
Weakly Supervised Representation Learning with
Sparse Perturbations

Kartik Ahuja∗ Jason Hartford∗ Yoshua Bengio†∗

Abstract

The theory of representation learning aims to build methods that provably invert
the data generating process with minimal domain knowledge or any source of
supervision. Most prior approaches require strong distributional assumptions on the
latent variables and weak supervision (auxiliary information such as timestamps)
to provide provable identification guarantees. In this work, we show that if one
has weak supervision from observations generated by sparse perturbations of the
latent variables–e.g. images in a reinforcement learning environment where actions
move individual sprites–identification is achievable under unknown continuous
latent distributions. We show that if the perturbations are applied only on mutually
exclusive blocks of latents, we identify the latents up to those blocks. We also
show that if these perturbation blocks overlap, we identify latents up to the smallest
blocks shared across perturbations. Consequently, if there are blocks that intersect
in one latent variable only, then such latents are identified up to permutation and
scaling. We propose a natural estimation procedure based on this theory and
illustrate it on low-dimensional synthetic and image-based experiments.

1 Introduction

If you are reading this paper on a computer, press one of the arrow keys... all the text you are reading
jumps as the screen refreshes in response to your action. Now imagine you were playing a video
game like Atari’s Space Invaders—the same keystroke would cause a small sprite at the bottom of
your screen to move in response. These actions induce changes in pixels that are very different,
but in both cases, the visual feedback in response to our actions indicates the presence of some
object on the screen—a virtual paper and a virtual spacecraft, respectively—with properties that
we can manipulate. Our keystrokes induce sparse changes to a program’s state, and these changes
are reflected on the screen, albeit not necessarily in a correspondingly sparse way (e.g., most pixels
change when scrolling). Similarly, many of our interactions with the real world induce sparse changes
to the underlying causal factors of our environment: lift a coffee cup and the cup moves, but not the
rest of the objects on your desk; turn your head laterally, and the coordinates of all the objects in
the room shift, but only in the horizontal direction. These examples hint at the main question we
aim to answer in this paper: if we know that actions have sparse effects on the latent factors of our
system, can we use that knowledge as weak supervision to help disentangle these latent factors from
pixel-level data?

Self– and weakly-supervised learning approaches have made phenomenal progress in the last few
years, with large-scale systems like GPT-3 (Brown et al., 2020) offering large improvements on
all natural language benchmarks, and CLIP (Radford et al., 2021) outperforming state-of-the-art
supervised models from six years ago (Szegedy et al., 2016) on the ImageNet challenge (Deng et al.,
2009) without using any of the labels.

∗Mila - Quebec AI Institute, Université de Montréal. †CIFAR Fellow.
Correspondence to: kartik.ahuja@mila.quebec.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

Sparse
perturbations

…

z = [0.7,0.2,0.6,0.7,0.5,0.3,0.3,0.7]

(0.7,0.2)

(0.5,0.3)

(0.6,0.7)(0.3,0.7)

Perturb pblue
x , ppurple

x

Perturb pblue
x , pred

y

Perturb pbluey , ppurplex , ppurpley

x

x̃1 x̃2 x̃3 x̃k−2 x̃k−1 x̃k

min
f,δ′ i

∥ f(x) + δ′ i − f(x̃i) ∥

Weak
sparsity

supervision

Encoded
image

Encoded
contrast

f(⋅)

Perturb pgreen
x

Encoder

Figure 1: Ball agent interaction environment. Different frames show the effect of sparse perturbations.

Yet, despite these advances, these systems are still far from human reasoning abilities and often fail
on out-of-distribution examples (Geirhos et al., 2020). To robustly generalize out of distribution,
we need models that can infer the causal mechanisms that relate latent variables (Schölkopf et al.,
2021; Schölkopf and von Kügelgen, 2022) because these mechanisms are invariant under distribution
shift. The field of causal inference has developed theory and methods to infer causal mechanisms
from data (Pearl, 2009; Peters et al., 2017), but these methods assume access to high-level abstract
features, instead of low-level signal data such as video, text and images. We need representation
learning methods that reliably recover these abstract features if we are to bridge the gap between
causal inference and deep learning.

This is a challenging task because the problem of inferring latent variables is not identified with
independent and identically distributed (IID) data (Hyvärinen and Pajunen, 1999; Locatello et al.,
2019), even in the limit of an infinite number of such IID examples. However, there has been signifi-
cant recent progress in developing representation learning approaches that provably recover latent
factors Z (e.g., object positions, object colors, etc.) underlying complex data X (e.g. image), where
X ← g(Z), by going beyond the IID setting and using observations of X along with minimal domain
knowledge and supervision (Hyvarinen and Morioka, 2016, 2017; Locatello et al., 2020; Khemakhem
et al., 2020a). These works establish provable identification of latents by leveraging strong structural
assumptions such as independence conditional on auxiliary information (e.g., timestamps). In this
work, we aim to relax these distributional assumptions on the latent variables to achieve identification
for arbitrary continuous latent distributions. Instead of distributional assumptions, we assume access
to data generated under sparse perturbations that change only a few latent variables at a time as a
source of weak supervision. Figure 1 illustrates our working example of this assumption: a simple
environment where an agent’s actions perturb the coordinates of a few balls at a time. Our main
contributions are summarized as follows.

• We show that sparse perturbations that impact one latent at a time are sufficient to learn the
latents (up to permutation and scaling) that follow any unknown continuous distribution.

