
A Additional Related Works

We review the recent studies in OOD detection, model reprogramming, and backdoor attack.

A.1 OOD Detection

Following [58], we attribute existing works into three categories, namely, the classification-based
methods, the density-based methods, and the distance-based methods. In general, these methods aim
to maximize the gap between ID and OOD data regarding specified metrics in identifying OOD data.

The classification-based methods use the representations extracted from the well-trained classi-
fication models in OOD scoring. For example, [17, 32, 33, 37, 46, 51] employ logit outputs from
models in estimating the confidence of ID data; [28, 44] adopt Mahalanobis distance and Gram
Matrix to exploit models’ detection capability from embedding features; [21, 32] further demonstrate
the importance of gradient information, either perturbing inputs with its gradients or directly using
the gradient norm in scoring. The classification-based methods are easy to be deployed without
modifying the models [58], and thus it is the main focus in this paper.

The distance-based methods measure the distance regarding the embedding space, taking those data
far away from the class prototypes as the OOD data. Representative works adopt the Mahalanobis
distance [21, 28], the cosine similarity [2, 60], and the Euclidean distance [20]. Our methods can also
be used in the distance-based methods. However, extra computation, such as calculating the precision
matrix [28], may lead difficulty in devising proper learning objectives, out of the scope of our paper.

The density-based methods explicitly estimate the density of ID samples with various probabilistic
models, identifying those OOD data based on the likelihood [28], the likelihood ratio [31, 41, 45],
and the likelihood regret [55]. Typically, the input density is modelled by the mixture of Gaussian
models [28] and the flow-based methods [25, 38]. Although the density-based methods can directly
characterize the properties of ID density, these methods are difficult to be trained and may make
overconfident predictions, as demonstrated in previous works [37, 38].

Recent works also focus on the causes of challenges in OOD detection, from the lens of the BatchNorm
statistics [46], the density estimation [37], and the spurious correlation [44]. Improved methods,
related to specified model architectures [7, 53], data perturbation [1, 3, 32], data augmentation [15, 19,
48], and outlier exposure [18, 23], are also well-studied. However, these methods typically overlook
the reprogramming property of deep models, which remain orthogonal to our proposal.

A.2 Reprogramming Property

The seminal work [9] introduces adversarial reprogramming as an attack method in adversarial
learning [11], adversarially reprogramming the target model to perform a new task without changing
the original model. The term “attack” lies in the fact that, by reprogramming, an attacker can easily
steal public machine learning services, abusing their computational resources for tasks that violate
their original purposes. Overall, [9] claim the reprogramming property of deep models—without
modifying parameters of a well-trained model, we can reprogram it for a new purpose with only
data-level manipulation. The reprogramming property of deep learning is preliminarily verified for
various tasks, and its further applications are not limited to adversarial learning. Actually, advanced
works often take reprogramming as an effective transfer learning technique in the cases with limited
data and computing resources. In the context of the image classification, [9] reprogram a model
trained on ImageNet in solving vision-based counting tasks; and [49] further consider reprogramming
a black-box system for biomedical image classification, which suffers from label scarcity issue. In
the context of the natural language processing, well-trained models are reprogrammed for time-series
classification [57] and sentiment analysis [13], where data scarcity issues frequently occur.

In this paper, we also employ the reprogramming property of deep models for transfer learning.
However, instead of reprogramming across different datasets, we reprogram our original classification
model for the task in OOD detection, considering the situation with the same (ID) dataset before/after
reprogramming. Further, to preserve the benefits of previous classification-based detection methods,
we adopt the perturbing pattern (i.e., the watermark) on the same shape as the original inputs, instead
of reshaping original inputs and adding padding features as previous works [9, 57].
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Algorithm 1 Watermarking — the learning framework.
1: Inputs: trained model f(·) and ID training set Sn;
2: w ∼ N (0, σ2Id); ▷ watermark initialization
3: for t = 1 to num_step do
4: mini-batch {(xi, yi)}mi=1 and noise {ϵi}mi=1; ▷ data sampling
5: Lm(w) = LID

m(w) + βLOOD
m (w); ▷ risk calculation

6: ∇wLm(w) and κ; ▷ gradient calculation
7: w ← w − α∇wLm(w)|w+κ; ▷ watermark updating
8: Output: learned watermark w.

Table 9: Test accuracy before/after watermarking. w/o denotes the benchmark without watermarking,
SE (FE) denotes the softmax (free energy) scoring with watermarking.

dataset w/o SM FE dataset w/o SM FE

CIFAR-10 94.84% 91.85% 93.49% CIFAR-100 75.96% 72.03% 74.08%

A.3 Backdoor Attack

Model reprogramming is also related to the backdoor attack, which also change models’ behaviour
during the test. Overall, when a backdoor is embedded during training and the trigger is activated
during the test, model predictions will be modified to the attacker-specified labels deliberately [12].
Nowadays, data poisoning [12, 30, 34, 43] is among the best to realize the backdoor attack for
deep models—a portion of the training sample is modified with the attacker-specified pattern (i.e.,
pre-defined trigger) and the attacker-specified labels. The target models are trained on these poisoned
data, and the resultant models will suffer from the backdoor attack when the trigger is activated.
Please refer to [29] for a comprehensive survey.

However, the backdoor attack and the model reprogramming exploit different aspects of deep models.
In general, the backdoor attack utilises the excessive learning ability in memorizing noise features [29],
while the reprogramming property states that the well-trained models can be reprogrammed for new
tasks without modifying the original models.

B The Overall Algorithm

The overall learning framework is summarized in Algorithm 1, optimizing in a stochastic manner
with num_step iterations. The watermark is initialized by the Gaussian noise with the 0 mean and
a small standard deviation σ2Id (Step 2), and the learning procedure consists of three stages for
each update: (1) a set of Gaussian noise data is sampled, assuming be of the size m as that of the
mini-batch regarding the ID sample (Step 4); (2) the risk for ID and OOD data are computed and the
overall risk is given by their sum with a trade-off parameter β (Step 5); (3) the first-order gradient
guides the pixel-level update of the watermark, using the signum of gradients and the SAM to make a
reliable update (Step 7). After watermark training, the learned watermark is added to test-time inputs
for OOD detection and the detection model with the pre-defined scoring function is deployed.

C Further Experiments

This section conducts further experiments about our proposal.

C.1 Impact on Test Accuracy

To begin with, we study the impact of watermarking on the classification accuracy in Table 9,
comparing with the results without watermarking. As we can see, watermarking has a negative impact
on the test accuracy, dropping from 94.84% to 91.85% and 93.49% on CIFAR-10; and from 75.96%
to 72.03% and 74.08% on CIFAR-100. Further, after watermarking, the classification accuracy
with the free energy scoring is much better than that of the softmax scoring, with only 1.35% to
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Table 10: OE with/without watermarking on
CIFAR benchmarks. ↓ (↑) indicates smaller
(larger) values are preferred.

