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Abstract

Label Ranking (LR) is the supervised task of learning a sorting function that maps
feature vectors 𝑥 ∈ R𝑑 to rankings 𝜎(𝑥) ∈ S𝑘 over a finite set of 𝑘 labels. We
focus on the fundamental case of learning linear sorting functions (LSFs) under
Gaussian marginals: 𝑥 is sampled from the 𝑑-dimensional standard normal and
the ground truth ranking 𝜎⋆(𝑥) is the ordering induced by sorting the coordinates
of the vector 𝑊 ⋆𝑥, where 𝑊 ⋆ ∈ R𝑘×𝑑 is unknown. We consider learning
LSFs in the presence of bounded noise: assuming that a noiseless example is of
the form (𝑥, 𝜎⋆(𝑥)), we observe (𝑥, 𝜋), where for any pair of elements 𝑖 ̸= 𝑗,
the probability that the order of 𝑖, 𝑗 is different in 𝜋 than in 𝜎⋆(𝑥) is at most
𝜂 < 1/2. We design efficient non-proper and proper learning algorithms that
learn hypotheses within normalized Kendall’s Tau distance 𝜖 from the ground truth
with 𝑁 = ̃︀𝑂(𝑑 log(𝑘)/𝜖) labeled examples and runtime poly(𝑁, 𝑘). For the more
challenging top-𝑟 disagreement loss, we give an efficient proper learning algorithm
that achieves 𝜖 top-𝑟 disagreement with the ground truth with 𝑁 = ̃︀𝑂(𝑑𝑘𝑟/𝜖)
samples and poly(𝑁) runtime.

1 Introduction

1.1 Background and Motivation

Label Ranking (LR) is the problem of learning a hypothesis that maps features to rankings over a
finite set of labels. Given a feature vector 𝑥 ∈ R𝑑, a sorting function 𝜎(·) maps it to a ranking of 𝑘
alternatives, i.e., 𝜎(𝑥) is an element of the symmetric group with 𝑘 elements, S𝑘. Assuming access
to a training dataset of features labeled with their corresponding rankings, i.e., pairs of the form
(𝑥, 𝜋) ∈ R𝑑 × S𝑘, the goal of the learner is to find a sorting function ℎ(𝑥) that generalizes well over
a fresh sample. LR has received significant attention over the years [DSM03, SS07, HFCB08, CH08,
FHMB08] due to the large number of applications. For example, ad targeting [DGR+14] is an LR
instance where for each user we want to use their feature vector to predict a ranking over ad categories
and present them with the most relevant. The practical significance of LR has lead to the development
of many techniques based on probabilistic models and instance-based methods [CH08, CDH10],
[GDV12, ZLGQ14], decision trees [CHH09], entropy-based ranking trees [RdSRSK15], bagging
[AGM17], and random forests [dSSKC17, ZQ18]. However, almost all of these works come without
provable guarantees and/or fail to learn in the presence of noise in the observed rankings.

Linear Sorting Functions (LSFs). In this work, we focus on the fundamental concept class of
Linear Sorting functions [HPRZ03]. A linear sorting function parameterized by a matrix 𝑊 ∈ R𝑘×𝑑

with 𝑘 rows 𝑊1, . . . ,𝑊𝑘 takes a feature 𝑥 ∈ R𝑑, maps it to 𝑊𝑥 = (𝑊1 ·𝑥, . . . ,𝑊𝑘 ·𝑥) ∈ R𝑘 and
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then outputs an ordering (𝑖1, . . . , 𝑖𝑘) of the 𝑘 alternatives such that 𝑊𝑖1 ·𝑥 ≥ 𝑊𝑖2 ·𝑥 ≥ . . . ≥ 𝑊𝑖𝑘 ·𝑥.
In other words, a linear sorting function ranks the 𝑘 alternatives (corresponding to rows of 𝑊 ) with
respect to how well they correlate with the feature 𝑥. We denote a linear sorting function with
parameter 𝑊 ∈ R𝑘×𝑑 by 𝜎𝑊 (𝑥) ≜ argsort(𝑊𝑥) where argsort : R𝑘 → S𝑘 takes as input a
vector (𝑣1, . . . , 𝑣𝑘) ∈ R𝑘, sorts it in decreasing order to obtain 𝑣𝑖1 ≥ 𝑣𝑖2 ≥ . . . ≥ 𝑣𝑖𝑘 and returns the
ordering (𝑖1, . . . , 𝑖𝑘).

Noisy Ranking Distributions. Learning LSFs in the noiseless setting can be done efficiently by
using linear programming. However, the common assumption both in theoretical and in applied
works is that the observed rankings are noisy in the sense that they do not always correspond to
the ground-truth ranking. We assume that the probability that the order of two elements 𝑖, 𝑗 in the
observed ranking 𝜋 is different than their order in the ground-truth ranking 𝜎⋆ is at most 𝜂 < 1/2.

Definition 1 (Noisy Ranking Distribution). Fix 𝜂 ∈ [0, 1/2). An 𝜂-noisy ranking distribution
ℳ(𝜎⋆) with ground-truth ranking 𝜎⋆ ∈ S𝑘 is a probability measure over S𝑘 that, for any 𝑖, 𝑗 ∈ [𝑘],
with 𝑖 ̸= 𝑗, satisfies Pr𝜋∼ℳ(𝜎⋆)[𝑖 ≺𝜋 𝑗 | 𝑖 ≻𝜎⋆ 𝑗] ≤ 𝜂. 1

Note that, when 𝜂 = 0, we always observe the ground-truth permutation and, in the case of 𝜂 =
1/2, we may observe a uniformly random permutation. We remark that most natural ranking
distributions satisfy this bounded noise property, e.g., (i) the Mallows model, which is probably
the most fundamental ranking distribution (see, e.g., [BM09, LB11, CPS13, ABSV14, BFFSZ19,
FKS21, DOS18, LM18, MW20, LM21] for a small sample of this line of research) and (ii) the
Bradley-Terry-Mallows model [Mal57], which corresponds to the ranking distribution analogue of
the Bradley-Terry-Luce model [BT52, Luc12] (the most studied pairwise comparisons model; see,
e.g., [Hun04, NOS17, APA18] and the references therein). For more details, see Appendix E.

We consider the fundamental setting where the feature vector 𝑥 ∈ R𝑑 is generated by a standard
normal distribution and the ground-truth ranking for each sample 𝑥 is given by the LSF 𝜎𝑊 ⋆(𝑥) for
some unknown parameter matrix 𝑊 ⋆ ∈ R𝑘×𝑑. For a fixed 𝑥, the ranking that we observe comes
from an 𝜂-noisy ranking distribution with ground-truth ranking 𝜎𝑊 ⋆(𝑥).

Definition 2 (Noisy Linear Label Ranking Distribution). Fix 𝜂 ∈ [0, 1/2) and some ground-truth
parameter matrix 𝑊 ⋆ ∈ R𝑘×𝑑. We assume that the 𝜂-noisy linear label ranking distribution 𝒟 over
R𝑑 × S𝑘 satisfies the following:

1. The 𝑥-marginal of 𝒟 is the 𝑑-dimensional standard normal distribution.

2. For any (𝑥, 𝜋) ∼ 𝒟, the distribution of 𝜋 conditional on 𝑥 is an 𝜂-noisy ranking distribution
with ground-truth ranking 𝜎𝑊 ⋆(𝑥).

At first sight, the assumption that the underlying 𝑥-marginal is the standard normal may look too
strong. However, for 𝑘 = 2, Definition 2 captures the problem of learning linear threshold functions
with Massart noise. Without assumptions for the 𝑥-marginal, it is known [DGT19, CKMY20, DK20,
NT22] that optimal learning of halfspaces under Massart noise requires super-polynomial time (in
the Statistical Query model of [Kea98]). On the other hand, a lot of recent works [BZ17, MV19,
DKTZ20, ZSA20, ZL21] have obtained efficient algorithms for learning Massart halfspaces under
Gaussian marginals. The goal of this work is to provide efficient algorithms for the more general
problem of learning LSFs with bounded noise under Gaussian marginals.

1.2 Our Results

The main contributions of this paper are the first efficient algorithms for learning LSFs with bounded
noise with respect to Kendall’s Tau distance and top-𝑟 disagreement loss.