• Next, we consider more general settings, where perturbations impact one block of latent
variables at a time. In the setting where blocks do not overlap, we recover the latents up to
an affine transformation of these blocks.

• Further, we show that when perturbation blocks overlap, we get stronger identification. In
this setting, we prove identification up to affine transformation of the smallest intersecting
block. Consequently, if there are blocks that intersect in one latent variable only, then such
latents are identified up to permutation and scaling.

• We leverage these results to propose a natural estimation procedure and experimentally
illustrate the theoretical claims on low-dimensional synthetic and high-dimensional image-
based data.

2

2 Related works

Many of the works on provable identification of representations trace their roots to non-linear ICA
(Hyvärinen and Pajunen, 1999). Hyvarinen and Morioka (2016, 2017) were the first to use auxiliary
information in the form of timestamps and additional structure on the latent evolution to achieve
provable identification. Since then, these works have been generalized in many exciting ways.
Khemakhem et al. (2020a) assume independence of latents conditional on auxiliary information, and
several of these assumptions were further relaxed by Khemakhem et al. (2020b).

Our work builds on the machinery developed by Ahuja et al. (2022). Ahuja et al. show that if we know
the mechanisms that drive the evolution of latents, then the latents are identified up to equivariances
of these mechanisms. However, the authors leave the question of achieving identification without
such knowledge open. Here we consider a class of mechanisms where an agent’s actions impact the
latents through unknown perturbations. We show how to achieve identification by exploiting the
sparsity in the perturbations. This class of perturbations was first leveraged to prove identification by
Locatello et al. (2020). However, Locatello et al. assume that the latents are independent, whereas
we make no assumptions on the distribution other than continuity. Lachapelle et al. (2022) also use
sparse interventions on the latents to strengthen the identification guarantees in Khemakhem et al.
(2020a) for conditional exponential distributions. However, the form of sparsity that is leveraged in
their work is different from ours. In our work, we assume that the vector of changes in the latents is
sparse, i.e., some components change and the rest of the components do not change. In Lachapelle
et al. (2022), all the components of the latents change post interventions but the graphical model
capturing the interaction of interventions (described as random variables) and the latents is sparse.
Klindt et al. (2021) also use sparsity in time-series settings to attain identification. Klindt et al. (2021)
enforce soft ℓ1 norm driven sparsity in the vector of changes in latents by assuming that latents evolve
independently under a Laplace distribution but do not require access to data under interventions.

Yao et al. (2021) and Lippe et al. (2022) model the latent evolution as a structural causal model
unrolled in time. Yao et al. exploit non-stationarity and sufficient variability dictated by the auxiliary
information to provide identification guarantees. Lippe et al. exploit causal interventions on the latents
to provide identification guarantees but require the knowledge of intervention targets and assume
an invariant causal model describing the relations between any adjacent time frames. In concurrent
work, Brehmer et al. (2022) leverage data generated under causal interventions as a source of weak
supervision and prove identification for structural causal models that are diffeomorphic transforms of
exogenous noise. Our work also connects to an insightful line of work on multi-view ICA (Gresele
et al., 2020), which proves identification under independent latents, in the following sense. We can
interpret the data under different perturbations as different views of the same underlying latent. In
addition, some recent papers explain the success of self-supervised contrastive learning Zimmermann
et al. (2021); Von Kügelgen et al. (2021) through the lens of identification of representations.

Above, we focused on provable representation identification, which is central to this work. We now
give a brief overview of empirical works on disentanglement which have shown success on some
benchmark tasks, but do not theoretically characterize conditions for successful disentanglement.
Many variations of variational autoencoders (VAE) were developed over the years to achieve disen-
tanglement. β-VAE (Higgins et al., 2016) uses a hyperparameter in front of the KL regularizer to
make the learned latent independent. Factor VAE (Kim and Mnih, 2018) proposes an adversarial
training-based approach, where the discriminator encourages the learned representation to have
independent components. Annealed β-VAE (Burgess et al., 2018) proposes to progressively increase
the capacity of bottleneck β to enforce independence one component at a time. Ideas based on
disentanglement have been also used in reinforcement learning; Higgins et al. (2017), Dittadi et al.
(2020), and Miladinović et al. (2019) are some of the representative works in the area. Locatello
et al. (2019) showed that most of the above methods could often fail to disentangle in the absence
of supervision or inductive biases. As a result, there has been a surge in the interest in building
approaches that achieve provable representation identification. Lastly, there is a line of work, which
does not focus on disentanglement or representation identification, but has shown the benefits of
sparsity based inductive biases – sparse changes in latents over time (Goyal et al., 2019) or sparse
interactions between latents (Goyal et al., 2021) – under distribution shifts.

3

3 Latent identification under sparse perturbations

Data Generation Process We start by describing the data generation process used for the rest of the
work. There are two classes of variables we consider – a) unobserved latent variables Z ∈ Z ⊆ Rd

and b) observed variables X ∈ X ⊆ Rn. The latent variables Z are sampled from a distribution PZ

and then transformed by a map g : Rd → Rn, where g is injective and analytic2, to generate X . We
write this as follows

