direction is preserved if 𝜃 is appropriately chosen. For
𝜃 as above, it holds that (𝑊𝑢 −𝑅𝜃𝑊𝑣) · 𝑥𝑚 has the same sign as (𝑊𝑢 −𝑊𝑣) · 𝑥𝑚. In
particular,

𝑊𝑢·𝑥𝑚−𝑅𝜃𝑊𝑣·𝑥𝑚 = 𝑊𝑢·𝑥𝑚−(cos(𝜃)𝑊 (1)
𝑣 −sin(𝜃)𝑊 (2)

𝑣 )𝑥(1)
𝑚 −(sin(𝜃)𝑊 (1)

𝑣 +cos(𝜃)𝑊 (2)
𝑣 )𝑥(2)

𝑚 ,

and so

(𝑊𝑢 −𝑊 ′
𝑣) · 𝑥𝑚 = cos(𝜃) · (𝑊𝑢 −𝑊𝑣) · 𝑥𝑚 + sin(𝜃)(𝑊 (2)

𝑣 𝑥(1)
𝑚 −𝑊 (1)

𝑣 𝑥(2)
𝑚 ) > 0 .

3. If 𝑢, 𝑣 are so that 𝑊 𝑢 −𝑊 𝑣 = 𝑊 ′
𝑢 −𝑊 ′

𝑣 , the analysis for the inner product with 𝑥𝑚 will
be similar.

We now have to extend this proof for 𝑑 > 2. We will “tensorize” the above construction as follows.
Let 𝑆 = {𝑦𝑚𝑗}𝑚∈[𝑏],𝑗∈[𝑑/2] with |𝑆| = ⌊𝑘/2⌋ · ⌊𝑑/2⌋. We first define the points of 𝑆: For 𝑠 ∈ [𝑑],
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set 𝑦𝑚𝑗 [𝑠] = 𝑥𝑚[1]1{𝑠 = 2𝑗 − 1} + 𝑥𝑚[2]1{𝑠 = 2𝑗} with 𝑦𝑚𝑗 ∈ R𝑑, i.e., 𝑦𝑚𝑗 has the values of
𝑥𝑚 at the consecutive entries indicated by 𝑚 = (2𝑖− 1, 2𝑖) ∈ 𝑃 and zeros at the other positions.

We have to show that the set 𝑆 is 𝑁 -shattered. Given 𝑇 ⊆ 𝑆, we are going to create the matrix
𝑊 ∈ R𝑘×𝑑. For illustration, think of each row of the matrix as having 𝑑/2 blocks of size two. If
𝑦𝑚𝑗 ∈ 𝑇 with 𝑚 = (2𝑖−1, 2𝑖), set the two associated rows (indicated by 𝑚) of 𝑊 with 𝑊2𝑖−1,𝑊2𝑖

at the 𝑗-th block and with 𝑊 ′
2𝑖−1,𝑊

′
2𝑖 otherwise. We will have that 𝜎(𝑊𝑦) = 𝑓0(𝑦) if 𝑦 ∈ 𝑇 and

𝜎(𝑊𝑦) = 𝑓1(𝑦) otherwise and the analysis is the same as the 𝑑 = 2 case.

E Examples of Noisy Ranking Distributions

Definition 4 (Mallows model [Mal57]). Consider 𝑘 alternatives and let 𝜋 ∈ S𝑘, 𝜑 ∈ [0, 1]. The
Mallows distribution ℳMal(𝜋, 𝜑) with central ranking 𝜋 and spread parameter 𝜑 is a probability
measure over S𝑘 with density Pr𝜎∼ℳMal(𝜋,𝜑)[𝜎] that is proportional to 𝜑𝑑(𝜎,𝜋), where 𝑑 is a ranking
distance.

We focus on Mallows models accociated with the Kendall’s Tau distance 𝑑 = 𝑑𝐾𝑇 (the standard
distance, not the normalized one), which measures the number of discordant pairs.
Fact 2. When 𝜑 < 1, the Mallows model ℳMal(𝜋, 𝜑) is a ranking distribution with bounded noise
at most 1+𝜑

4 < 1/2.

Proof. The following property holds [Mal57]

Pr
𝜎∼ℳMal(𝜋,𝜑)

[𝜎(𝑖) < 𝜎(𝑗)|𝜋(𝑖) < 𝜋(𝑗)] =
𝜋(𝑗)− 𝜋(𝑖) + 1

1− 𝜑𝜋(𝑗)−𝜋(𝑖)+1
− 𝜋(𝑗)− 𝜋(𝑖)

1− 𝜑𝜋(𝑗)−𝜋(𝑖)
≥ 1

2
+

1− 𝜑

4
.