FPR95 ↓ AUROC ↑ AUPR ↑
w/ (w/o) watermark

CIFAR-10

iSUN 2.70 (2.75) 99.54 (99.55) 99.91 (99.90)
Places365 35.05 (37.75) 94.22 (93.12) 98.70 (98.39)

Texture 25.80 (27.95) 95.58 (95.30) 98.99 (98.92)
SVHN 30.25 (35.85) 95.40 (94.31) 99.83 (99.04)
LSUN 1.50 (0.50) 99.71 (99.81) 99.94 (99.94)

average 19.06 (20.96) 96.89 (96.41) 99.39 (99.31)

CIFAR-100

iSUN 22.85 (40.55) 95.27 (90.60) 98.92 (97.84)
Places365 71.75 (73.75) 78.60 (77.89) 94.66 (94.48)

Texture 66.70 (68.20) 81.30 (81.50) 95.44 (95.49)
SVHN 89.95 (84.80) 68.20 (72.40) 92.24 (93.45)
LSUN 19.75 (34.20) 96.17 (92.56) 99.15 (98.32)

average 54.20 (60.30) 83.90 (82.99) 96.08 (95.91)

Table 11: MaxLogit with/without watermarking
on CIFAR benchmarks. ↓ (↑) indicates smaller
(larger) values are preferred.

FPR95 ↓ AUROC ↑ AUPR ↑
w/ (w/o) watermark

CIFAR-10

iSUN 24.40 (34.90) 96.07 (92.54) 99.21 (98.28)
Places365 50.60 (43.70) 89.03 (89.41) 97.28 (96.81)

Texture 31.35 (51.10) 93.72 (85.88) 98.36 (95.72)
SVHN 18.80 (35.70) 96.81 (91.25) 99.33 (97.75)
LSUN 22.65 (29.10) 96.28 (93.73) 99.23 (98.63)

average 29.56 (38.90) 94.38 (90.40) 98.68 (97.91)

CIFAR-100

iSUN 76.20 (78.45) 83.18 (79.50) 96.23 (95.06)
Places365 79.20 (80.55) 77.19 (75.24) 94.20 (93.42)

Texture 67.75 (78.00) 83.89 (77.15) 96.14 (93.89)
SVHN 81.10 (84.00) 80.75 (73.66) 95.79 (93.53)
LSUN 72.60 (78.35) 84.20 (78.95) 96.49 (94.84)

average 75.37 (79.87) 81.85 (76.90) 95.77 (94.15)

1.88% decrease in classification accuracy. Therefore, we suggest using the free energy scoring in
watermarking as a default setup, which leads to better detection capability and largely preserves the
original capability in classification.

C.2 Other Scoring Strategies with Watermarking

Note that watermarking is orthogonal to much of the existing methods and the watermarking strategy
can boost many other advanced OOD detection methods. To further verify the generality and
the effectiveness of our proposal, we utilize watermarking for three representative OOD detection
methods, namely, OE [18], MaxLogit [16], ODIN [32], and ReAct [46].

For OE, Hendrycks et al. [18] state that the target model can benefit from fine-tuning with extra
OOD training data. In general, OE requires to re-train the target model, which will be prohibitively
expensive for many real-world applications. However, since the model has seen some kinds of OOD
data during training, it typically reveals superior results than many other advanced detection methods.

We are interested in whether our watermarking can improve the detection capability of the models
that have been fine-tuned with OE. Typically, we assume that the training-time OOD data are
different from that of the test time. Therefore, following previous works [18, 33], we adopt the
tiny-ImageNet [27] as the training-time OOD data for model fine-tuning. The learning objectives
regarding the model parameters in OE is similar to Eq. (9) and we follow the default hyper-parameter
setups as in [18]. We learn the watermarks for the fixed OE-trained models with the softmax scoring,
and the results on CIFAR benchmarks are summarized in Table 10. Overall, the experimental results
suggest that our watermarking can still benefit OE in effective OOD detection.

MaxLogit, ODIN, and ReAct can be viewed as the improved versions of the softmax scoring.
Specifically, MaxLogit takes the maximal logit outputs in OOD scoring, which is better than softmax
scoring when facing large-class setting; ODIN clamps embedding features from the second-last layer
of model outputs, which can attenuate the overconfidence issue caused by the out-sized activation
of abnormal hidden units; and ReAct observes that temperature scaling and adversarial feature
perturbation can improve model capability in discerning OOD data from ID data.

For MaxLogit, we directly use the learning objective of the softmax scoring-based watermarking,
with the corresponding scoring function of the form:

sMaxLogit(x; f) = max
k

fk(x), (11)

which directly use the logit outputs (instead of softmax outputs) in discerning ID and OOD data.

Moreover, for ODIN, the associated scoring function is given by

sODIN(x; f) = max
k

softmaxk f(x̃)/T, (12)
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Table 12: ReAct scoring with/without water-
marking on CIFAR benchmarks. ↓ (↑) indicates
smaller (larger) values are preferred.

FPR95 ↓ AUROC ↑ AUPR ↑
w/ (w/o) watermark

CIFAR-10

iSUN 27.90 (63.65) 95.73 (87.54) 99.13 (97.17)
Places365 62.55 (62.65) 85.90 (86.98) 96.50 (96.74)

Texture 39.85 (58.90) 93.68 (87.32) 98.63 (96.86)
SVHN 40.40 (43.35) 93.47 (93.27) 98.61 (98.60)
LSUN 23.35 (59.40) 96.29 (88.85) 9.24 (97.51)

average 38.91 (57.59) 93.01 (88.79) 80.42 (97.37)

CIFAR-100

iSUN 68.05 (86.40) 83.91 (75.31) 96.35 (94.04)
Places365 82.65 (87.70) 73.18 (71.20) 93.00 (92.50)

Texture 74.65 (86.35) 78.35 (71.33) 94.72 (92.39)
SVHN 85.95 (77.50) 75.47 (72.79) 94.34 (92.33)
LSUN 66.95 (86.85) 84.02 (74.71) 96.39 (93.90)

average 75.65 (84.96) 78.98 (73.06) 94.96 (93.03)

Table 13: ODIN scoring with/without water-
marking on CIFAR benchmarks. ↓ (↑) indicates
smaller (larger) values are preferred.