z ∼ PZ x← g(z) (1)
where z and x are realizations of the random variables Z and X respectively. It is impossible to
invert g just from the realizations of X (Hyvärinen and Pajunen, 1999; Locatello et al., 2019). Most
work has gone into understanding how structure of latents Z and auxiliary information in the form of
timestamps or labels play a role in solving the above problem. In this work, we depart from these
assumptions and instead investigate the role of data generated under perturbations of latents to achieve
identification. Define the set of perturbations as I = {1, · · · ,m} and the corresponding perturbation
vectors as ∆ = {δ1, · · · , δm}, where δi is the ith perturbation. Each latent z is sampled from an
arbitrary and unknown distribution PZ . The same set of unknown perturbations in ∆ are applied
to each z to generate m perturbed latents {z̃k}mk=1 per sampled z and the corresponding observed
vectors {x̃k}mk=1. Each of these latents are transformed by the map g and we observe (x, x̃1, · · · , x̃m).
Our goal is to use these observations and estimate the underlying latents. We summarize this data
generation process (DGP) in the following assumption.
Assumption 1. The DGP follows

z ∼ PZ , x← g(z) z̃k ← z + δk,∀k ∈ I x̃k ← g(z̃k),∀k ∈ I (2)

where g is injective and analytic, and Z is a continuous random vector with full support over Rd. 3

The above DGP is very close to the DGP in Locatello et al. (2020) except we do not require latent
dimensions to be mutually independent. To better understand the above DGP, let us turn to some
examples. Consider a setting where an agent is interacting with an environment containing several
balls (See Figure 1). The latent z captures the properties of the objects; for example, in Figure 1,
z just captures the positions of each ball, but in general it could include more properties such as
velocity, shape, color, etc.. The agent perturbs the objects in the scene by δk, which can modify a
single property associated with one object or multiple properties from one or more objects depending
on how the agent acts. Note that when the agent perturbs a latent, it can lead to downstream effects.
For instance, if the agent moves a ball to the edge of the table, the ball falls in subsequent frames.
For this work, we only consider the observations just before and after the perturbation and not the
downstream effects. In the Appendix (Section A.2.5), we explain these downstream effects using
structural causal models. We also explain the connection between the perturbations in equation (24)
and causal interventions leveraged in Brehmer et al. (2022); Lachapelle et al. (2022). The above
example is typical of a reinforcement learning environment, other examples include natural videos
with sparse changes (e.g., MPI3D data (Gondal et al., 2019)).

In the above DGP in equation (24), we assumed that for each scene x there are multiple perturbations.
It is possible to extend our results to settings where we perturb each scene only once, given a
sufficiently diverse set of perturbations, i.e., for a small neighborhood of a scene around x, each
scene in the neighbourhood receives a different perturbation. We compare these two approaches
experimentally.

Learning objective The learner’s objective is to use the observed samples (x, x̃1, · · · , x̃m) gen-
erated by the DGP in Assumption 1 and learn an encoder f : Rn → Rd that inverts the function g
and recovers the true latents. For each observed sample (x, x̃1, · · · , x̃m), the learner compares all
the pairs (x, x̃k) pre- and post-perturbation. For every unknown perturbation δk used in the DGP in
equation (24), the learner guesses the perturbation δ

′
k and enforces that the latents predicted by the

encoder for x and x̃k are consistent with the guess. We write this as ∀ (x, x̃1, · · · , x̃m) generated by
DGP in (24)

f(x̃k) = f(x) + δ
′
k. (3)

2A analytic function, g, is an infinitely differentiable function such that for all z′ in its domain, the Taylor
series evaluated at z′ converges pointwise to g(z′)

3The assumption on the support of Z can be relaxed.

4

We denote the set of guessed perturbations as ∆
′
= {δ′

1, · · · , δ
′
m}, where δ

′
i is the guess for

perturbation δi. We can turn the above identity into a mean square error loss given as

min
f,∆′

E
[(

f(x̃k)− f(x)− δ
′
k

)2]
(4)

where the expectation is taken over observed samples generated by the DGP in (24) and the mini-
mization is over all the possible maps f and perturbation guesses in the set ∆

′
. Note that a trivial

solution to the above problem is an encoder that maps everything to zero, and all guesses equal zero.
In the next section, we get rid of these trivial solutions by imposing an additional requirement that the
span of the set ∆

′
is Rd. It is worth pointing out that we do not restrict the set of f ’s to injective maps

in theory and experiments. We denote the latent estimated by the encoder for a point x as ẑ = f(x).
It is related to the true latent as follows ẑ = f ◦ g(z) = a(z), where a is some function that relates
true z to estimated ẑ. In the next section, we show that if perturbations are diverse, then a is an affine
transform. Further, we show that if perturbations are sparse, then a takes an even simpler form.

3.1 Sparse perturbations

We first show that it is possible to identify the true latents up to an affine transformation without any
sparsity assumptions. Later, we leverage sparsity to strengthen identification guarantees.

Assumption 2. The dimension of the span of the perturbations in (24) is d, i.e., dim
(
span

(
∆
))

= d.

The above assumption implies that the perturbations are diverse. We now state a regularity condition
on the function a.

Assumption 3. a is an analytic function. For each component i ∈ {1, · · · , d} of a(z) and each
component j ∈ {1, · · · , d} of z, define the set Sij = {θ | ∇jai(z + b) = ∇jai(z) +∇2

jai(θ)b, z ∈
Rd}, where b is a fixed vector in Rd. Each set Sij has a non-zero Lebesgue measure in Rd.

If we restrict the encoder f to be analytic, then a is analytic since g is also analytic, thus satisfying
the first part of the above assumption. The second part of the above assumption can be understood
as follows: suppose we have a scalar valued function h : R → R that is differentiable. If we
expand h(u+ v) around h(u), by the mean value theorem we get h(u+ v) = h(u) + h′(ϵ)v, where
ϵ ∈ [u, u+ v]. If we vary u to take all the values in R, then ϵ also varies. The above assumption states
that the set of ϵ′s has a non-zero Lebesgue measure. Under the above assumptions, we show that
an encoder that solves equation (3) identifies true latents up to an affine transform, i.e., ẑ = Az + c,
where A ∈ Rd×d is a matrix and c ∈ Rd is an offset.