Learning in Kendall’s Tau Distance. The most standard metric in rankings [SSBD14] is Kendall’s
Tau (KT) distance which, for two rankings 𝜋, 𝜏 ∈ S𝑘, measures the fraction of pairs (𝑖, 𝑗) on
which they disagree. That is, ∆KT(𝜋, 𝜏) =

∑︀
𝑖≺𝜋𝑗

1{𝑖 ≻𝜏 𝑗}/
(︀
𝑘
2

)︀
. Our first result is an efficient

learning algorithm that, given samples from an 𝜂-noisy linear label ranking distribution 𝒟, computes

1We use 𝑖 ≻𝜋 𝑗 (resp. 𝑖 ≺𝜋 𝑗) to denote that the element 𝑖 is ranked higher (resp. lower) than 𝑗 according to
the ranking 𝜋.
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a parameter matrix 𝑊 that ranks the alternatives almost optimally with respect to the KT distance
from the ground-truth ranking 𝜎𝑊 ⋆(·).
Theorem 1 (Learning LSFs in KT Distance). Fix 𝜂 ∈ [0, 1/2) and 𝜖, 𝛿 ∈ (0, 1). Let 𝒟 be an 𝜂-noisy
linear label ranking distribution satisfying the assumptions of Definition 2 with ground-truth LSF
𝜎𝑊 ⋆(·). There exists an algorithm that draws 𝑁 = ̃︀𝑂 (︁ 𝑑

𝜖(1−2𝜂)6 log(𝑘/𝛿)
)︁

samples from 𝒟, runs

in sample-polynomial time, and computes a matrix 𝑊 ∈ R𝑘×𝑑 such that, with probability at least
1− 𝛿,

E
𝑥∼𝒩𝑑

[∆KT(𝜎𝑊 (𝑥), 𝜎𝑊 ⋆(𝑥))] ≤ 𝜖 .

Theorem 1 gives the first efficient algorithm with provable guarantees for the supervised problem of
learning noisy linear rankings. We remark that the sample complexity of our learning algorithm is
qualitatively optimal (up to logarithmic factors) since, for 𝑘 = 2, our problem subsumes learning
a linear classifier with Massart noise 2 for which Ω(𝑑/𝜖) are known to be information theoretically
necessary [MN06]. Moreover, our learning algorithm is proper in the sense that it computes a
linear sorting function 𝜎𝑊 (·). As opposed to improper learners (see also Section 1.3), a proper
learning algorithm gives us a compact representation (storing 𝑊 requires 𝑂(𝑘𝑑) memory) of the
sorting function that allows us to efficiently compute (with runtime 𝑂(𝑘𝑑 + 𝑘 log 𝑘)) the ranking
corresponding to a fresh datapoint 𝑥 ∈ R𝑑.

Learning in top-𝑟 Disagreement. We next present our learning algorithm for the top-𝑟 metric
formally defined as ∆top−𝑟(𝜋, 𝜏) = 1{𝜋1..𝑟 ̸= 𝜏1..𝑟}, where by 𝜋1..𝑟 we denote the ordering on the
first 𝑟 elements of the permutation 𝜋. The top-𝑟 metric is a disagreement metric in the sense that it
takes binary values and for 𝑟 = 1 captures the standard (multiclass) top-1 classification loss. We
remark that, in contrast with the top-𝑟 classification loss, which only requires the predicted label to
be in the top-𝑟 predictions of the model, the top-𝑟 ranking metric that we consider here requires that
the model puts the same elements in the same order as the ground truth in the top-𝑟 positions. The
top-𝑟 ranking is well-motivated as, for example, in ad targeting (discussed in Section 1.1) we want to
be accurate on the top-𝑟 ad categories for a user so that we can diversify the content that they receive.

Theorem 2 (Learning LSFs in top-𝑟 Disagreement). Fix 𝜂 ∈ [0, 1/2), 𝑟 ∈ [𝑘] and 𝜖, 𝛿 ∈ (0, 1).
Let 𝒟 be an 𝜂-noisy linear label ranking distribution satisfying the assumptions of Definition 2
with ground-truth LSF 𝜎𝑊 ⋆(·). There exists an algorithm that draws 𝑁 = ̃︀𝑂 (︁ 𝑑𝑟𝑘

𝜖(1−2𝜂)6 log(1/𝛿)
)︁

samples from 𝒟, runs in sample-polynomial time and computes a matrix 𝑊 ∈ R𝑘×𝑑 such that, with
probability at least 1− 𝛿,

E
𝑥∼𝒩𝑑

[∆top−𝑟(𝜎𝑊 (𝑥), 𝜎𝑊 ⋆(𝑥))] ≤ 𝜖 .

As a direct corollary of our result, we obtain a proper algorithm for learning the top-1 element
with respect to the standard 0-1 loss that uses ̃︀𝑂(𝑘𝑑) samples. In fact, for small values of 𝑟, i.e.,
𝑟 = 𝑂(1), our sample complexity is essentially tight. It is known that Θ(𝑘𝑑) samples are information
theoretically necessary [Nat89] for top-1 classification. 3 For the case 𝑟 = 𝑘, i.e., when we want to
learn the whole ranking with respect to the 0-1 loss, our sample complexity is 𝑂(𝑘2𝑑). However,
using arguments similar to [DSBDSS11], one can show that in fact 𝑂(𝑑𝑘) ranking samples are
sufficient in order to learn the whole ranking with respect to the 0-1 loss. In this case, it is unclear
whether a better sample complexity can be achieved with an efficient algorithm and we leave this as
an interesting open question for future work.

1.3 Our Techniques

Learning in Kendall’s Tau distance. Our proper learning algorithm consists of two steps: an
improper learning algorithm that decomposes the ranking problem to 𝑂(𝑘2) binary linear classifica-
tion problems and a convex (second order conic) program that “compresses” the 𝑘2 linear classifiers

2Notice that in this case Kendall’s Tau distance is simply the standard 0-1 binary loss.
3Strictly speaking, those lower bounds do not directly apply in our setting because our labels are whole

rankings instead of just the top classes but, in the Appendix D, we show that we can adapt the lower bound
technique of [DSBDSS11] to obtain the same sample complexity lower bound for our ranking setting.
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to obtain a 𝑘 × 𝑑 matrix 𝑊 . Our improper learning algorithm splits the ranking learning problem
into 𝑂(𝑘2) binary, 𝑑-dimensional linear classification problems with Massart noise. In particular,
for every pair of elements 𝑖, 𝑗 ∈ [𝑘], each binary classification task asks whether element 𝑖 is
ranked higher than element 𝑗 in the ground-truth permutation 𝜎𝑊 ⋆(𝑥). As we already discussed,
we have that, under the Gaussian distribution, there exist efficient Massart learning algorithms
[BZ17, MV19, DKTZ20, ZSA20, ZL21] that can recover linear classifiers sgn(𝑣𝑖𝑗 · 𝑥) that correctly
order the pair 𝑖, 𝑗 for all 𝑥 apart from a region of 𝑂(𝜖)-Gaussian mass. However, we still need
to aggregate the results of the approximate binary classifiers in order to obtain a ranking of the 𝑘
alternatives for each 𝑥. We first show that we can design a “voting scheme” that combines the results
of the binary classifiers using an efficient constant factor approximation algorithm for the Minimum
Feedback Arc Set (MFAS) problem [ACN08]. This gives us an efficient but improper algorithm for
learning LSFs in Kendall’s Tau distance. In order to obtain a proper learning algorithm, we further
“compress” the 𝑂(𝑘2) approximate linear classifiers with normal vectors 𝑣𝑖𝑗 and obtain a matrix
𝑊 ∈ R𝑘×𝑑 with the property that the difference of every two rows 𝑊𝑖 −𝑊𝑗 is 𝑂(𝜖)-close to the
vector 𝑣𝑖𝑗 . More precisely, we show that, given the linear classifiers 𝑣𝑖𝑗 ∈ R𝑑, we can efficiently
compute a matrix 𝑊 ∈ R𝑘×𝑑 such that the following angle distance with 𝑊 ⋆ is small:

𝑑angle(𝑊 ,𝑊 ⋆) ≜ max
𝑖,𝑗

𝜃(𝑊𝑖 −𝑊𝑗 ,𝑊
⋆
𝑖 −𝑊 ⋆

𝑗 ) ≤ 𝑂(𝜖) . (1)

It is not hard to show that, as long as the above angle metric is at most 𝑂(𝜖), then (in expectation
over the standard Gaussian) Kendall’s Tau distance between the LSFs is also 𝑂(𝜖). A key technical
difficulty that we face in this reduction is bounding the “condition number” of the convex (second
order conic) program that finds the matrix 𝑊 given the vectors 𝑣𝑖𝑗 , see Claim 2. Finally, we remark
that the proper learning algorithm of Theorem 1 results in a compact and efficient sorting function
that requires: (i) storing 𝑂(𝑘) weight vectors as opposed to the initial 𝑂(𝑘2) vectors of the improper
learner; and (ii) evaluating 𝑘 inner products with 𝑥 to find its ranking (instead of 𝑂(𝑘2)).