FPR95 ↓ AUROC ↑ AUPR ↑
w/ (w/o) watermark

CIFAR-10

iSUN 25.05 (35.15) 96.21 (93.09) 99.23 (98.44)
Places365 59.60 (55.95) 87.74 (85.84) 97.07 (96.22)

Texture 36.35 (49.50) 93.83 (86.72) 98.64 (96.18)
SVHN 40.55 (43.20) 93.29 (91.34) 98.56 (97.95)
LSUN 23.75 (29.40) 96.45 (94.06) 99.27 (98.64)

average 37.06 (42.64) 93.50 (90.21) 98.55 (97.49)

CIFAR-100

iSUN 69.60 (70.80) 83.70 (81.32) 96.32 (95.39)
Places365 82.10 (88.50) 74.65 (72.07) 93.64 (92.74)

Texture 75.95 (82.40) 78.80 (71.87) 94.86 (92.50)
SVHN 86.35 (94.65) 76.04 (59.40) 94.52 (89.21)
LSUN 67.80 (71.20) 84.61 (81.18) 96.60 (95.47)

average 76.36 (81.51) 79.56 (73.17) 95.18 (93.06)

where x̃ = x− ξsign(−∇x log softmaxyf(x)) is the perturbed data point and ξ is the perturbation
magnitude. For the watermark training, the learning objectives are of the form:

ℓID
SM(x, y; f) = − log softmaxyf(x̃) and ℓOOD

SM (x; f) = −
∑
k

1

c
log softmaxkf(x̃), (13)

following the same definition of x̃ as in Eq. (12).

For ReAct, we assume the feature extractor defined by the second-last of model outputs by fFEA and
the above classifier by fCLA, i.e., f(x) = fCLA(fFEA(x)). Then, the rectified model output is

fReAct(x) = fCLA(min(fFEA(x), τ)), (14)

truncating values of hidden units from the second-last layer that are above τ . The corresponding
learning objectives in watermark training can be written as

ℓID
SM(x, y; f) = − log softmaxyfReAct(x) and ℓOOD

SM (x; f) = −
∑
k

1

c
log softmaxkfReAct(x),

(15)
which is similar to that of the softmax scoring in Eq. (9).

Tables 11 to 13 summarize the experimental results on CIFAR-10 and CIFAR-100 datasets, where T
is fixed to 1000, ξ is set to 0.0014, and τ is chosen such that 10% of the activation values are clamped,
following the setups of the original papers. The performance improvements are illustrious regarding
the performance of MaxLogit, ReAct, and ODIN with and without watermarking, largely confirming
the fact that our proposed watermarking is orthogonal to existing works. Further, since we directly
use the training strategy of softmax scoring-based watermarking for MaxLogit, our results in Table 11
demonstrate that watermarking can also benefit from improved choices of scoring strategies.

C.3 Other Learning Strategies with Watermarking

Also, we consider the situation where a set of OOD data are available for watermark training, where
we adopt the tiny-ImageNet [27] dataset as training-time OOD dataset. Here, we replace the Gaussian
noise in the OOD learning objective ℓOOD to be the randomly selected sample from the tiny-ImageNet
dataset. Then, the learning objective with training-time OOD data is of the form

Ln(w) =
∑
n

ℓID(xi +w, yi; f) + β
∑
n

ℓOOD(oj +w; f), (16)

where oj denotes the randomly selected sample from the tiny-ImageNet dataset. The experimental re-
sults on CIFAR-10 and CIFAR-100 datasets are summarized in Table 14 and Table 15. Unfortunately,
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Table 14: Softmax scoring with tiny-ImageNet
and Gaussian noise on CIFAR benchmarks. ↓
(↑) indicates smaller (larger) values are pre-
ferred.

FPR95 ↓ AUROC ↑ AUPR ↑
tiny-ImageNet (Gaussian Noise)

CIFAR-10

iSUN 22.80 (43.60) 95.88 (93.53) 99.16 (98.67)
Places365 61.95 (60.75) 86.47 (87.85) 96.87 (96.94)

Texture 41.45 (42.00) 92.93 (92.83) 98.51 (98.43)
SVHN 67.15 (27.25) 88.43 (96.00) 97.59 (99.17)
LSUN 22.40 (40.70) 96.16 (94.36) 99.22 (98.86)

average 43.15 (42.86) 91.97 (92.91) 98.27 (98.41)

CIFAR-100

iSUN 72.85 (77.85) 81.22 (79.91) 95.66 (95.35)
Places365 79.75 (83.25) 75.55 (74.53) 93.77 (93.47)

Texture 73.35 (78.10) 78.88 (77.14) 94.61 (94.26)
SVHN 83.00 (82.95) 76.15 (76.92) 94.52 (94.72)
LSUN 71.65 (76.75) 82.93 (79.60) 96.16 (95.27)

average 76.20 (76.54) 79.10 (78.99) 95.08 (94.96)

Table 15: Free energy scoring with tiny-
ImageNet and Gaussian noise on CIFAR bench-
marks. ↓ (↑) indicates smaller (larger) values
are preferred.

FPR95 ↓ AUROC ↑ AUPR ↑
tiny-ImageNet (Gaussian Noise)

CIFAR-10

iSUN 23.65 (16.30) 95.89 (96.97) 99.16 (99.39)
Places365 36.15 (36.25) 91.89 (91.87) 97.94 (97.94)

Texture 31.20 (32.60) 93.34 (93.14) 98.39 (98.08)
SVHN 13.80 (16.45) 97.53 (97.11) 99.49 (99.39)
LSUN 23.15 (16.85) 86.20 (96.97) 99.20 (99.38)

average 25.59 (23.69) 92.97 (95.21) 98.83 (98.83)

CIFAR-100

iSUN 77.10 (75.05) 83.62 (83.07) 96.40 (96.15)
Places365 79.25 (80.50) 77.67 (77.78) 94.22 (94.45)

Texture 68.70 (75.15) 81.36 (79.55) 95.10 (94.79)
SVHN 82.00 (82.85) 77.38 (75.26) 94.80 (94.18)
LSUN 71.35 (71.85) 84.14 (84.01) 96.55 (96.33)

average 75.68 (77.08) 80.83 (79.93) 95.41 (95.18)

Table 16: Softmax scoring with learning from
Gaussian noise and “perm” augmentation. ↓ (↑)
indicates smaller (larger) values are preferred.

FPR95 ↓ AUROC ↑ AUPR ↑
perm (common)

CIFAR-10

iSUN 38.00 (41.50) 93.99 (93.98) 98.79 (98.77)
Places365 55.20 (56.30) 89.13 (89.03) 97.49 (97.32)

Texture 42.20 (43.80) 92.30 (93.06) 98.28 (98.46)
SVHN 33.35 (27.00) 94.75 (96.07) 98.93 (99.20)
LSUN 36.40 (37.85) 94.17 (94.57) 98.80 (98.89)

average 41.03 (41.29) 92.87 (93.34) 98.46 (98.53)

CIFAR-100

iSUN 77.90 (84.00) 79.11 (75.98) 95.11 (94.37)
Places365 79.90 (83.60) 75.21 (73.20) 93.68 (93.22)

Texture 75.80 (83.00) 77.13 (72.45) 94.17 (92.78)
SVHN 85.45 (87.20) 73.22 (72.45) 93.65 (93.45)
LSUN 76.85 (81.05) 79.37 (77.40) 95.21 (94.75)

average 79.18 (83.77) 76.81 (74.30) 94.36 (93.71)

Table 17: Softmax scoring with learning from
Gaussian noise and “rotate” augmentation. ↓ (↑)
indicates smaller (larger) values are preferred.