Proposition 1. If Assumptions 1, 2, and 3 hold, then the encoder that solves equation (3) (with ∆
′

s.t. dim
(
span

(
∆

′))
= d) identifies true latents up to an invertible affine transform, i.e. ẑ = Az + c,

where A ∈ Rd×d is an invertible matrix and c ∈ Rd is an offset.

The proof of above proposition follows the proof technique from Ahuja et al. (2022), for further
details refer to the Appendix (Section A.1). We interpret the above result in the context of the
agent interacting with balls (as shown in Figure 1), where the latent vector z captures the x and
y coordinates of the nballs. Under each perturbation, the balls move along the vector dictated by
the perturbation. If there are at least 2nballs perturbations, then the latents estimated by the learned
encoder are guaranteed to be an affine transformation of the actual positions of the balls.

3.1.1 Non-overlapping perturbations

In Proposition 1, we showed affine identification guarantees for the DGP from Assumption 1. We
now explore identification when perturbations are one-sparse, i.e., one latent changes at a time.

Assumption 4. The perturbations in ∆ are one-sparse, i.e., each δi ∈ ∆ has one non-zero component.

Next, we show that under one-sparse perturbations, the latents estimated identify true latents up to
permutation and scaling.

5

Theorem 1. If Assumptions 1-4 hold and the number of perturbations per example equals the
latent dimension, m = d, 4 then the encoder that solves equation (3) (with ∆

′
as one-sparse and

dim
(
span

(
∆

′))
= d) identifies true latents up to permutation and scaling, i.e. ẑ = ΠΛz + c, where

Λ ∈ Rd×d is an invertible diagonal matrix, Π ∈ Rd×d is a permutation matrix and c is an offset.

For the proof of above theorem, refer to Section A.1 in the Appendix. The theorem does not require
that learner knows either the identity or amount each component changed. However, the learner
has to use one-sparse perturbations as guesses. Suppose the learner does not know that the actual
perturbations are one-sparse and instead uses guesses that are p-sparse, i.e., p latents change at one
time. In such a case, the ẑ and true z are related to each other through a permutation and block
diagonal matrix, i.e., we can replace Λ in the above result to be a block diagonal matrix instead of a
diagonal matrix (see the Appendix for details). In the context of the ball agent interaction environment
from Figure 1, the above result states that provided the agent interacts with one coordinate of each
ball at a time, it is possible to learn the position of each ball up to scaling errors.

We now consider a natural extension of the setting above, where the perturbations simultaneously
operate on blocks of latents. In the ball agent interaction environment, this can lead to multiple
scenarios – i) the agent interacts with one ball at a time but perturbs both coordinates simultaneously,
ii) the agent interacts with several balls simultaneously.

Consider a perturbation δi ∈ ∆ (from equation (24)). We define the block of latents that is impacted
under perturbation δi ∈ ∆ as {j | δji ̸= 0, j ∈ {1, · · · , d}}, where δji is the jth component of δi. We
group the perturbations in I based on the block they act upon, i.e. perturbations in the same group
act on the same block of latents. Define the set of the groups corresponding to perturbations in I as
GI . Define the set of corresponding blocks as BI = {B1, · · · ,Bg}, where Bk is the block impacted
by perturbations in group k. If BI partitions the set of latent components indexed {1, · · · , d}, then it
implies all the distinct blocks are non-overlapping. We formally define this below.
Definition 1. Blockwise and non-overlapping perturbations. If the the set of blocks BI corre-
sponding to perturbations I form a partition of {1, · · · , d}, then I is said to be blockwise and
non-overlapping. Formally stated, any two distinct Bi,Bj ∈ BI do not intersect, i.e., Bi ∩ Bj = ∅,
and ∪iBi = {1, · · · , d}.

From the above definition it follows that two perturbations either act on the same block or completely
different blocks with no overlapping variables.
Assumption 5. The perturbations I (used in equation (24)) are blockwise and non-overlapping (see
Definition 1). Each perturbation in I is p-sparse, i.e., it impacts blocks of length p (p ≤ d) at a time.

Assumption 6. The learner knows the group label for each perturbation i ∈ I. Therefore, any two
perturbations in ∆

′
associated with same group in GI impact the same block of latents.

We illustrate the above Assumptions 5, 6 in the following example. Consider the ball agent interaction
environment (Figure 1). z = [z1x, z1y, · · · , znballsx, znballsy] is the vector of positions of all balls,
where zix/y is the x/y coordinate of ball i. If the agent randomly perturbs ball i, then it changes the
block (zix, ziy). We would call such a system 2-sparse. All the perturbations on ball i are in one
group. Since the agent knows the group of the perturbation, it does not know the ball index but it
knows whenever we interact with the same ball.
Definition 2. If the latent variables recovered ẑ = ΠΛ̃z + c, where Π is a permutation matrix and Λ̃
is a block-diagonal matrix, then the latent variables are said to be recovered up to permutations and
block-diagonal transforms.

In the theorem that follows, we show that under the assumptions made in this section, we achieve
identification up to permutations and block-diagonal transforms with invertible p× p blocks.