Learning in top-𝑟 Disagreement. We next turn our attention to the more challenging top-𝑟 ranking
disagreement metric. In particular, suppose that we are interested in recovering only the top element
of the ranking. One approach would be to directly use the improper learning algorithm for this
task and ask for KT distance of order roughly 𝜖/𝑘2. The resulting hypothesis would produce good
predictions for the top element but the required sample complexity would be 𝑂(𝑑𝑘2). While it seems
that training 𝑂(𝑘2) 𝑑-dimensional binary classifiers inherently requires 𝑂(𝑑𝑘2) samples, we show
that, using the proper KT distance learning algorithm of Theorem 1, we can also obtain improved
sample complexity results for the top-𝑟 metric. Our main technical contribution here is a novel
estimate of the top-𝑟 disagreement in terms of the angle metric. In general, one can show that the
top-𝑟 disagreement is at most 𝑂(𝑘2) 𝑑angle(𝑊 ,𝑊 ⋆). We significantly sharpen this estimate by
showing the following lemma.

Lemma 1 (Top-𝑟 Disagreement via Parameter Distance). Consider two matrices 𝑊 ,𝑊 ⋆ ∈ R𝑘×𝑑

and let 𝒩𝑑 be the standard Gaussian in 𝑑 dimensions. We have that

Pr
𝑥∼𝒩𝑑

[𝜎1..𝑟(𝑊𝑥) ̸= 𝜎1..𝑟(𝑊
⋆𝑥)] ≤ ̃︀𝑂(𝑘𝑟) 𝑑angle(𝑊 ,𝑊 ⋆) .

We remark that Lemma 1 is a general geometric tool that we believe will be useful in other distribution-
specific multiclass learning settings. The proof of Lemma 1 mainly relies on geometric Gaussian
surface area computations that we believe are of independent interest. For the details, we refer the
reader to Section 4. An interesting question with a convex-geometric flavor is whether the sharp
bound of Lemma 1 also holds under the more general class of isotropic log-concave distributions.

1.4 Related Work

Robust Supervised Learning. We start with a summary of prior work on PAC learning with Massart
noise. The Massart noise model was formally defined in [MN06] but similar variants had been defined
by Vapnik, Sloan and Rivest [Vap06, Slo88, Slo92, RS94, Slo96]. This model is a strict extension
of the Random Classification Noise (RCN) model [AL88], where the label noise is uniform, i.e.,
context-independent and is a special case of the agnostic model [Hau18, KSS94], where the label
noise is fully adversarial and computational barriers are known to exist [GR09, FGKP06, Dan16,
DKZ20, GGK20, DKPZ21, HSSVG22]. Our work partially builds upon on the algorithmic task of
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PAC learning halfspaces with Massart noise [BH20]. In the distribution-independent setting, known
efficient algorithms [DGT19, CKMY20, DKT21] achieve error 𝜂+𝜖 and the works of [DK20, NT22]
indicate that this error bound is the best possible in the Statistical Query model [Kea98]. This lower
bound motivates the study of the distribution-specific setting (which is also the case of our work).
There is an extensive line of work in this direction: [ABHU15, ABHZ16, YZ17, ZLC17, BZ17,
MV19, DKTZ20, ZSA20, ZL21] with the currently best algorithms succeeding for all 𝜂 < 1/2
with a sample and computational complexity poly(𝑑, 1/𝜖, 1/(1− 2𝜂)) under a class of distributions
including isotropic log-concave distributions. For details, see [DKK+21]. In this work we focus on
Gaussian marginals but some of our results extend to larger distribution classes.

Label Ranking. Our work lies in the area of Label Ranking, which has received significant attention
over the years [SS07, HFCB08, CH08, HPRZ03, FHMB08, DSM03]. There are multiple approaches
for tackling this problem (see [VG10], [ZLY+14]). Some of them are based on probabilistic models
[CH08, CDH10, GDV12, ZLGQ14] or may be tree based, such as decision trees [CHH09], entropy
based ranking trees and forests [RdSRSK15, dSSKC17], bagging techniques [AGM17] and random
forests [ZQ18]. There are also works focusing on supervised clustering [GDGV13]. Finally, [CH08,
CDH10, CHH09] adopt an instance-based approaches using nearest neighbors approaches. The above
results are industrial. From a theoretical perspective, LR has been mainly studied from a statistical
learning theory framework [CV20, CKS18, KGB18, KCS17]. [FKP21] provide some computational
guarantees for the performance of decision trees in the noiseless case and some experimental results
on the robustness of random forests to noise. The setting of [DGR+14] is close to ours but is
investigated from an experimental standpoint. We remark that while reducing LR to multiple binary
classification tasks has been used in prior literature [HFCB08, CH12, FKP21], standard reductions
can not tolerate noise in rankings (nevertheless, from an experimental perspective, e.g., random
forests seem robust to noise but lack formal theoretical guarantees). Our reduction crucially relies on
the existence of efficient learning algorithms for binary linear classification with Massart noise.

2 Notation and Preliminaries

General Notation. We use ̃︀𝑂(·) to omit poly-logarithmic factors. A learning algorithm has sample-
polynomial runtime if it runs in time polynomial in the size of the description of the input training set.
We denote vectors by boldface 𝑥 (with elements 𝑥𝑖) and matrices with 𝑊 , where we let 𝑊𝑖 ∈ R𝑑

denote the 𝑖-th row of 𝑊 ∈ R𝑘×𝑑 and 𝑊𝑖𝑗 its elements. We denote 𝑎 · 𝑏 the inner product of
two vectors and 𝜃(𝑎, 𝑏) their angle. Let 𝒩𝑑 denote the 𝑑-dimensional standard normal and Γ(·) the
Gaussian surface area.

Rankings. We let argsort𝑖∈[𝑘]𝑣 denote the ranking of [𝑘] in decreasing order according to the values
of 𝑣. For a ranking 𝜋, we let 𝜋(𝑖) denote the position of the 𝑖-th element. If 𝜋 = 𝜋(𝑥), we may also
write 𝜋(𝑥)(𝑖) to denote the position of 𝑖. We often refer to the elements of a ranking as alternatives.
For a ranking 𝜎, we let 𝜎1..𝑟 denote the top-𝑟 part of 𝜎. When 𝜎 = 𝜎(𝑥), we may also write 𝜎1..𝑟(𝑥)
and 𝜎ℓ(𝑥) will be the alternative at the ℓ-th position. We let ∆KT denote the (normalized) KT
distance, i.e., ∆KT(𝜋, 𝜏) =

∑︀
𝑖≺𝜋𝑗

1{𝑖 ≻𝜏 𝑗}/
(︀
𝑘
2

)︀
for 𝜋, 𝜏 ∈ S𝑘.

3 Learning in KT distance: Theorem 1

In this section, we present the main tools required to obtain our proper learning algorithm of
Theorem 1. Our proper algorithm adopts a two-step approach: it first invokes an efficient improper
algorithm which, instead of a linear sorting function (i.e., a matrix 𝑊 ∈ R𝑘×𝑑), outputs a list of
𝑂(𝑘2) linear classifiers. We then design a novel convex program in order to find the matrix 𝑊
satisfying the guarantees of Theorem 1. Let us begin with the improper learner for LSFs with bounded
noise with respect to the KT distance, whose description can be found in Algorithm 1.

3.1 Improper Learning Algorithm

Let us assume that the target function is 𝜎⋆(𝑥) = 𝜎𝑊 ⋆(𝑥) = argsort(𝑊 ⋆𝑥) for some 𝑊 ⋆ ∈ R𝑘×𝑑.

Step 1: Binary decomposition and Noise Structure. For each drawn example (𝑥, 𝜋) from the
𝜂-noisy linear label ranking distribution 𝒟 (see Definition 2), we create

(︀
𝑘
2

)︀
binary examples (𝑥, 𝑦𝑖𝑗)
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Algorithm 1 Non-proper Learning Algorithm ImproperLSF

Input: Training set 𝑇 = {(𝑥𝑡, 𝜋𝑡)}𝑡∈[𝑁 ], 𝜖, 𝛿 ∈ (0, 1), 𝜂 ∈ [0, 1/2)

Output: Sorting function ℎ : R𝑑 → S𝑘

For any 1 ≤ 𝑖 < 𝑗 ≤ 𝑘, create 𝑇𝑖𝑗 = {(𝑥𝑡, sgn(𝜋𝑡(𝑖)− 𝜋𝑡(𝑗)))}
For any 1 ≤ 𝑖 < 𝑗 ≤ 𝑘, compute 𝑣𝑖𝑗 = MassartLTF(𝑇𝑖𝑗 ,

𝜖
4 ,

𝛿
10𝑘2 , 𝜂) ◁ See Appendix A.1

Ranking Phase: Given 𝑥 ∈ R𝑑:
(a) Construct directed graph 𝐺 with 𝑉 (𝐺) = [𝑘] and edges 𝑒𝑖→𝑗 only if 𝑣𝑖𝑗 · 𝑥 > 0 ∀𝑖 ̸= 𝑗
(b) Output ℎ(𝑥) = MFAS(𝐺) ◁ See Appendix A.1

with 𝑦𝑖𝑗 = sgn(𝜋(𝑖)− 𝜋(𝑗)) for any 1 ≤ 𝑖 < 𝑗 ≤ 𝑘. We have that

Pr
(𝑥,𝜋)∼𝒟

[︀
𝑦𝑖𝑗 · sgn((𝑊 ⋆

𝑖 −𝑊 ⋆
𝑗 ) · 𝑥) < 0 | 𝑥

]︀
= Pr

𝜋∼ℳ(𝜎⋆(𝑥))

[︀
𝜋(𝑖) < 𝜋(𝑗) | 𝑊 ⋆

𝑖 · 𝑥 < 𝑊 ⋆
𝑗 · 𝑥

]︀
.