FPR95 ↓ AUROC ↑ AUPR ↑
rotate (common)

CIFAR-10

iSUN 40.25 (41.50) 93.44 (93.98) 98.63 (98.77)
Places365 56.15 (56.30) 88.12 (89.03) 97.11 (97.32)

Texture 41.15 (43.80) 92.66 (93.06) 98.34 (98.46)
SVHN 29.65 (27.00) 95.42 (96.07) 99.07 (99.20)
LSUN 37.90 (37.85) 93.95 (94.57) 98.76 (98.89)

average 41.02 (41.29) 92.72 (93.34) 98.38 (98.53)

CIFAR-100

iSUN 77.45 (84.00) 78.73 (75.98) 94.95 (94.37)
Places365 79.35 (83.60) 75.26 (73.20) 93.67 (93.22)

Texture 76.35 (83.00) 76.88 (72.45) 94.16 (92.78)
SVHN 84.90 (87.20) 72.98 (72.45) 93.58 (93.45)
LSUN 78.10 (81.05) 78.59 (77.40) 95.00 (94.75)

average 79.23 (83.77) 76.49 (74.30) 94.27 (93.71)

for our current realization, we observe that watermark training with extra OOD data fails to induce a
large performance improvement in OOD detection. Even worse, in some cases, learning with extra
OOD data can impair the power of the resultant watermarks. We conjecture that the inductive bias
introduced by the training-time OOD data may deviate from the test-time data, severely misleading
the resultant watermarks in showing results even lower than that of the simple Gaussian noise.

We also list the detection performance with “perm” and “rotate” in Section 6, demonstrating the
effectiveness of the resultant watermarks on far OOD cases. Here, the training objective is:

Ln(w) =
∑
n

ℓID(xi +w, yi; f) + β
∑
n

ℓOOD(ϵj +w; f) + β
∑
n

ℓOOD(x̃i +w; f), (17)

where x̃ is an augmentation of the original x with either “perm” or “rotate”. The results are
summarized from Tables 16 to 19. As we can see, the results with "perm" and "rotate" is comparable
with (even better than) the original learning setup with only the Gaussian noise (common).
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Table 18: Free energy scoring with learning
from Gaussian noise and “perm” augmentation.
↓ (↑) prefers smaller (larger) values.

FPR95 ↓ AUROC ↑ AUPR ↑
perm (common)

CIFAR-10

iSUN 25.60 (24.20) 95.81 (96.10) 99.14 (99.22)
Places365 39.70 (39.45) 91.96 (91.46) 98.01 (97.89)

Texture 39.15 (38.95) 92.13 (92.65) 97.93 (98.16)
SVHN 16.95 (18.75) 97.01 (96.54) 99.37 (99.27)
LSUN 22.10 (21.80) 96.38 (96.27) 99.27 (99.24)

average 28.70 (28.63) 94.66 (94.61) 98.74 (98.76)

CIFAR-100

iSUN 77.05 (75.30) 83.49 (84.51) 96.32 (96.78)
Places365 80.40 (78.05) 77.11 (78.15) 94.25 (94.28)

Texture 68.85 (70.80) 81.31 (81.14) 95.14 (95.02)
SVHN 81.95 (80.50) 78.27 (77.27) 95.14 (94.70)
LSUN 77.20 (75.10) 83.58 (83.53) 96.35 (97.05)

average 77.09 (75.95) 80.75 (81.12) 95.44 (95.57)

Table 19: Free energy scoring with learning
from Gaussian noise and “rotate” augmentation.
↓ (↑) prefers smaller (larger) values.

FPR95 ↓ AUROC ↑ AUPR ↑
rotate (common)

CIFAR-10

iSUN 23.85 (24.20) 96.04 (96.10) 99.20 (99.22)
Places365 38.60 (39.45) 91.94 (91.46) 97.97 (97.89)

Texture 35.20 (38.95) 92.93 (92.65) 98.26 (98.16)
SVHN 16.85 (18.75) 97.00 (96.54) 99.37 (99.27)
LSUN 22.80 (21.80) 96.10 (96.27) 99.19 (99.24)

average 27.46 (28.63) 94.80 (94.61) 98.80 (98.76)

CIFAR-100

iSUN 85.45 (75.30) 81.39 (84.51) 95.85 (96.78)
Places365 80.10 (78.05) 76.53 (78.15) 93.79 (94.28)

Texture 71.55 (70.80) 80.27 (81.14) 94.67 (95.02)
SVHN 80.20 (80.50) 79.27 (77.27) 95.29 (94.70)
LSUN 81.25 (75.10) 81.85 (83.53) 95.97 (97.05)

average 79.71 (75.95) 79.86 (81.12) 95.12 (95.57)

Table 20: Comparison of watermarking and different OOD scoring functions on CIFAR benchmarks.

w/o watermarking w/ watermarking
Softmax

[17]
Energy

[33]
ReAct
[46]

ODIN
[32]

Mahalan-
obis [28]

GradNorm
[4]

OE
[18] Softmax Energy ReAct ODIN OE

CIFAR-10

FPR95 55.70 37.67 57.59 42.64 34.18 40.51 20.96 42.86 23.69 38.91 37.06 19.06
AUROC 89.82 90.56 88.79 90.21 93.23 90.10 96.41 92.91 95.21 93.01 93.50 96.89
AUPR 97.32 97.46 97.37 97.49 98.41 97.35 99.39 98.42 98.83 80.42 98.55 99.31

CIFAR-100

FPR95 82.97 81.61 84.96 81.51 55.63 83.68 60.30 79.98 77.07 75.65 76.36 54.20
AUROC 73.88 76.50 73.06 73.17 82.26 72.93 82.99 77.57 79.93 78.98 79.56 83.90
AUPR 93.43 94.05 93.03 93.06 95.56 93.00 95.91 94.61 95.18 94.96 95.18 96.08

C.4 Comparison with State-of-the-art Methods

For the concreteness of our discussion, this section compares our proposal with state-of-the-art
methods in OOD detection. In particular, we compare with softmax scoring (Softmax) [17], free
energy scoring (Energy) [33], ReAct [46], ODIN [32], Mahalanobis [28], GradNorm [21], and
OE [18]. The experimental results on CIFAR benchmarks are summarized in Table 20. The
average performance on iSUN, Places365, Texture, SVHN, and LSUN is reported. As we can see,
watermarking can boost the performance of various scoring methods in OOD detection, achieving the
best detection performance compared with all other advanced methods.