Theorem 2. If Assumptions 1-3, 5, 6 hold, then the encoder that solves equation (3) (where ∆
′

is p-sparse, dim
(
span

(
∆

′))
= d) identifies true latents up to permutation and block-diagonal

transforms, i.e. f(x) = ẑ = ΠΛ̃z + c, where Λ̃ ∈ Rd×d is an invertible block-diagonal matrix with
blocks of size p× p, Π ∈ Rd×d is a permutation matrix and c ∈ Rd is an offset.

4We can relax this condition to m ≥ d, refer to the Appendix for details.

6

For the proof of the above theorem, refer to Section A.1 in the Appendix. From the above theorem,
we gather that the learner can separate the perturbed blocks. However, the latent dimensions within
the block are linearly entangled. In the ball agent interaction with 2-sparse perturbations, the above
theorem implies that the agent can separate each ball out but not their respective x and y coordinates.
In the above theorem, we require the learner to know the group of each intervention (Assumption 6).
In the Appendix Section A.2.2, we relax Assumption 6 and show that we can continue to achieve
identification up to permutation and block diagonal transforms. However, we need a computationally
expensive procedure that searches over subsets of latent dimensions to identify the dimensions
impacted under the current intervention.

We briefly compare with Von Kügelgen et al. (2021), where the authors also establish block identifica-
tion guarantees. In Von Kügelgen et al. (2021), the latent vector is divided into two parts – the content
block and the style block. Across augmentations, style is varied and content is fixed. Von Kügelgen
et al. leverage this invariance of the content across augmentations to learn the content block and not
the style block. To summarize, invariance of content across different views is the key signal that is
used to achieve identification. In our case, the perturbations act on different blocks of latents. In
contrast to Von Kügelgen et al., we leverage sparsity of changes, i.e., we exploit both the varying part
and the invariant part to identify all the distinct blocks and not just the content block.

3.1.2 Overlapping perturbations

In the previous section, we assumed that the blocks across different perturbations are non-overlapping.
This section relaxes this assumption and allows the perturbation blocks to overlap. We start with a
motivating example to show how overlapping perturbations can lead to stronger identification.

Consider the agent interacting with two balls, where z = [z1x, z1y, z2x, z2y] describes the coordinates
of the two balls. The agent perturbs the first ball and then perturbs the second ball. For the purpose of
this example, assume that these perturbations satisfy the assumptions in Theorem 2. We obtain that
the estimated position of each ball ẑix/y is linearly entangled w.r.t the true x and y coordinates. For
the first ball we get ẑ1x = a1z1x + a2z1y + a3. We also have the agent perturb the x coordinates of
the first and second ball together and then it does the same with the y coordinates. We apply Theorem
2 and obtain that the estimated x coordinates of each ball are linearly entangled. We write this as
ẑ1x = b1z1x + b2z2x + b3. We take a difference of the two relations for ẑ1x to get

(a1 − b1)z1x + a2z1y − b2z2x + a3 − b3 = 0 (5)

Since the above has to hold for all z1x, z1y, z2x, we get a1 = b1, a2 = 0, b2 = 0 and a3 = b3. Thus
ẑ1x = a1z1x + a3. Similarly, we can disentangle the rest of the balls.

We take the insights from the above example and generalize them below. Let us suppose that from
the set of perturbations I we can construct at least two distinct subsets I1 and I2 such that both
subsets form a blockwise non-overlapping perturbation (see Definition 1). Perturbations in I1 (I2)
partition {1, · · · , d} into blocks BI1

(BI2
) respectively. It follows that there exists at least two blocks

B1 ∈ BI1
and B2 ∈ BI2

such that B1 ∩ B2 ̸= ∅. From Theorem 2, we know that we can identify
latents in block B1 and B2 up to affine transforms. In the next theorem, we show that we can identify
latents in each of the blocks B1 ∩ B2, B1 \ B2, B2 \ B1 up to affine transforms.

Assumption 7. Each perturbation in I is p-sparse. The perturbations in each group span a p-
dimensional space, i.e., ∀q ∈ GI , dim

(
span

(
{δi}i∈q

))
= p. There exist at least two distinct

subsets of perturbations I1 ⊆ I and I2 ⊆ I that are both blockwise and non-overlapping.

Theorem 3. Suppose Assumptions 1, 3, 6 and 7 hold. Consider the subsets I1 and I2 that satisfy
Assumption 7. For every pair of blocks, B1 ∈ BI1

and B2 ∈ BI2
, the encoder that solves equation

(3) (where ∆
′

is p-sparse, dim
(
span

(
∆

′))
= d) identifies latents in each of the blocks B1 ∩ B2,

B1 \ B2, B2 \ B1 up to invertible affine transforms.

For the proof of the above theorem, refer to Section A.1 in the Appendix. From the above theorem, it
follows that if blocks overlap at one latent only, then all such latents are identified up to permutation
and scaling. We now construct an example to show the identification of all the latents under
overlapping perturbations. Suppose we have a 4 dimensional latent. The set of all contiguous blocks
of length 2 is given as follows {{1, 2}, {2, 3}, {3, 4}, {4, 1}}. Different 2-sparse perturbations impact

7

these blocks. Observe that every component between 1 to 4 gets to be the first element of a block
exactly once and the last element of the block exactly once. As a result, each latent gets to be the
only element at the intersection of two blocks. We apply Theorem 3 to this case and get that all the
latents are identified up to permutation and scaling. We generalize this example below.
Assumption 8. BI is a set of all the contiguous blocks of length p, where p < d. The perturbations
in each block span a p dimensional space. Further, also assume that d mod p = 0.