Since ℳ(𝜎⋆(𝑥)) is an 𝜂-noisy ranking distribution (see Definition 1), we get that the above quantity
is at most 𝜂 < 1/2. Therefore, each sample (𝑥, 𝑦𝑖𝑗) can be viewed as a sample from a distribution
𝒟𝑖𝑗 with Gaussian 𝑥-marginal, optimal linear classifier sgn((𝑊 ⋆

𝑖 −𝑊 ⋆
𝑗 ) · 𝑥), and Massart noise 𝜂.

Hence, we have reduced the task of learning noisy LSFs to a number of
(︀
𝑘
2

)︀
sub-problems concerning

the learnability of halfspaces in the presence of bounded (Massart) noise.

Step 2: Solving Binary Sub-problems. We can now apply the algorithm MassartLTF for LTFs
with Massart noise under standard Gaussian marginals [ZSA20] (for details, see Appendix A.1): for
all the pairs of alternatives 1 ≤ 𝑖 < 𝑗 ≤ 𝑘 with accuracy parameter 𝜖′, confidence 𝛿′ = 𝑂(𝛿/𝑘2), and
a total number of 𝑁 = ̃︀Ω(︁ 𝑑

𝜖′(1−2𝜂)6 log(𝑘/𝛿)
)︁

i.i.d. samples from 𝒟, we can obtain a collection of
linear classifiers with normal vectors 𝑣𝑖𝑗 for any 𝑖 < 𝑗. We remark that each one of these halfspaces
𝑣𝑖𝑗 achieves 𝜖 disagreement with the ground-truth halfspaces 𝑊 ⋆

𝑖 −𝑊 ⋆
𝑗 with high probability, i.e.,

Pr
𝑥∼𝒩𝑑

[sgn(𝑣𝑖𝑗 · 𝑥) ̸= sgn((𝑊 ⋆
𝑖 −𝑊 ⋆

𝑗 ) · 𝑥)] ≤ 𝜖′ .

Step 3: Ranking Phase. We now have to aggregate the linear classifiers and compute a single
sorting function ℎ : R𝑑 → S𝑘. Given an example 𝑥, we create the tournament graph 𝐺 with 𝑘 nodes
that contains a directed edge 𝑒𝑖→𝑗 if 𝑣𝑖𝑗 · 𝑥 > 0. If 𝐺 is acyclic, we output the induced permutation;
otherwise, the graph contains cycles which should be eliminated. In order to output a ranking, we
remove cycles from 𝐺 with an efficient, 3-approximation algorithm for MFAS [ACN08, VZW09].
Hence, the output ℎ(𝑥) and the true target 𝜎⋆(𝑥) will have E𝑥∼𝒩𝑑

[∆KT(ℎ(𝑥), 𝜎
⋆(𝑥))] ≤ 𝜖′+3𝜖′ =

4𝜖′ . This last equation indicates why a constant factor approximation algorithm suffices for our
purposes – we can always pick 𝜖′ = 𝜖/4 and complete the proof. For details, see Appendix A.1.

3.2 Proper Learning Algorithm: Theorem 1

Having obtained the improper learning algorithm, we can now describe our proper Algorithm 2.
Initially, the algorithm starts similarly with the improper learner and obtains a collection of binary
linear classifiers. The crucial idea is the next step: the design of an appropriate convex program which
will efficiently give the matrix 𝑊 . We proceed with the details. For the proof, see Appendix A.2.

Algorithm 2 Proper Learning Algorithm ProperLSF

Input: Training set 𝑇 = {(𝑥𝑡, 𝜋𝑡)}𝑡∈[𝑁 ], 𝜖, 𝛿 ∈ (0, 1), 𝜂 ∈ [0, 1/2)

Output: Linear Sorting function ℎ : R𝑑 → S𝑘, i.e., ℎ(·) = 𝜎𝑊 (·) for some matrix 𝑊 ∈ R𝑘×𝑑

Compute (𝑣𝑖𝑗)1≤𝑖<𝑗≤𝑘 = ImproperLSF(𝑇, 𝜖, 𝛿, 𝜂) ◁ See Algorithm 1
Setup the CP 1 and compute 𝑊 = Ellipsoid(CP) ◁ See Appendix A.2
Ranking Phase: Given 𝑥 ∈ R𝑑, output ℎ(𝑥) = argsort(𝑊𝑥)

Step 1: Calling Non-proper Learners. As a first step, the algorithm calls Algorithm 1 with
parameters 𝜖, 𝛿 and 𝜂 ∈ [0, 1/2) and obtains a list of linear classifiers with normal vectors 𝑣𝑖𝑗 for
𝑖 < 𝑗. Without loss of generality, assume that ‖𝑣𝑖𝑗‖2 = 1.
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Step 2: Designing and Solving the CP 1. Our main goal is to find a matrix 𝑊 whose LSF is
close to the true target in KT distance. We show the following lemma that connects the KT distance
between two LSFs with the angle metric 𝑑angle(·, ·) defined in Eq. (1). The proof can be found in the
Appendix A.2.
Lemma 2. For 𝑊 ,𝑊 ⋆ ∈ R𝑘×𝑑, it holds E𝑥∼𝒩𝑑

[∆KT(𝜎𝑊 (𝑥), 𝜎𝑊 ⋆(𝑥))] ≤ 𝑑angle(𝑊 ,𝑊 ⋆) .

The above lemma states that, for our purposes, it suffices to control the 𝑑angle metric between the
guess 𝑊 and the true matrix 𝑊 ⋆. It turns out that, given the binary classifiers 𝑣𝑖𝑗 , we can design a
convex program whose solution will satisfy this property. Thinking of the binary classifier 𝑣𝑖𝑗 as a
proxy for 𝑊 ⋆

𝑖 −𝑊 ⋆
𝑗 , we want each difference 𝑊𝑖−𝑊𝑗 to have small angle with 𝑣𝑖𝑗 or equivalently

to have large correlation with it, i.e., (𝑊𝑖 −𝑊𝑗) · 𝑣𝑖𝑗 ≈ ‖𝑊𝑖 −𝑊𝑗‖2. To enforce this condition,
we can therefore use the second order conic constraint (𝑊𝑖 −𝑊𝑗) · 𝑣𝑖𝑗 ≥ (1 − 𝜑)‖𝑊𝑖 −𝑊𝑗‖2.
We formulate the following convex program 1 with variable the matrix 𝑊 :

Find 𝑊 ∈ R𝑘×𝑑, ‖𝑊 ‖𝐹 ≤ 1,

such that (𝑊𝑖 −𝑊𝑗) · 𝑣𝑖𝑗 ≥ (1− 𝜑) · ‖𝑊𝑖 −𝑊𝑗‖2 for any 1 ≤ 𝑖 < 𝑗 ≤ 𝑘, (1)

for some 𝜑 ∈ (0, 1) to be decided. Intuitively, since any 𝑣𝑖𝑗 has good correlation with 𝑊 ⋆
𝑖 −𝑊 ⋆

𝑗
(by the guarantees of the improper learning algorithm) and the CP 1 requires that its solution 𝑊
similarly correlates well with 𝑣𝑖𝑗 , we expect that 𝑑angle(𝑊 ,𝑊 ⋆) will be small. We show that:
Claim 1. The convex program 1 is feasible and any solution 𝑊 of 1 satisfies 𝑑angle(𝑊 ,𝑊 ⋆) ≤ 𝜖.