C.5 Experiments with Mean and Standard Deviation

This section further verifies the results from Table 1 to Table 4 with five individual trails (random
seeds). In Table 21, Table 22, and Table 23, we summarize the average results and the standard
deviation for the softmax scoring and the free energy scoring, respectively. In Figure 5, we also depict
the learned watermarks for each trial on CIFAR-10 and CIFAR-100. Overall, we observe that the
learned watermarks preserve some similar pattern (e.g., the shape of areas with large values) given
the same dataset and the same scoring strategy, and the improvement of watermarking is stable across
different datasets and scoring methods.

C.6 Experiments with different models

We demonstrate the effectiveness of our watermarking across various model architectures, including
ResNet-18 [14], WRN-40-2, and ViT-B/16 [8]. We conduct experiments on the ImageNet benchmark
and summarized the results in Table 24. As we can see, in both the softmax and free energy scoring
cases, our watermarking can improve the detection performance across various models. However, the
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Table 21: The softmax scoring with/without watermarking on CIFAR benchmarks. Five individual
trails (mean ± std) are conducted. The notion ↓ (↑) indicates smaller (larger) values are preferred.

FPR95 ↓ AUROC ↑ AUPR ↑
w/ (w/o) watermark

CIFAR-10

iSUN 44.68 ± 1.49 (55.43 ± 0.29) 93.38 ± 0.28 (90.10 ± 0.22) 97.80 ± 0.07 (97.80 ± 0.07)
Places365 59.21 ± 0.97 (60.53 ± 1.31) 88.83 ± 0.34 (87.83 ± 0.17) 97.08 ± 0.11 (97.06 ± 0.06)

Texture 42.07 ± 1.23 (59.37 ± 1.55) 93.03 ± 0.23 (88.56 ± 0.37) 98.47 ± 0.07 (97.20 ± 0.09)
SVHN 29.25 ± 2.17 (48.07 ± 0.97) 95.69 ± 0.35 (91.80 ± 0.13) 99.11 ± 0.07 (97.24 ± 0.03)
LSUN 40.45 ± 2.14 (52.23 ± 1.04) 94.11 ± 0.45 (91.50 ± 0.10) 98.79 ± 0.11 (98.15 ± 0.04)

average 43.13 ± 0.16 (55.12 ± 0.10) 93.00 ± 0.33 (89.95 ± 0.19) 98.25 ± 0.08 (97.49 ± 0.05)

CIFAR-100

iSUN 78.70 ± 1.48 (82.40 ± 0.81) 78.30 ± 0.57 (75.62 ± 0.33) 94.92 ± 0.17 (94.11 ± 0.10)
Places365 82.55 ± 0.65 (82.97 ± 0.86) 74.69 ± 0.50 (74.29 ± 0.29) 93.77 ± 0.13 (93.41 ± 0.12)

Texture 77.83 ± 1.47 (83.48 ± 0.70) 76.42 ± 0.18 (73.37 ± 0.37) 94.06 ± 0.08 (92.95 ± 0.11)
SVHN 83.71 ± 2.27 (84.72 ± 0.73) 76.16 ± 0.78 (71.29 ± 0.63) 94.51 ± 0.17 (92.88 ± 0.22)
LSUN 78.57 ± 1.09 (81.67 ± 0.78) 78.37 ± 0.54 (75.77 ± 0.33) 94.92 ± 0.16 (94.18 ± 0.11)

average 88.27 ± 1.39 (83.04 ± 0.77) 76.78 ± 0.51 (74.06 ± 0.39) 94.43 ± 0.14 (93.50 ± 0.13)

Table 22: The free energy scoring with/without watermarking on CIFAR benchmarks. Five individual
trails (mean ± std) are conducted. The notion ↓ (↑) indicates smaller (larger) values are preferred.

FPR95 ↓ AUROC ↑ AUPR ↑
w/ (w/o) watermark

CIFAR-10

iSUN 18.84 ± 2.76 (33.66 ± 0.75) 96.28 ± 0.62 (92.62 ± 0.31) 99.23 ± 0.13 (98.27 ± 0.10)
Places365 38.89 ± 1.74 (40.67 ± 0.91) 91.92 ± 0.41 (89.62 ± 0.20) 98.01 ± 0.11 (97.16 ± 0.12)

Texture 34.60 ± 2.16 (52.67 ± 1.10) 93.36 ± 0.26 (85.19 ± 0.35) 98.31 ± 0.06 (95.40 ± 0.13)
SVHN 14.96 ± 0.93 (35.60 ± 0.50) 97.12 ± 0.15 (91.08 ± 0.22) 99.39 ± 0.03 (97.71 ± 0.07)
LSUN 16.63 ± 2.12 (27.12 ± 0.85) 96.43 ± 0.43 (94.32 ± 0.07) 99.26 ± 0.09 (98.70 ± 0.02)

average 24.78 ± 1.94 (37.94 ± 0.82) 95.02 ± 0.37 (90.56 ± 0.23) 98.84 ± 0.08 (97.44 ± 0.08)

CIFAR-100

iSUN 74.62 ± 1.97 (81.85 ± 1.14) 84.30 ± 0.85 (78.78 ± 0.40) 96.53 ± 0.24 (94.90 ± 0.13)
Places365 77.79 ± 0.27 (80.27 ± 1.02) 78.13 ± 0.78 (76.46 ± 0.54) 94.40 ± 0.31 (93.92 ± 0.16)

Texture 68.96 ± 1.51 (79.47 ± 0.27) 82.07 ± 0.62 (76.34 ± 0.34) 95.38 ± 0.24 (93.64 ± 0.11)
SVHN 80.30 ± 0.75 (85.80 ± 0.87) 78.55 ± 0.63 (73.61 ± 0.37) 95.11 ± 0.18 (93.51 ± 0.10)
LSUN 71.25 ± 2.00 (79.26 ± 1.43) 84.94 ± 0.54 (79.34 ± 0.40) 96.65 ± 0.12 (94.99 ± 0.11)

average 74.58 ± 1.30 (81.33 ± 0.94) 81.59 ± 0.68 (76.90 ± 0.41) 95.61 ± 0.21 (94.19 ± 0.12)

improvements after watermarking on the large-scale models (i.e., ViT-B/16) are not as remarkable
as that of the small models (e.g., ResNet-18). It is because that the large-scale models themselves
can already excel at OOD detection (better results without watermarking than that of ResNet-18 and
WRN-40-2), so there may not remain a large space for their further improvements.