In the above assumption, we construct d contiguous blocks of length p. The construction ensures that
each index in {1, · · · , d} forms the first element of exactly one block and last element of exactly one
block. In Theorem 1 (Locatello et al., 2019) and in Theorem 5 (Lachapelle et al., 2022) a similar
assumption is made that requires exactly one latent is at the intersection of multiple blocks. In the
next theorem, we show that under the above assumption, we achieve identification up to permutation
and scaling.
Theorem 4. Suppose Assumptions 1, 3, 6 and 8 hold, then the encoder that solves the identity in
equation (3) (where ∆

′
is p-sparse, dim

(
span

(
∆

′))
= d) identifies true latents up to permutations

and scaling, i.e., ẑ = ΠΛz + c, where Π ∈ Rd×d matrix and Λ ∈ Rd×d is a diagonal matrix.

For the proof of the above theorem, refer to Section A.1 in the Appendix. The total number of
perturbations required in the above theorem is p× d. If we plug p = 1, we recover Theorem 1 as a
special case. The above result highlights that if the block lengths are larger, then we need to scale the
number of perturbations accordingly by the same factor to achieve identification up to permutation
and scaling. We assumed a special class of perturbations operating on contiguous blocks. In general,
the total number of distinct blocks can be up to

(
d
p

)
. Suppose s distinct random blocks of length p

are selected for perturbations. As s grows, we reach a point where each latent component is at the
intersection of two blocks from different sets of blockwise non-overlapping perturbations. At that
point, we identify all latents up to permutation and scaling.

Extensions In the discussion so far, we made some assumptions for ease of exposition. In the
appendix, we describe how to relax them. In the DGP in Assumption 1, the perturbations used
are deterministic. In Section A.2.3, we extend the DGP in Assumption 1 to incorporate stochastic
perturbations. Specifically, instead of z̃ ← z + δ we consider a DGP where z̃ ← z + δ + n, where
n is the noise vector added to the perturbation δ. We show that the key results presented in the
paper extend provided the noise vector n follow the same sparsity pattern as δ. We also present
experiments for the same model in Section A.3. In the DGP in Assumption 1, the perturbations used
are independent of the value of z. Instead of z̃ ← z + δ we consider a DGP given as z̃ ← z +m(z),
where m(·) is a general non-linear perturbation map. In Section A.2.4, we show that the key results
presented in the paper extend to this setting with non-linear perturbation mechanisms

4 Experiments

Data generation processes We conducted two sets of experiments – low-dimensional synthetic
and image-based inputs – that follow the DGP in equation (24). In the low-dimensional synthetic
experiments we experimented with two choices for PZ a) uniform distribution with independent
latents, b) normal distribution with latents that are blockwise independent (with block length d/2).
We used an invertible multi-layer perceptron (MLP) (with 2 hidden layers) from Zimmermann et al.
(2021) for g. We evaluated for latent dimensions d ∈ {6, 10, 20}. The training and test data size was
10000 and 5000 respectively. For the image-based experiments we used PyGame (Shinners, 2011)’s
rendering engine for g and generated 64×64 pixel images that look like those shown in Figure 1. The
coordinates of each ball, zi, were drawn independently from a uniform distribution, zi ∼ U(0.1, 0.9).
We varied the number of balls from 2 (d = 4) to 4 (d = 8). For these experiments, there was
no fixed-size training set; instead the images are generated online and we trained to convergence.
Because these problems are high dimensional, we only sampled a single perturbation for each image.

Loss function, architecture, evaluation metrics In all the experiments we optimized equation
(4) with square error loss. The encoder f was an MLP with two hidden layers of size 100 for
the low-dimensional synthetic experiments and a ResNet-18 (He et al., 2015) for the image-based
experiments. Further training details such as the optimizers used, hyperparameters etc. are in the

8

Table 1: Comparing MCC and BMCC for non-overlapping perturbations.
The number of perturbations applied for each example is given in parenthesis

d pZ MCC MCC BMCC BMCC
C-wise (d) C-wise (1) B-wise (d) B-wise (1)

6 Normal 0.99± 0.00 0.99± 0.00 0.99± 0.00 0.99± 0.01

10 Normal 0.99± 0.00 0.99± 0.01 0.99± 0.00 0.91± 0.02

20 Normal 0.99± 0.00 0.88± 0.03 0.99± 0.00 0.90± 0.01

6 Uniform 0.99± 0.00 0.99± 0.00 0.99± 0.00 0.96± 0.04

10 Uniform 0.99± 0.00 0.99± 0.01 0.99± 0.00 0.81± 0.05

20 Uniform 0.99± 0.00 0.82± 0.02 0.85± 0.08 0.51± 0.04

0 5

True Z1

2

4

P
re

d
ic

te
d

Z
1

0 5

True Z1

5

10

P
re

d
ic

te
d

Z
2

0 5

True Z2

2

4

P
re

d
ic

te
d

Z
1

0 5

True Z2

5

10

P
re

d
ic

te
d

Z
2

0 5

True Z1

0

5

P
re

d
ic

te
d

Z
3

0 5

True Z2

0

5

P
re

d
ic

te
d

Z
4

Figure 2: Illustrating blockwise dependence (d = 10).

Table 2: MCC for B-wise (overlap).

d Distribution MCC
6 Normal 0.95± 0.01

10 Normal 0.96± 0.01

20 Normal 0.99± 0.01

6 Uniform 0.86± 0.03

10 Uniform 0.88± 0.03

20 Uniform 0.81± 0.03

Appendix (Section A.3). We used the mean correlation coefficient (MCC) (Hyvarinen and Morioka,
2016) to verify the claims in Theorems 1 and 4. If MCC equals one, then the estimated latents identify
true latents up to permutation and scaling. We extend MCC to blockwise MCC (BMCC) to verify
the claims in Theorem 2. If BMCC equals one, then the estimated latents identify true latents up to
permutation and block-diagonal transforms. Further details are in the Appendix (Section A.3).