To see this, note that any solution of CP 1 is a matrix 𝑊 whose angle metric (see Eq. (1)) with the
true matrix is small by an application of the triangle inequality between the angles of (𝑣𝑖𝑗 ,𝑊𝑖−𝑊𝑗)
and (𝑣𝑖𝑗 ,𝑊

⋆
𝑖 −𝑊 ⋆

𝑗 ) for any 𝑖 ̸= 𝑗. We next have to deal with the feasibility of CP 1. Our goal is to
determine the value of 𝜑 that makes the CP 1 feasible. For the pair 1 ≤ 𝑖 < 𝑗 ≤ 𝑘, the guess 𝑣𝑖𝑗 and
the true normal vector 𝑊 ⋆

𝑖 −𝑊 ⋆
𝑗 satisfy, with high probability,

Pr
𝑥∼𝒟𝑥

[sgn(𝑣𝑖𝑗 · 𝑥) ̸= sgn((𝑊 ⋆
𝑖 −𝑊 ⋆

𝑗 ) · 𝑥)] ≤ 𝜖 . (2)

Under the Gaussian distribution (which is rotationally symmetric), it is well known that the angle
𝜃(𝑢,𝑣) between two vectors 𝑢,𝑣 ∈ R𝑑 is equal to 𝜋 · Pr𝑥∼𝒩𝑑

[sgn(𝑢 · 𝑥) ̸= sgn(𝑣 · 𝑥)]. Hence,
using Eq. (2), we get that the angle between the guess 𝑣𝑖𝑗 and the true normal vector 𝑊 ⋆

𝑖 −𝑊 ⋆
𝑗

is 𝜃(𝑊 ⋆
𝑖 −𝑊 ⋆

𝑗 ,𝑣𝑖𝑗) ≤ 𝑐𝜖. For sufficiently small 𝜖, this bound implies that the cosine of the above
angle is of order 1− (𝑐𝜖)2 and so the following inequality will hold (since 𝑣𝑖𝑗 is unit):

(𝑊 ⋆
𝑖 −𝑊 ⋆

𝑗 ) · 𝑣𝑖𝑗 ≥ (1− 2(𝑐𝜖)2) · ‖𝑊 ⋆
𝑖 −𝑊 ⋆

𝑗 ‖2 .

Hence, by setting 𝜑 = 2(𝑐𝜖)2, the convex program 1 with variables 𝑊 ∈ R𝑘×𝑑 will be feasible;
since ‖𝑊 ⋆‖𝐹 ≤ 1 comes without loss of generality, 𝑊 ⋆ will be a solution with probability 1− 𝛿.

Next, we have to control the volume of the feasible region. This is crucial in order to apply the
ellipsoid algorithm (for details, see in Appendix A.2.1) and, hence, solve the convex program. We
show the following claim (see Appendix A.2.1 for the proof):

Claim 2. There exists 𝜌 ≥ 2−poly(𝑑,𝑘,1/𝜖,log(1/𝛿)) so that the feasible set of CP 1 with 𝜑 = 𝑂(𝜖2)
contains a ball (with respect to the Frobenius norm) of radius 𝜌.

Critically, the runtime of the ellipsoid algorithm is logarithmic in 1/𝜌. So, the ellipsoid runs in time
polynomial in the parameters of the problem and outputs the desired matrix 𝑊 .

4 Learning in top-𝑟 Disagreement: Theorem 2

In this section we show that the proper learning algorithm of Section 3.2 learns noisy LSFs in the top-𝑟
disagreement metric. We have seen that, with ̃︀𝑂(𝑑 log(𝑘)/𝜖) samples, Algorithm 2 of Section 3.2
computes a matrix 𝑊 such that 𝑑angle(𝑊 ,𝑊 ⋆) ≤ 𝜖, see Claim 1. Let us be more specific. Lemma
2 relates the expected KT distance with the angle metric of the two matrices (see also Equation (1)).
Our Algorithm 2 essentially gives an upper bound on this angle metric. When we shift our objective
and our goal is to control the top-𝑟 disagreement, we can still apply Algorithm 2 which essentially
controls the angle metric. The crucial ingredient that is missing is the relation between the loss we
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have to control, i.e., the expected top-𝑟 disagreement and the angle metric of Equation 1. This relation
is presented right after and essentially says that the expected top-𝑟 disagreement is at most 𝑂(𝑘𝑟)
times this angle metric. Hence, in order to get top-𝑟 disagreement of order 𝜖, it suffices to apply our
Algorithm 2 with 𝜖′ = 𝑂(𝜖/(𝑘𝑟)).

We continue with our main contribution which is the following lemma that connects the top-𝑟
disagreement metric with the geometric distance 𝑑angle(·, ·), recall Lemma 1. To keep this sketch
simple we shall present a sketch of the proof of Lemma 1 for the special case of top-1 classification,
which we restate below. The proof of the top-1 case can be found at the Appendix B. The detailed
proof of the general case (𝑟 > 1) can be found in the Appendix C.

Lemma 3 (Top-1 Disagreement Loss via 𝑑angle(·, ·)). Consider two matrices 𝑈 ,𝑉 ∈ R𝑘×𝑑 and let
𝒩𝑑 be the standard Gaussian in 𝑑 dimensions. We have that

Pr
𝑥∼𝒩𝑑

[𝜎1(𝑈𝑥) ̸= 𝜎1(𝑉 𝑥)] ≤ 𝑂
(︁
𝑘
√︀
log 𝑘

)︁
𝑑angle(𝑈 ,𝑉 ) .

We observe that

Pr
𝑥∼𝒩𝑑

[𝜎1(𝑈𝑥) ̸= 𝜎1(𝑉 𝑥)] =
∑︁
𝑖∈[𝑘]

Pr
𝑥∼𝒩𝑑

[𝜎1(𝑈𝑥) = 𝑖, 𝜎1(𝑉 𝑥) ̸= 𝑖] . (1)

We denote by 𝒞(𝑖)
𝑈 ≜ 1{𝑥 : 𝜎1(𝑈𝑥) = 𝑖} =

∏︀
𝑗 ̸=𝑖 1{(𝑈𝑖 − 𝑈𝑗) · 𝑥 ≥ 0}, i.e., this is the set

where the ranking corresponding to 𝑈 picks 𝑖 as the top element. Note that 𝒞(𝑖)
𝑈 is the indicator of a

homogeneous polyhedral cone since it can be written as the intersection of homogeneous halfspaces.
Using these cones we can rewrite the top-1 disagreement of Eq. (1) as

Pr
𝑥∼𝒩𝑑

[𝜎1(𝑈𝑥) ̸= 𝜎1(𝑉 𝑥)] =
∑︁
𝑖∈[𝑘]

Pr
𝑥∼𝒩𝑑

[𝐶
(𝑖)
𝑈 (𝑥) = 1, 𝐶

(𝑖)
𝑉 (𝑥) = 0] . (2)

Hence, our task is to control the mass of the disagreement region of two cones. The next Lemma 4
achieves this task and, combined with Eq. (2) directly gives the conclusion of Lemma 3.

Next we work with two general homogeneous polyhedral cones with set indicators 𝐶1, 𝐶2:

Lemma 4 (Cone Disagreement). Let 𝐶1, 𝐶2 : R𝑑 ↦→ {0, 1} be homogeneous polyhedral cones
defined by the 𝑘 unit vectors 𝑣1, . . . ,𝑣𝑘 and 𝑢1, . . . ,𝑢𝑘 respectively. For some universal constant
𝑐 > 0, it holds that Pr𝑥∼𝒩𝑑

[𝐶1(𝑥) ̸= 𝐶2(𝑥)] ≤ 𝑐
√
log 𝑘 max𝑖∈[𝑘] 𝜃(𝑣𝑖,𝑢𝑖) .

Roadmap of the Proof of Lemma 4: Assume that we rotate one face of the polyhedral cone 𝐶1 by
a very small angle 𝜃 to obtain the perturbed cone 𝐶2. At a high-level, we expect the probability of
the disagreement region between the new cone 𝐶2 and 𝐶1 to be roughly (this is an underestimation)
equal to the size of the perturbation 𝜃 times the (Gaussian) surface area of the face of the convex
cone that we perturbed. The Gaussian Surface Area (GSA) of a convex set 𝐴 ⊂ R𝑑, is defined
as Γ(𝐴) ≜

∫︀
𝜕𝐴

𝜑𝑑(𝑥)𝑑𝜇(𝑥), where 𝑑𝜇(𝑥) is the standard surface measure in R𝑑 and 𝜑𝑑(𝑥) =

(2𝜋)−𝑑/2 ·exp(−‖𝑥‖22/2). In fact, in Claim 3 below, we show that the probability of the disagreement
between 𝐶1 and 𝐶2 is roughly 𝑂(𝜃)Γ(𝐹1)

√︀
log(1/Γ(𝐹1) + 1), where 𝐹1 is the face of cone 𝐶1 that

we rotated. Now, when we perturb all the faces by small angles (all perturbations are at most 𝜃), we
can show (via a sequence of triangle inequalities) that the total probability of the disagreement region
is bounded above by the perturbation size 𝜃 times the sum of the Gaussian surface area of every face
(times a logarithmic blow-up factor):

Pr
𝑥∼𝒩𝑑

[𝐶1(𝑥) ̸= 𝐶2(𝑥)] ≤ 𝑂(𝜃)

𝑘∑︁
𝑖=1

Γ(𝐹𝑖)
√︀

log(1/Γ(𝐹𝑖) + 1) .

Surprisingly, for homogeneous convex cones, the above sum cannot grow very fast with 𝑘. In fact,
we show that it can be at most 𝑂(

√
log 𝑘). To prove this, we crucially rely on the following convex

geometry result showing that the Gaussian surface area of a homogeneous convex cone is 𝑂(1)
regardless of the number of its faces 𝑘.