The Bradley-Terry-Luce model [BT52, Luc12] is the most studied pairwise comparisons model. In
his seminal paper, Mallows [Mal57] also studied the following natural ranking distribution:
Definition 5 (Bradley-Terry-Mallows [Mal57]). Consider a score vector 𝑤 ∈ R𝑘

+ with 𝑘 distinct
entries and let 𝜋 be the ranking induced by the values of 𝑤 in decreasing order. The Bradley-Terry-
Mallows distribution ℳBTM(𝑤) with central ranking 𝜋 is a probability measure over S𝑘 with density
Pr𝜎∼ℳBTM(𝑤)[𝜎] that is proportional to

∏︀
𝑖≻𝜎𝑗

𝑤𝑖

𝑤𝑖+𝑤𝑗
.

Lemma 19. There exists a real number 0 < 𝜂 < 1/2 so that the Bradley-Terry-Mallows distribution
ℳBTM(𝑤) is a ranking distribution with bounded noise at most 𝜂.

Proof. In the standard Bradley-Terry-Luce model, the pairwise comparison between the alternatives
𝑖, 𝑗 is a Bernoulli random variable with Pr[𝑖 ≻ 𝑗] = 𝑤𝑖/(𝑤𝑖 + 𝑤𝑗). The Bradley-Terry-Mallows
distribution can be considered as the Bradley-Terry-Luce model conditioned on the event that all the
pairwise comparisons are consistent to a ranking. Hence, we have that

Pr
𝜎∼ℳBTM(𝑤)

[𝜎] =
1

𝑍(𝑘,𝑤)

∏︁
𝑖≻𝜎𝑗

𝑤𝑖

𝑤𝑖 + 𝑤𝑗
.

Let us set 𝒜𝑖≻𝑗 = {𝜎 ∈ S𝑘 : 𝜎(𝑖) < 𝜎(𝑗)}. We are interested in the following probability

Pr
𝜎∼ℳBTM(𝑤)

[𝑖 ≻𝜎 𝑗|𝑤𝑖 > 𝑤𝑗 ] = Pr
𝜎∼ℳBTM(𝑤)

[𝜎(𝑖) < 𝜎(𝑗)|𝑤𝑖 > 𝑤𝑗 ] =
1

𝑍(𝑘,𝑤)

∑︁
𝜎∈𝒜𝑖≻𝑗

∏︁
𝑝≻𝜎𝑞

𝑤𝑝

𝑤𝑝 + 𝑤𝑞
.

Note that in order to show the desired property, it suffices to show that∑︁
𝜎∈𝒜𝑖≻𝑗

∏︁
𝑝≻𝜎𝑞

𝑤𝑝

𝑤𝑝 + 𝑤𝑞
>

∑︁
𝜎∈𝒜𝑖≺𝑗

∏︁
𝑝≻𝜎𝑞

𝑤𝑝

𝑤𝑝 + 𝑤𝑞
.

First, observe that there exists a correspondence mapping 𝜎 ∈ 𝒜𝑖≻𝑗 to 𝒜𝑖≺𝑗 , where one flips the
elements 𝑖 and 𝑗. Hence, it suffices to show that the mass of the ranking (𝑢𝑎)𝑖(𝑢𝑏)𝑗(𝑢𝑐) is larger than
the one of the ranking (𝑢𝑎)𝑗(𝑢𝑏)𝑖(𝑢𝑐), where 𝑢𝑎, 𝑢𝑏, 𝑢𝑐 are permutations of length between 0 and
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𝑘 − 2 with elements in [𝑘] ∖ {𝑖, 𝑗}. For the two above rankings, the only terms of the product that are
not identical are the following

𝑤𝑖

𝑤𝑖 + 𝑤𝑗

∏︁
𝑥∈𝑢𝑏

𝑤𝑖

𝑤𝑖 + 𝑤𝑥

𝑤𝑥

𝑤𝑥 + 𝑤𝑗
>

𝑤𝑗

𝑤𝑖 + 𝑤𝑗

∏︁
𝑥∈𝑢𝑏

𝑤𝑗

𝑤𝑗 + 𝑤𝑥

𝑤𝑥

𝑤𝑥 + 𝑤𝑖
,

since 𝑤𝑖 > 𝑤𝑗 and so the result follows.
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