Non-overlapping perturbations We first conducted experiments with one-sparse perturbations, the
set ∆ consists of m = d one-sparse perturbations that span a d dimensional space. In the context of
the image experiments, these perturbations correspond to moving each ball individually along a single
axis. The learner solves the identity in equation (3) using a set of random one-sparse perturbations ∆

′

that span a d dimensional space. In Table 1, we used the low-dimensional synthetic data generating
process to compare the effect of (i) applying all m = d perturbations to each instance z (following
the DGP in (24)), against a more practical setting (ii) where a perturbation is selected uniform at
random from ∆ and applied to each instance z. The results for (i) are shown in black and the results
for (ii) are shown in gray font in the C-wise (componentwise) column in Table 1. We observed high
MCCs in both settings. The results were similar in the more challenging image-based experiments
(see Table 3, C-wise column) with MCC scores > 0.97 for all the settings that we tested, as expected
given the results presented in Theorem 1.

In our next experiments, the set of perturbations ∆ comprised of d 2-sparse non-overlapping pertur-
bations that span a d dimensional space. We repeated the same synthetic experiments as above with
one and d perturbations per instance. Under these assumptions we should expect to see that pairs of
latents are separated blockwise but linearly entangled within the blocks (c.f. Theorem 2). We found
this to be the case. The high BMCC numbers in Table 1 displayed under B-wise (blockwise) column
(except for d = 20 and one perturbation per sample) show disentanglement between the blocks of
latents. In Figure 2, the first two rows and columns show how the predicted latents corresponding to
a block are correlated with their true counterpart (see Predicted Zi vs True Zi) and the other latent
in the block (Predicted Z1 vs True Z2 and vice versa). The plots in the last column show that the
predicted latents did not bear a correlation with a randomly selected latent from outside the block.

9

Table 3: Image experiments
d MCC MCC MCC

C-wise B-wise B-wise
d

(
d
p

)
4 0.994 0.710 0.864
6 0.981 0.817 0.912
8 0.975 0.866 0.934

x

x̃

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

−2

−1

0

1

c
2

−c
2(n−1)

−c
2(n−1)

−c
2(n−1)

f(x)

f(x̃)

Figure 3: (Left) Results for the image-base experiments. (Centre) Example images in which the
bottom left ball is shifted to the right. (Right) A trained encoder’s predictions for the two images
shown in (centre). The green ball prediction shifts right by ≈ c

2 and the other balls left by ≈ c
2(n−1) .

For further illustrations, refer to the animations in the supplement.

Overlapping perturbations In this section, we experimented with blocks of size two that overlap
in order to conform with the setting described in Theorem 4. We used the same distributions as before
and only changed the type of perturbations. The low-dimensional synthetic results are summarized in
Table 2. The results were largely as expected, with a strong correspondence between the predicted
and true latents reflected by high MCC values.

On the image datasets (see Table 3), we found that the MCC scores depended on both the number of
balls and how the blocks were selected. We compared two strategies for selecting blocks of latents to
perturb: either select uniformly from all adjacent pairs I = {(i mod d, i+ 1 mod d)} (d blocks), or
uniformly from all combinations of latent indices, I = {(i, j) : i ∈ {1, . . . , d}, j > i} (

(
d
2

)
blocks).

The latter lead to higher MCC scores (ranging from 0.86 to 0.93) as it placed more constraints on the
solution space. The dependence on the number of balls is more surprising. To investigate the implied
entanglement from the lower MCC scores, we evaluated trained encoders on images where we kept
nballs − 1 balls in a fixed location and moved one of the balls (see Section A.3 in the Appendix
for example images). If the coordinates were perfectly disentangled, the encoder should predict no
movement for static balls. When the moving ball shifted by c units, the predicted location of the static
balls shifted by ≈ −c

2(nballs−1) and the moving ball shifted ≈ c
2 units. We further verified this claim

and ran blockwise experiments with nballs = 10 balls (d = 20) and got MCC scores of 0.930 and
0.969 for d and

(
d
2

)
blocks respectively. In the Appendix (Section A.3), we show that this solution

is a stationary point, and we achieve a perfect MCC of one when nballs = ∞. Finally, the code to
reproduce the experiments presented above can be found at https://github.com/ahujak/WSRL.

5 Discussion and limitations

Our work presents the first systematic analysis of the role of sparsity in achieving latent identification
under unknown arbitrary latent distributions. We assume that every sample (or at least every neighbor-
hood of a sample) experiences the same set of perturbations. A natural question is how to extend our
results to settings where this assumption may not hold. Data augmentation provides a rich source of
perturbations; our results cover translations, but extending them to other forms of augmentation is an
important future direction. We followed the literature on non-linear ICA (Hyvarinen et al., 2019) and
made two assumptions – i) the map g that mixes latents is injective, and ii) the dimension of the latent
d is known. We believe future works should aim to relax these assumptions. In reinforcement learning
(RL) environments, the effects of actions can often be sparse. Therefore, we believe illustrating the
efficacy of the proposed approach in RL environments (Ahmed et al., 2020) is an important direction
to further the case of the proposed theory and methods in real-world applications.