Lemma 5 ([Naz03]). Let 𝐶 be a homogeneous polyhedral cone with 𝑘 faces 𝐹1, . . . , 𝐹𝑘. Then 𝐶

has Gaussian surface area Γ(𝐶) =
∑︀𝑘

𝑖=1 Γ(𝐹𝑖) ≤ 1.
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Using an inequality similar to the fact that the maximum entropy of a discrete distribution on
𝑘 elements is at most log 𝑘, and, since, from Lemma 5, it holds that

∑︀𝑘
𝑖=1 Γ(𝐹𝑖) ≤ 1, we can

show that
∑︀𝑘

𝑖=1 Γ(𝐹𝑖)
√︀
log(1/Γ(𝐹𝑖) + 1) = 𝑂(

√
log 𝑘). Therefore, with the above lemma we

conclude that, if the maximum angle perturbation that we perform on 𝐶1 is 𝜃, then the probability
of the disagreement region is 𝑂(𝜃). We next give the formal proof resulting in the upper bound of
𝑂(

√
log 𝑘 𝜃) for the disagreement.

Single Face Perturbation Bound: Claim 3: We will use the following notation for the positive
orthant indicator 𝑅(𝑧) =

∏︀𝑘
𝑖=1 1{𝑧𝑖 ≥ 0}. Notice that the homogeneous polyhedral cone 𝐶1 can be

written as 𝐶1(𝑥) = 𝑅(𝑉 𝑥) = 𝑅(𝑣1 · 𝑥, . . . ,𝑣𝑘 · 𝑥). Claim 3 below shows that the disagreement of
two cones that differ on a single normal vector is bounded by above by the Gaussian surface area of a
particular face 𝐹1 times a logarithmic blow-up factor

√︀
log(1/Γ(𝐹1) + 1).

Claim 3. Let 𝑣1, . . . ,𝑣𝑘 ∈ R𝑑 and 𝑟 ∈ R𝑑 with 𝜃(𝑣1, 𝑟) ≤ 𝜃 for some sufficiently small 𝜃 ∈ (0, 𝜋/2).
Let 𝐹1 be the face with 𝑣1 · 𝑥 = 0 of the cone 𝑅(𝑉 𝑥) and 𝑐 > 0 be some universal constant. Then,

Pr
𝑥∼𝒩𝑑

[𝑅(𝑣1 · 𝑥, . . . ,𝑣𝑘 · 𝑥) ̸= 𝑅(𝑟 · 𝑥,𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥)] ≤ 𝑐 · 𝜃 · Γ(𝐹1)

√︃
log

(︂
1

Γ(𝐹1)
+ 1

)︂
.

Proof Sketch of Claim 3. Since the constraints 𝑣2 · 𝑥 ≥ 0, . . . ,𝑣𝑘 · 𝑥 ≥ 0 are common in the two
cones, we have that 𝑅(𝑣1 ·𝑥, . . . ,𝑣𝑘 ·𝑥) ̸= 𝑅(𝑟 ·𝑥,𝑣2 ·𝑥, . . . ,𝑣𝑘 ·𝑥) only when the first “halfspaces”
disagree, i.e., when (𝑣1 ·𝑥)(𝑟 ·𝑥) < 0. Thus, we have that the LHS probability of Claim 3 is equal to

E
𝑥∼𝒩𝑑

[𝑅(𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥) · 1{(𝑣1 · 𝑥)(𝑟 · 𝑥) < 0}] . (3)

This expectation contains two terms: the term 𝑅(𝑣2 · 𝑥, . . .𝑣𝑘 · 𝑥) that contains the last 𝑘 − 1
common constrains of the two cones and the region where the first two halfspaces disagree, i.e., the
set {𝑥 : (𝑣1 ·𝑥)(𝑟 ·𝑥) < 0}. In order to upper bound this integral in terms of the angle 𝜃, we observe
that (for 𝜃 sufficiently small) it is not hard to show (see Appendix B) that the disagreement region,
which is itself a (non-convex) cone, is a subset of the region {𝑥 : |𝑣1 · 𝑥| ≤ 2𝜃|𝑞 · 𝑥|}, where 𝑞 the
normalized projection of 𝑟 onto the orthogonal complement of 𝑣1, i.e., 𝑞 = proj𝑣⊥

1
𝑟/‖proj𝑣⊥

1
𝑟‖2.

Therefore, we have that the integral of Eq. (3) is at most

E
𝑥∼𝒩𝑑

[𝑅(𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥) 1{|𝑣1 · 𝑥| ≤ 2𝜃|𝑞 · 𝑥|}] .

This is where the definition of the Gaussian surface area appears. In fact, we have to compute
the derivative of the above expression (which is a function of 𝜃) with respect to 𝜃 and evaluate it
at 𝜃 = 0. The idea behind this computation is that we can upper bound probability mass of the
cone disagreement, i.e., the term Pr𝑥∼𝒩𝑑

[𝑅(𝑣1 · 𝑥, . . . ,𝑣𝑘 · 𝑥) ̸= 𝑅(𝑟 · 𝑥,𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥)] by
its derivative with respect to 𝜃 (evaluated at 0) times 𝜃 by introducing 𝑜(𝜃) error. Hence, it suffices to
upper bound the value of this derivative at 0, which is:

2 E
𝑥∼𝒩𝑑

[𝑅(𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥) |𝑞 · 𝑥| 𝛿(|𝑣1 · 𝑥|)] ,

where 𝛿 is the Dirac delta function. Notice that, if we did not have the term |𝑞 · 𝑥|, the above
expression would be exactly equal to two times the Gaussian surface area of the face with 𝑣1 · 𝑥 = 0,
i.e., it would be equal to 2Γ(𝐹1). We now show that this extra term of |𝑞 · 𝑥| can only increase the
above surface integral by at most a logarithmic factor. For some 𝜉 to be decided, we have that

E
𝑥∼𝒩𝑑

[𝑅(𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥) |𝑞 · 𝑥| 𝛿(|𝑣1 · 𝑥|)] =
∫︁
𝑥∈𝐹1

𝜑𝑑(𝑥)|𝑞 · 𝑥|𝑑𝜇(𝑥)

≤
∫︁
𝑥∈𝐹1

𝜑𝑑(𝑥)|𝑞 · 𝑥|1{|𝑞 · 𝑥| ≤ 𝜉}𝑑𝜇(𝑥) +
∫︁
𝑥∈𝐹1

𝜑𝑑(𝑥)|𝑞 · 𝑥|1{|𝑞 · 𝑥| ≥ 𝜉}𝑑𝜇(𝑥)

≤ 𝜉

∫︁
𝑥∈𝐹1

𝜑𝑑(𝑥)𝑑𝜇(𝑥) +

∫︁
𝑥∈𝐹1

𝜑𝑑(𝑥)|𝑞 · 𝑥|1{|𝑞 · 𝑥| ≥ 𝜉}𝑑𝜇(𝑥) ,

where 𝑑𝜇(𝑥) is the standard surface measure in R𝑑. The first integral above is exactly equal to the
Gaussian surface area of the face 𝐹1. To bound from above the second term we can use the next
claim showing that not a lot of mass of the face 𝐹1 can concentrate on the region where |𝑞 ·𝑥| is very
large. Its proof relies on standard Gaussian concentration arguments, and is provided in Appendix B.
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Claim 4. It holds that
∫︀
𝑥∈𝐹1

𝜑𝑑(𝑥)|𝑞 · 𝑥|1{|𝑞 · 𝑥| ≥ 𝜉}𝑑𝜇(𝑥) ≤ 𝑂(exp(−𝜉2/2)) .

Using the above result, we get that

𝑑

𝑑𝜃

(︁
E

𝑥∼𝒩𝑑

[𝑅(𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥) 1{|𝑣1 · 𝑥| ≤ 2𝜃|𝑞 · 𝑥|}]
)︁⃒⃒⃒

𝜃=0
≤ 𝑂(𝜉) Γ(𝐹1)+𝑂(exp(−𝜉2/2)) .

By picking 𝜉 = Θ(
√︀
log(1 + 1/Γ(𝐹1))), the result follows since, up to introducing 𝑜(𝜃) error, we

can bound the term Pr𝑥∼𝒩𝑑
[𝑅(𝑣1 · 𝑥, . . . ,𝑣𝑘 · 𝑥) ̸= 𝑅(𝑟 · 𝑥,𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥)] by its derivative

with respect to 𝜃, evaluated at 0, times 𝜃.

Conclusion. Our work presents the first theoretical guarantees for (linear) LR with noise and settles
interesting directions for future work, as mentioned in Section 1. This paper is theoretical and does
not have any negative social impact.

Acknowledgments and Disclosure of Funding

Dimitris Fotakis and Alkis Kalavasis were supported by the Hellenic Foundation for Research and
Innovation (H.F.R.I.) under the “First Call for H.F.R.I. Research Projects to support Faculty members
and Researchers and the procurement of high-cost research equipment grant”, project BALSAM,
HFRIFM17-1424.