C.7 Hyper-parameter Setups

For the hyper-parameter setups in our experiments, we use random search to choose the proper
σ1 from the candidate parameter set {0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0}, and the
proper ρ from {0.0, 0.02, 0.05, 0.07, 0.1, 0.2, 0.5, 0.7, 1.0, 2.0, 5.0}. For softmax scoring, β is
chosen from {0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0}. For free energy scoring, β is
chosen from {0.0, 0.02, 0.04, 0.06, 0.08, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0}, and T1, T2 are chosen from
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. model performance is tested on validation OOD
datasets that are separated from iSUN, Places365, Texture, SVHN, and LSUN datasets.

We adopt the random search with many trials by the following three steps. Step 1: we randomly
select a hyperparameter (e.g., β) and fix the values of all other hyperparameters to be their current
optimal values. Step 2: we choose the best β from the candidate set. Step 3: do Steps 1-2 again.
We repeat Steps 1 and 2 for 50 times in our experiments. Further, from Tables 25 to 36, we list the
performance of watermarking with different hyper-parameter settings for reference, where we fix
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Table 23: Softmax and free energy scoring with/without watermarking on ImageNet. Five individual
trails (mean ± std) are conducted. The notion ↓ (↑) indicates smaller (larger) values are preferred.

FPR95 ↓ AUROC ↑ AUPR ↑
w/ (w/o) watermark

Softmax Scoring

iSUN 12.69 ± 1.55 (52.38 ± 2.07) 97.74 ± 1.23 (92.62 ± 1.31) 99.60 ± 0.17 (98.27 ± 0.20)
Places365 70.80 ± 2.27 (73.35 ± 3.61) 81.74 ± 1.34 (80.52 ± 0.85) 95.32 ± 0.17 (94.88 ± 0.31)

Texture 60.59 ± 2.65 (67.71 ± 2.83) 83.46 ± 2.37 (82.47 ± 1.77) 98.35 ± 0.06 (98.20 ± 0.17)
SVHN 44.81 ± 2.03 (28.69 ± 1.49) 93.72 ± 1.29 (95.55 ± 1.13) 98.76 ± 0.33 (99.14 ± 0.20)
LSUN 11.63 ± 1.47 (54.43 ± 2.15) 97.85 ± 1.07 (91.96 ± 2.57) 99.57 ± 0.17 (98.39 ± 0.25)

average 40.10 ± 1.99 (55.31 ± 2.43) 90.90 ± 1.46 (88.62 ± 1.52) 98.32 ± 0.18 (97.77 ± 0.22)

Free Energy Scoring

iSUN 32.61 ± 2.21 (45.41 ± 2.84) 93.59 ± 1.45 (93.96 ± 1.85) 98.74 ± 0.20 (98.23 ± 0.28)
Places365 72.64 ± 1.37 (74.99 ± 2.50) 79.55 ± 0.87 (78.83 ± 0.90) 94.67 ± 0.32 (94.26 ± 0.15)

Texture 67.36 ± 1.51 (67.39 ± 1.62) 80.60 ± 1.70 (80.52 ± 1.14) 97.00 ± 0.15 (96.90 ± 0.25)
SVHN 12.92 ± 2.20 (25.85 ± 2.47) 97.49 ± 1.00 (95.26 ± 1.51) 99.45 ± 0.10 (99.00 ± 0.10)
LSUN 33.53 ± 2.00 (46.68 ± 2.33) 93.50 ± 1.50 (90.59 ± 1.70) 98.59 ± 0.15 (97.96 ± 0.27)

average 43.81 ± 1.85 (52.06 ± 2.35) 88.94 ± 1.30 (87.83 ± 1.42) 97.69 ± 0.18 (97.27 ± 0.21)

Table 24: The softmax scoring and the free energy scoring with/without watermarking on the
ImageNet dataset, where we adopt different models including ResNet-18, WRN-40-2, and ViT-B/16.
The notion ↓ (↑) indicates smaller (larger) values are preferred.

Softmax Scoring Free Energy Scoring
FPR95 ↓ AUROC ↑ AUPR ↑ FPR95 ↓ AUROC ↑ AUPR ↑

ResNet-18 41.85 (55.60) 90.98 (86.64) 98.22 (97.80) 42.87 (53.26) 89.50 (86.42) 97.83 (97.75)
WRN-40-2 40.50 (54.93) 91.22 (88.57) 98.42 (97.69) 43.23 (52.73) 89.10 (86.14) 97.73 (97.15)
ViT-B/16 31.63 (34.95) 92.52 (91.31) 86.77 (85.13) 20.61 (21.64) 95.10 (94.95) 90.87 (90.58)

the values of all other hyper-parameters (except for the considered one) to be their optimal values.
Finally, we list the results on CIFAR benchmarks regarding the free energy scoring with different
values of T in Table 37.

In the end, we summarize our choices of hyper-parameters, which we adopt in Section 6 for the
related experiments. On CIFAR benchmarks, our method is executed for 50 epochs. The initial
learning rate α = 0.01 divided by 10 after 25 epochs. For the softmax scoring, we set σ1 = 0.4,
ρ = 1.0, β = 3.5 in CIFAR-10 and σ1 = 1.0, ρ = 0.2, β = 2.5 in CIFAR-100; for the free energy
scoring, we set σ1 = 0.6, ρ = 0.7, β = 0.1, T1 = 0.2, T2 = 0.7 in CIFAR-10 and σ1 = 1.0,
ρ = 0.05, β = 1.2, T1 = 0.9, T2 = 0.1 in CIFAR-100. On the ImageNet benchmark, our method is
executed for 10 epochs and the initial learning rate α = 0.01 is divided by 10 after 5 epochs. We set
ρ = 0.5, σ1 = 0.2, β = 1.5 for the softmax scoring and ρ = 0.05, σ1 = 0.4, β = 0.1 T1 = T2 = 0.5
for the free energy scoring. Further, we fix σ2 = 0.001 and T = 1.

We also utilize the tuning strategy with validation OOD data that are different from the test situation,
where we adopt the tiny-ImageNet here for hyper-parameter tuning. The experimental results with
softmax scoring are summarized from Tables 38 to 43. As we can see, the optimal solutions chosen
by tiny-ImageNet are very similar to the cases with validation sets separated from the test data, and
the improvement after watermarking is remarkable as demonstrated in Table 44.