References
[ABHU15] Pranjal Awasthi, Maria-Florina Balcan, Nika Haghtalab, and Ruth Urner. Efficient

learning of linear separators under bounded noise. In Conference on Learning Theory,
pages 167–190. PMLR, 2015.

[ABHZ16] Pranjal Awasthi, Maria-Florina Balcan, Nika Haghtalab, and Hongyang Zhang. Learn-
ing and 1-bit compressed sensing under asymmetric noise. In Conference on Learning
Theory, pages 152–192. PMLR, 2016.

[ABSV14] Pranjal Awasthi, Avrim Blum, Or Sheffet, and Aravindan Vijayaraghavan. Learning
mixtures of ranking models. arXiv preprint arXiv:1410.8750, 2014.

[ACN08] Nir Ailon, Moses Charikar, and Alantha Newman. Aggregating inconsistent informa-
tion: ranking and clustering. Journal of the ACM (JACM), 55(5):1–27, 2008.

[AGM17] Juan A Aledo, José A Gámez, and David Molina. Tackling the supervised label ranking
problem by bagging weak learners. Information Fusion, 35:38–50, 2017.

[AL88] Dana Angluin and Philip Laird. Learning from noisy examples. Machine Learning,
2(4):343–370, 1988.

[APA18] Arpit Agarwal, Prathamesh Patil, and Shivani Agarwal. Accelerated spectral ranking.
In International Conference on Machine Learning, pages 70–79. PMLR, 2018.

[BDCBL92] Shai Ben-David, Nicolò Cesa-Bianchi, and Philip M Long. Characterizations of
learnability for classes of {O,. . . , n}-valued functions. In Proceedings of the fifth
annual workshop on Computational learning theory, pages 333–340, 1992.

[BFFSZ19] Róbert Busa-Fekete, Dimitris Fotakis, Balázs Szörényi, and Manolis Zampetakis.
Optimal learning of mallows block model. In Conference on Learning Theory, pages
529–532. PMLR, 2019.

[BH20] Maria-Florina Balcan and Nika Haghtalab. Noise in classification., 2020.

[BM09] Mark Braverman and Elchanan Mossel. Sorting from noisy information. arXiv preprint
arXiv:0910.1191, 2009.

[BT52] Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs:
I. the method of paired comparisons. Biometrika, 39(3/4):324–345, 1952.

10



[BZ17] Maria-Florina F Balcan and Hongyang Zhang. Sample and computationally efficient
learning algorithms under s-concave distributions. Advances in Neural Information
Processing Systems, 30, 2017.

[CDH10] Weiwei Cheng, Krzysztof Dembczynski, and Eyke Hüllermeier. Label ranking meth-
ods based on the plackett-luce model. In ICML, 2010.

[CH08] Weiwei Cheng and Eyke Hüllermeier. Instance-based label ranking using the mallows
model. In ECCBR Workshops, pages 143–157, 2008.

[CH12] Weiwei Cheng and Eyke Hüllermeier. Probability estimation for multi-class classifica-
tion based on label ranking. In Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, pages 83–98. Springer, 2012.

[CHH09] Weiwei Cheng, Jens Hühn, and Eyke Hüllermeier. Decision tree and instance-based
learning for label ranking. In Proceedings of the 26th Annual International Conference
on Machine Learning, pages 161–168, 2009.

[CKMY20] Sitan Chen, Frederic Koehler, Ankur Moitra, and Morris Yau. Classification under
misspecification: Halfspaces, generalized linear models, and evolvability. Advances in
Neural Information Processing Systems, 33:8391–8403, 2020.

[CKS18] Stephan Clémençon, Anna Korba, and Eric Sibony. Ranking median regression:
Learning to order through local consensus. In Algorithmic Learning Theory, pages
212–245. PMLR, 2018.

[CPS13] Ioannis Caragiannis, Ariel D Procaccia, and Nisarg Shah. When do noisy votes reveal
the truth? In Proceedings of the fourteenth ACM conference on Electronic commerce,
pages 143–160, 2013.

[CV20] Stéphan Clémençon and Robin Vogel. A multiclass classification approach to label
ranking. In International Conference on Artificial Intelligence and Statistics, pages
1421–1430. PMLR, 2020.

[Dan16] Amit Daniely. Complexity theoretic limitations on learning halfspaces. In Proceedings
of the forty-eighth annual ACM symposium on Theory of Computing, pages 105–117,
2016.

[DGR+14] Nemanja Djuric, Mihajlo Grbovic, Vladan Radosavljevic, Narayan Bhamidipati, and
Slobodan Vucetic. Non-linear label ranking for large-scale prediction of long-term
user interests. In Twenty-Eighth AAAI Conference on Artificial Intelligence, 2014.

[DGT19] Ilias Diakonikolas, Themis Gouleakis, and Christos Tzamos. Distribution-independent
pac learning of halfspaces with massart noise. Advances in Neural Information
Processing Systems, 32, 2019.

[DK20] Ilias Diakonikolas and Daniel M Kane. Hardness of learning halfspaces with massart
noise. arXiv preprint arXiv:2012.09720, 2020.

[DKK+21] Ilias Diakonikolas, Daniel M Kane, Vasilis Kontonis, Christos Tzamos, and Nikos
Zarifis. Learning general halfspaces with general massart noise under the gaussian
distribution. arXiv preprint arXiv:2108.08767, 2021.

[DKM05] Sanjoy Dasgupta, Adam Tauman Kalai, and Claire Monteleoni. Analysis of perceptron-
based active learning. In International conference on computational learning theory,
pages 249–263. Springer, 2005.

[DKPZ21] Ilias Diakonikolas, Daniel M Kane, Thanasis Pittas, and Nikos Zarifis. The optimality
of polynomial regression for agnostic learning under gaussian marginals. arXiv
preprint arXiv:2102.04401, 2021.

[DKT21] Ilias Diakonikolas, Daniel Kane, and Christos Tzamos. Forster decomposition and
learning halfspaces with noise. Advances in Neural Information Processing Systems,
34, 2021.

11



[DKTZ20] Ilias Diakonikolas, Vasilis Kontonis, Christos Tzamos, and Nikos Zarifis. Learn-
ing halfspaces with massart noise under structured distributions. In Conference on
Learning Theory, pages 1486–1513. PMLR, 2020.

[DKZ20] Ilias Diakonikolas, Daniel Kane, and Nikos Zarifis. Near-optimal sq lower bounds
for agnostically learning halfspaces and relus under gaussian marginals. Advances in
Neural Information Processing Systems, 33:13586–13596, 2020.

[DOS18] Anindya De, Ryan O’Donnell, and Rocco Servedio. Learning sparse mixtures of
rankings from noisy information. arXiv preprint arXiv:1811.01216, 2018.

[DSBDSS11] Amit Daniely, Sivan Sabato, Shai Ben-David, and Shai Shalev-Shwartz. Multiclass
learnability and the erm principle. In Proceedings of the 24th Annual Conference
on Learning Theory, pages 207–232. JMLR Workshop and Conference Proceedings,
2011.

[DSM03] Ofer Dekel, Yoram Singer, and Christopher D Manning. Log-linear models for label
ranking. Advances in neural information processing systems, 16:497–504, 2003.

[DSS14] Amit Daniely and Shai Shalev-Shwartz. Optimal learners for multiclass problems. In
Conference on Learning Theory, pages 287–316. PMLR, 2014.

[dSSKC17] Cláudio Rebelo de Sá, Carlos Soares, Arno Knobbe, and Paulo Cortez. Label ranking
forests. Expert systems, 34(1):e12166, 2017.

[FGKP06] Vitaly Feldman, Parikshit Gopalan, Subhash Khot, and Ashok Kumar Ponnuswami.
New results for learning noisy parities and halfspaces. In 2006 47th Annual IEEE
Symposium on Foundations of Computer Science (FOCS’06), pages 563–574. IEEE,
2006.

[FHMB08] Johannes Fürnkranz, Eyke Hüllermeier, Eneldo Loza Mencía, and Klaus Brinker.
Multilabel classification via calibrated label ranking. Machine learning, 73(2):133–
153, 2008.

[FKP21] Dimitris Fotakis, Alkis Kalavasis, and Eleni Psaroudaki. Label ranking through
nonparametric regression. arXiv preprint arXiv:2111.02749, 2021.

[FKS21] Dimitris Fotakis, Alkis Kalavasis, and Konstantinos Stavropoulos. Aggregating in-
complete and noisy rankings. In International Conference on Artificial Intelligence
and Statistics, pages 2278–2286. PMLR, 2021.

[GDGV13] Mihajlo Grbovic, Nemanja Djuric, Shengbo Guo, and Slobodan Vucetic. Supervised
clustering of label ranking data using label preference information. Machine learning,
93(2-3):191–225, 2013.

[GDV12] Mihajlo Grbovic, Nemanja Djuric, and Slobodan Vucetic. Learning from pairwise
preference data using gaussian mixture model. Preference Learning: Problems and
Applications in AI, 33, 2012.