C.8 Different Areas in the Watermark

After watermarking, the edge area of the image is overwhelmed by the watermark’s pattern, while
the centre part is not much affected. However, it does not mean that the centre area is not important.
Instead, under the premise of maintaining the original features, the centre area also encodes useful
information in OOD detection. Table 45 is a verification of this conclusion on CIFAR-10 dataset with
the free energy scoring, where we employ various masks in only preserving the watermark’s features
with their absolute values larger (smaller) than a threshold χ1 (χ2). As we can see, even if only a
small portion of the watermark is masked (e.g., χ1 = 0.10 or χ2 = 10.0), there is a large drop in
performance, even lower than the results without any watermarking. It indicates that both areas of the
watermark contribute, and the overall watermark works as a whole for effective OOD detection.
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Table 25: Softmax scoring on
CIFAR-10 with various σ1.

FPR95 AUROC AUPR

2.00 42.11 92.01 98.24
1.80 42.84 91.89 98.22
1.60 41.41 92.14 98.25
1.40 42.20 91.82 98.20
1.20 41.98 91.91 98.20
1.00 42.76 91.95 98.23
0.80 43.38 91.89 98.21
0.60 39.16 92.89 98.41
0.40 38.66 93.03 98.45
0.20 43.88 92.80 98.42
0.00 48.71 91.43 98.11

Table 26: Softmax scoring on
CIFAR-10 with various ρ.

FPR95 AUROC AUPR

5.00 60.02 87.36 97.15
2.00 46.24 91.61 98.14
1.00 39.12 92.96 98.42
0.70 41.07 92.77 98.40
0.50 43.55 92.38 98.34
0.20 42.02 92.68 98.38
0.10 41.99 92.77 98.41
0.07 42.13 92.79 98.42
0.05 42.06 92.84 98.42
0.02 44.35 92.34 98.32
0.00 43.04 92.44 98.32

Table 27: Softmax scoring on
CIFAR-10 with various β.

FPR95 AUROC AUPR

5.00 40.11 92.48 98.34
4.50 41.30 92.39 98.32
4.00 41.21 92.39 98.33
3.50 38.65 92.55 98.34
3.00 41.01 92.55 98.35
2.50 39.66 92.61 98.35
2.00 38.95 92.98 98.47
1.50 43.89 92.35 98.33
1.00 40.47 93.08 98.49
0.50 44.51 92.35 98.30
0.00 49.91 91.46 98.08

Table 28: Energy scoring on
CIFAR-10 with various σ1.

FPR95 AUROC AUPR

2.00 28.49 94.61 98.74
1.80 28.61 94.56 98.71
1.60 25.36 95.15 98.85
1.40 28.74 94.85 98.77
1.20 27.48 94.91 98.78
1.00 26.47 95.02 98.83
0.80 24.99 95.08 98.85
0.60 24.50 95.29 98.93
0.40 26.40 94.84 98.78
0.20 27.21 94.73 98.71
0.00 27.97 94.85 98.75

Table 29: Energy scoring on
CIFAR-10 with various ρ.

FPR95 AUROC AUPR

5.00 44.20 91.18 97.92
2.00 29.82 94.32 98.69
1.00 24.56 95.10 98.86
0.70 24.38 95.20 98.87
0.50 25.96 95.19 98.85
0.20 25.06 95.32 98.90
0.10 29.21 94.49 98.69
0.07 28.67 94.78 98.75
0.05 28.72 94.82 98.81
0.02 27.58 94.93 98.58
0.00 25.38 94.22 98.78

Table 30: Energy scoring on
CIFAR-10 with various β.

FPR95 AUROC AUPR

1.00 50.71 91.23 98.10
0.80 42.48 92.42 98.30
0.60 42.57 92.78 98.42
0.40 33.74 94.07 98.69
0.20 30.12 94.57 98.74
0.10 23.68 95.35 98.90
0.08 27.08 94.87 98.76
0.06 25.63 95.15 98.84
0.04 24.58 95.06 98.79
0.02 25.47 94.86 98.73
0.00 33.31 92.37 98.08

Table 31: Softmax scoring on
CIFAR-100 with various σ1.

FPR95 AUROC AUPR

2.00 82.37 76.45 82.37
1.80 79.72 77.25 94.50
1.60 79.50 77.69 94.57
1.40 79.22 77.64 94.58
1.20 78.28 78.45 94.74
1.00 76.57 79.06 94.94
0.80 77.88 78.84 94.91
0.60 76.84 79.13 94.99
0.40 80.47 76.59 94.31
0.20 81.80 75.87 94.14
0.00 83.07 73.81 93.48

Table 32: Softmax scoring on
CIFAR-100 with various ρ.

FPR95 AUROC AUPR

5.00 84.19 72.43 92.78
2.00 76.44 79.63 95.08
1.00 77.89 78.58 94.84
0.70 76.39 78.98 94.91
0.50 78.00 78.82 94.89
0.20 75.43 78.38 94.73
0.10 77.68 78.63 94.84
0.07 78.07 78.01 96.60
0.05 76.26 77.77 94.53
0.02 77.79 78.80 94.81
0.00 79.14 79.14 94.91

Table 33: Softmax scoring on
CIFAR-100 with various β.

FPR95 AUROC AUPR

5.00 78.55 76.57 94.13
4.50 84.54 72.69 92.99
4.00 79.27 76.01 93.95
3.50 77.56 76.55 94.11
3.00 79.98 76.33 94.12
2.50 76.43 77.28 94.29
2.00 79.84 77.23 94.38
1.50 77.38 78.85 94.89
1.00 76.91 78.45 94.76
0.50 76.75 79.14 94.97
0.00 83.25 73.73 93.45

Table 34: Energy scoring on
CIFAR-100 with various σ1.

FPR95 AUROC AUPR

2.00 77.26 80.38 95.32
1.80 76.55 80.56 95.31
1.60 78.09 79.68 95.12
1.40 76.68 80.82 95.41
1.20 75.69 80.64 95.34
1.00 75.57 80.80 95.40
0.80 75.87 80.46 95.25
0.60 78.11 80.12 95.23
0.40 76.18 80.73 95.36
0.20 76.17 80.11 95.22
0.00 75.01 80.78 95.39

Table 35: Energy scoring on
CIFAR-100 with various ρ.

FPR95 AUROC AUPR

5.00 77.39 79.91 95.17
2.00 81.39 78.07 94.70
1.00 76.58 80.64 95.37
0.70 78.42 78.40 94.76
0.50 76.52 80.54 95.33
0.20 75.32 91.08 95.48
0.10 75.48 80.63 95.35
0.07 75.72 79.45 95.03
0.05 75.18 79.54 95.06
0.02 75.83 79.45 95.02
0.00 76.49 79.10 94.98

Table 36: Energy scoring on
CIFAR-100 with various β.