[GGK20] Surbhi Goel, Aravind Gollakota, and Adam Klivans. Statistical-query lower bounds
via functional gradients. Advances in Neural Information Processing Systems, 33:2147–
2158, 2020.

[GR09] Venkatesan Guruswami and Prasad Raghavendra. Hardness of learning halfspaces
with noise. SIAM Journal on Computing, 39(2):742–765, 2009.

[Hau18] David Haussler. Decision theoretic generalizations of the pac model for neural net
and other learning applications. In The Mathematics of Generalization, pages 37–116.
CRC Press, 2018.

[HFCB08] Eyke Hüllermeier, Johannes Fürnkranz, Weiwei Cheng, and Klaus Brinker. Label
ranking by learning pairwise preferences. Artificial Intelligence, 172(16):1897–1916,
2008.

12



[HPRZ03] Sariel Har-Peled, Dan Roth, and Dav Zimak. Constraint classification for multiclass
classification and ranking. Advances in neural information processing systems, pages
809–816, 2003. URL: https://proceedings.neurips.cc/paper/2002/file/
16026d60ff9b54410b3435b403afd226-Paper.pdf.

[HSSVG22] Daniel Hsu, Clayton Sanford, Rocco Servedio, and Emmanouil-Vasileios Vlatakis-
Gkaragkounis. Near-optimal statistical query lower bounds for agnostically learning
intersections of halfspaces with gaussian marginals. arXiv preprint arXiv:2202.05096,
2022.

[Hun04] David R Hunter. Mm algorithms for generalized bradley-terry models. The annals of
statistics, 32(1):384–406, 2004.

[KCS17] Anna Korba, Stephan Clémençon, and Eric Sibony. A learning theory of ranking
aggregation. In Artificial Intelligence and Statistics, pages 1001–1010. PMLR, 2017.

[Kea98] Michael Kearns. Efficient noise-tolerant learning from statistical queries. Journal of
the ACM (JACM), 45(6):983–1006, 1998.

[KGB18] Anna Korba, Alexandre Garcia, and Florence d’Alché Buc. A structured prediction
approach for label ranking. arXiv preprint arXiv:1807.02374, 2018.

[KMS06] Claire Kenyon-Mathieu and Warren Schudy. How to rank with few errors–a ptas for
weighted feedback arc set on tournaments. In ELECTRONIC COLLOQUIUM ON
COMPUTATIONAL COMPLEXITY, REPORT NO. 144 (2006). Citeseer, 2006.

[KSS94] Michael J Kearns, Robert E Schapire, and Linda M Sellie. Toward efficient agnostic
learning. Machine Learning, 17(2):115–141, 1994.

[LB11] Tyler Lu and Craig Boutilier. Learning mallows models with pairwise preferences. In
ICML, 2011.

[LM18] Allen Liu and Ankur Moitra. Efficiently learning mixtures of mallows models. In
2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS),
pages 627–638. IEEE, 2018.

[LM21] Allen Liu and Ankur Moitra. Robust voting rules from algorithmic robust statistics.
arXiv preprint arXiv:2112.06380, 2021.

[Luc12] R Duncan Luce. Individual choice behavior: A theoretical analysis. Courier Corpora-
tion, 2012.

[LV07] László Lovász and Santosh Vempala. The geometry of logconcave functions and
sampling algorithms. Random Structures & Algorithms, 30(3):307–358, 2007.

[Mal57] Colin L Mallows. Non-null ranking models. i. Biometrika, 44(1/2):114–130, 1957.

[MN06] Pascal Massart and Élodie Nédélec. Risk bounds for statistical learning. The Annals
of Statistics, 34(5):2326–2366, 2006.

[MV19] Oren Mangoubi and Nisheeth K Vishnoi. Nonconvex sampling with the metropolis-
adjusted langevin algorithm. In Conference on Learning Theory, pages 2259–2293.
PMLR, 2019.

[MW20] Cheng Mao and Yihong Wu. Learning mixtures of permutations: Groups of pairwise
comparisons and combinatorial method of moments. arXiv preprint arXiv:2009.06784,
2020.

[Nat89] Balas K Natarajan. On learning sets and functions. Machine Learning, 4(1):67–97,
1989.

[Naz03] Fedor Nazarov. On the maximal perimeter of a convex set in R𝑛 with respect to
a gaussian measure. In Geometric aspects of functional analysis, pages 169–187.
Springer, 2003.

13



[NOS17] Sahand Negahban, Sewoong Oh, and Devavrat Shah. Rank centrality: Ranking from
pairwise comparisons. Operations Research, 65(1):266–287, 2017.

[NT22] Rajai Nasser and Stefan Tiegel. Optimal sq lower bounds for learning halfspaces with
massart noise. arXiv preprint arXiv:2201.09818, 2022.

[Pap81] Christos H Papadimitriou. On the complexity of integer programming. Journal of the
ACM (JACM), 28(4):765–768, 1981.

[RdSRSK15] Cláudio Rebelo de Sá, Carla Rebelo, Carlos Soares, and Arno Knobbe. Distance-based
decision tree algorithms for label ranking. In Portuguese Conference on Artificial
Intelligence, pages 525–534. Springer, 2015.

[RS94] Ronald L Rivest and Robert Sloan. A formal model of hierarchical concept-learning.
Information and Computation, 114(1):88–114, 1994.

[Sch98] Alexander Schrijver. Theory of linear and integer programming. John Wiley & Sons,
1998.

[Slo88] Robert Sloan. Types of noise in data for concept learning. In Proceedings of the first
annual Workshop on Computational Learning Theory, pages 91–96, 1988.

[Slo92] Robert H Sloan. Corrigendum to types of noise in data for concept learning. In
Proceedings of the fifth annual workshop on Computational learning theory, page 450,
1992.

[Slo96] Robert H Sloan. Pac learning, noise, and geometry. In Learning and Geometry:
Computational Approaches, pages 21–41. Springer, 1996.

[SS07] Shai Shalev-Shwartz. Online learning: Theory, algorithms, and applications. PhD
thesis, The Hebrew University of Jerusalem, 2007.

[SSBD14] Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From
theory to algorithms. Cambridge university press, 2014.

[Vap06] Vladimir Vapnik. Estimation of dependences based on empirical data. Springer
Science & Business Media, 2006.

[VG10] Shankar Vembu and Thomas Gärtner. Label ranking algorithms: A survey. In
Preference learning, pages 45–64. Springer, 2010.

[Vis21] Nisheeth K Vishnoi. Algorithms for convex optimization. Cambridge University Press,
2021.

[VZW09] Anke Van Zuylen and David P Williamson. Deterministic pivoting algorithms for
constrained ranking and clustering problems. Mathematics of Operations Research,
34(3):594–620, 2009.

[YZ17] Songbai Yan and Chicheng Zhang. Revisiting perceptron: Efficient and label-optimal
learning of halfspaces. Advances in Neural Information Processing Systems, 30, 2017.

[ZL21] Chicheng Zhang and Yinan Li. Improved algorithms for efficient active learning
halfspaces with massart and tsybakov noise. In Mikhail Belkin and Samory Kpotufe,
editors, Proceedings of Thirty Fourth Conference on Learning Theory, volume 134 of
Proceedings of Machine Learning Research, pages 4526–4527. PMLR, 15–19 Aug
2021.

[ZLC17] Yuchen Zhang, Percy Liang, and Moses Charikar. A hitting time analysis of stochastic
gradient langevin dynamics. In Conference on Learning Theory, pages 1980–2022.
PMLR, 2017.

[ZLGQ14] Yangming Zhou, Yangguang Liu, Xiao-Zhi Gao, and Guoping Qiu. A label ranking
method based on gaussian mixture model. Knowledge-Based Systems, 72:108–113,
2014.

14



[ZLY+14] Yangming Zhou, Yangguang Liu, Jiangang Yang, Xiaoqi He, and Liangliang Liu. A
taxonomy of label ranking algorithms. J. Comput., 9(3):557–565, 2014.

[ZQ18] Yangming Zhou and Guoping Qiu. Random forest for label ranking. Expert Systems
with Applications, 112:99–109, 2018.

[ZSA20] Chicheng Zhang, Jie Shen, and Pranjal Awasthi. Efficient active learning of sparse
halfspaces with arbitrary bounded noise. In H. Larochelle, M. Ranzato, R. Hadsell,
M. F. Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems,
volume 33, pages 7184–7197. Curran Associates, Inc., 2020.

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] We have presented the assump-

tions of our models and we have explained future research directions in Section 1.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] We have

discussed that in the Conclusion paragraph at the end of the main body.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] We have
specified the theoretical models we are working on, see e.g., Section 1.1.

(b) Did you include complete proofs of all theoretical results? [Yes] Due to space con-
straints we have included the full proofs of the results in the Supp. Material.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [N/A]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [N/A]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [N/A]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [N/A]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

15