FPR95 AUROC AUPR

2.00 82.20 78.18 94.77
1.80 79.30 80.01 95.20
1.60 75.19 80.53 95.37
1.40 78.39 80.22 95.26
1.20 74.78 81.51 95.57
1.00 77.68 80.65 95.36
0.80 77.84 90.11 95.20
0.60 75.25 81.47 95.60
0.40 78.39 78.67 94.86
0.20 80.46 77.32 94.45
0.00 93.23 73.73 93.39
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Table 37: Energy scoring on CIFAR benchmarks with various value of the hyper-parameter T .

T
CIFAR-10 CIFAR-100

1 5 10 50 100 500 1000 1 5 10 50 100 500 1000

FPR95 25.9 27.8 27.7 28.9 28.4 28.0 31.2 74.1 80.4 77.7 82.3 80.4 87.0 89.3
AUROC 95.0 94.3 94.0 93.5 93.5 93.7 93.4 81.9 76.2 76.4 72.4 73.5 70.8 68.5
AUPR 98.7 98.5 98.4 98.2 98.2 98.2 98.1 95.7 94.1 94.1 92.7 93.0 91.9 90.9

(a) softmax scoring on CIFAR-10

(b) softmax scoring on CIFAR-100

(c) free energy scoring on CIFAR-10

(d) free energy scoring on CIFAR-100

Figure 5: Illustrations of the learned watermarks with 5 individual trails.

Table 38: Softmax scoring
on CIFAR-10 with various σ1,
tiny-ImageNet is adopted as
the validation set.

FPR95 AUROC AUPR

2.00 71.85 80.50 94.87
1.80 68.50 82.06 95.47
1.60 68.90 83.05 95.78
1.40 66.50 83.28 95.91
1.20 69.70 83.39 96.04
1.00 67.30 84.10 96.08
0.80 66.00 84.75 96.36
0.60 67.30 83.92 95.97
0.40 60.55 86.81 96.79
0.20 62.50 86.21 96.71
0.00 62.05 86.14 96.57

Table 39: Softmax scoring
on CIFAR-10 with various ρ,
tiny-ImageNet is adopted as
the validation set.

FPR95 AUROC AUPR

5.00 66.85 83.89 95.96
2.00 66.15 83.95 95.97
1.00 63.65 84.32 96.01
0.70 64.50 85.07 96.31
0.50 62.20 85.72 96.61
0.20 62.35 85.70 96.50
0.10 63.60 84.59 96.04
0.07 62.30 85.61 96.53
0.05 62.65 85.45 96.31
0.02 64.75 85.54 96.28
0.00 63.80 85.12 96.36

Table 40: Softmax scoring
on CIFAR-10 with various β,
tiny-ImageNet is adopted as
the validation set.

FPR95 AUROC AUPR

5.00 66.85 83.89 95.96
4.50 66.15 83.95 95.97
4.00 66.51 84.32 96.01
3.50 64.50 85.07 96.31
3.00 62.20 86.72 96.71
2.50 62.35 85.76 96.50
2.00 63.60 84.59 96.04
1.50 64.30 84.36 95.94
1.00 62.29 86.00 96.22
0.50 63.05 86.09 96.53
0.00 64.10 86.10 96.08
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Table 41: Softmax scoring on
CIFAR-100 with various σ1,
tiny-ImageNet is adopted as
the validation set.

FPR95 AUROC AUPR

2.00 83.15 72.88 92.82
1.80 82.70 73.34 92.88
1.60 85.60 70.89 92.09
1.40 87.40 69.47 91.73
1.20 87.65 68.39 91.42
1.00 83.90 70.46 92.10
0.80 83.95 71.33 92.17
0.60 84.50 72.12 92.57
0.40 83.45 72.86 92.81
0.20 82.50 73.34 92.95
0.00 83.65 72.75 92.20

Table 42: Softmax scoring
on CIFAR-100 with various ρ,
tiny-ImageNet is adopted as
the validation set.

FPR95 AUROC AUPR

5.00 88.95 64.30 89.87
2.00 84.25 73.18 93.03
1.00 80.75 74.36 93.40
0.70 83.70 72.78 92.84
0.50 83.15 73.77 93.18
0.20 82.25 73.54 93.10
0.10 81.55 74.28 93.37
0.07 81.55 73.75 93.17
0.05 82.35 73.74 93.15
0.02 82.15 74.12 93.20
0.00 82.70 73.09 93.12

Table 43: Softmax scoring on
CIFAR-100 with various β,
tiny-ImageNet is adopted as
the validation set.

FPR95 AUROC AUPR

5.00 82.85 72.99 92.81
4.50 83.80 73.42 93.03
4.00 81.45 74.38 93.33
3.50 81.15 74.90 93.80
3.00 83.90 73.46 93.18
2.50 81.55 74.28 93.20
2.00 81.75 74.75 93.51
1.50 81.20 74.44 93.16
1.00 81.70 74.40 93.40
0.50 82.20 73.72 93.34
0.00 82.60 74.81 93.23

Table 44: The softmax scoring with/without watermarking on CIFAR benchmarks. Tiny-ImageNet is
adopted as the validation set for hyper-parameter tuning.

FPR95 ↓ AUROC ↑ AUPR ↑
w/ (w/o) watermark

CIFAR-10

iSUN 29.75 (55.00) 95.16 (89.69) 99.00 (97.70)
Places365 65.85 (60.10) 85.31 (87.97) 96.49 (97.09)

Texture 37.05 (59.60) 93.16 (88.43) 98.45 (97.15)
SVHN 37.15 (46.70) 93.99 (92.24) 98.75 (98.34)
LSUN 28.95 (50.75) 95.32 (91.46) 99.04 (98.14)

average 39.75 (54.43) 92.59 (89.96) 98.35 (97.68)

CIFAR-100

iSUN 81.35 (82.30) 75.90 (75.78) 94.33 (94.15)
Places365 80.75 (82.90) 74.50 (74.28) 93.49 (93.21)

Texture 68.30 (83.55) 77.78 (73.30) 94.09 (92.91)
SVHN 82.60 (84.75) 78.31 (70.64) 95.16 (92.66)
LSUN 84.15 (81.85) 75.90 (74.86) 94.35 (93.86)

average 79.43 (83.07) 76.47 (73.77) 94.28 (93.35)
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Figure 6: Masked watermarks for the free energy scoring, with (a) χ1 = 1 and (b) χ2 = 1.

Table 45: The average performance of the free energy scoring on CIFAR-10 with masking. ↓ (↑)
indicates smaller (larger) values are preferred.

FPR95 ↓ AUROC ↑ AUPR ↑

w/ watermark 23.69 95.21 98.83
w/o watermark 37.67 90.56 97.46

χ1

0.10 30.46 94.41 98.68
1.00 37.72 93.00 98.52
10.0 37.66 91.87 97.94

χ2

0.10 42.06 89.88 97.38
1.00 51.28 87.54 96.86
10.0 36.72 93.08 98.39
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