6 Acknowledgements

We thank Sébastien Lachapelle and Anirudh Goyal for insightful discussions. Kartik Ahuja acknowl-
edges the support from the IVADO postdoctoral fellowship. Jason Hartford acknowledges support
from the Natural Sciences and Engineering Research Council of Canada (NSERC) and Recursion
Pharmaceuticals. Yoshua Bengio acknowledges the support from CIFAR, Samsung and IBM.

10

https://github.com/ahujak/WSRL

References
Ahmed, O., Träuble, F., Goyal, A., Neitz, A., Bengio, Y., Schölkopf, B., Wüthrich, M., and Bauer, S.

(2020). Causalworld: A robotic manipulation benchmark for causal structure and transfer learning.
arXiv preprint arXiv:2010.04296.

Ahuja, K., Hartford, J., and Bengio, Y. (2022). Properties from mechanisms: an equivariance
perspective on identifiable representation learning. In International Conference on Learning
Representations.

Brehmer, J., De Haan, P., Lippe, P., and Cohen, T. (2022). Weakly supervised causal representation
learning. arXiv preprint arXiv:2203.16437.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A., Shyam,
P., Sastry, G., Askell, A., et al. (2020). Language models are few-shot learners. Advances in neural
information processing systems, 33:1877–1901.

Burgess, C. P., Higgins, I., Pal, A., Matthey, L., Watters, N., Desjardins, G., and Lerchner, A. (2018).
Understanding disentangling in beta-vae. arXiv preprint arXiv:1804.03599.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pages 248–255. Ieee.

Dittadi, A., Träuble, F., Locatello, F., Wüthrich, M., Agrawal, V., Winther, O., Bauer, S., and
Schölkopf, B. (2020). On the transfer of disentangled representations in realistic settings. arXiv
preprint arXiv:2010.14407.

Geirhos, R., Jacobsen, J., Michaelis, C., Zemel, R. S., Brendel, W., Bethge, M., and Wichmann, F. A.
(2020). Shortcut learning in deep neural networks. CoRR, abs/2004.07780.

Gondal, M. W., Wuthrich, M., Miladinovic, D., Locatello, F., Breidt, M., Volchkov, V., Akpo, J.,
Bachem, O., Schölkopf, B., and Bauer, S. (2019). On the transfer of inductive bias from simulation
to the real world: a new disentanglement dataset. Advances in Neural Information Processing
Systems, 32.

Goyal, A., Didolkar, A., Ke, N. R., Blundell, C., Beaudoin, P., Heess, N., Mozer, M. C., and Bengio,
Y. (2021). Neural production systems. Advances in Neural Information Processing Systems,
34:25673–25687.

Goyal, A., Lamb, A., Hoffmann, J., Sodhani, S., Levine, S., Bengio, Y., and Schölkopf, B. (2019).
Recurrent independent mechanisms. arXiv preprint arXiv:1909.10893.

Gresele, L., Rubenstein, P. K., Mehrjou, A., Locatello, F., and Schölkopf, B. (2020). The incomplete
rosetta stone problem: Identifiability results for multi-view nonlinear ica. In Uncertainty in
Artificial Intelligence, pages 217–227. PMLR.

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Deep residual learning for image recognition. CoRR,
abs/1512.03385.

Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mohamed, S., and Lerchner,
A. (2016). beta-vae: Learning basic visual concepts with a constrained variational framework.

Higgins, I., Pal, A., Rusu, A., Matthey, L., Burgess, C., Pritzel, A., Botvinick, M., Blundell, C.,
and Lerchner, A. (2017). Darla: Improving zero-shot transfer in reinforcement learning. In
International Conference on Machine Learning, pages 1480–1490. PMLR.

Hyvarinen, A. and Morioka, H. (2016). Unsupervised feature extraction by time-contrastive learning
and nonlinear ica. Advances in Neural Information Processing Systems, 29.

Hyvarinen, A. and Morioka, H. (2017). Nonlinear ica of temporally dependent stationary sources. In
Artificial Intelligence and Statistics, pages 460–469. PMLR.

Hyvärinen, A. and Pajunen, P. (1999). Nonlinear independent component analysis: Existence and
uniqueness results. Neural networks, 12(3):429–439.

11

Hyvarinen, A., Sasaki, H., and Turner, R. (2019). Nonlinear ica using auxiliary variables and
generalized contrastive learning. In The 22nd International Conference on Artificial Intelligence
and Statistics, pages 859–868. PMLR.

Khemakhem, I., Kingma, D., Monti, R., and Hyvarinen, A. (2020a). Variational autoencoders and
nonlinear ica: A unifying framework. In International Conference on Artificial Intelligence and
Statistics, pages 2207–2217. PMLR.

Khemakhem, I., Monti, R., Kingma, D., and Hyvarinen, A. (2020b). Ice-beem: Identifiable con-
ditional energy-based deep models based on nonlinear ica. Advances in Neural Information
Processing Systems, 33:12768–12778.

Kim, H. and Mnih, A. (2018). Disentangling by factorising. In International Conference on Machine
Learning, pages 2649–2658. PMLR.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization.

Klindt, D. A., Schott, L., Sharma, Y., Ustyuzhaninov, I., Brendel, W., Bethge, M., and Paiton, D.
(2021). Towards nonlinear disentanglement in natural data with temporal sparse coding. In
International Conference on Learning Representations.

Lachapelle, S., Rodriguez, P., Sharma, Y., Everett, K. E., PRIOL, R. L., Lacoste, A., and Lacoste-
Julien, S. (2022). Disentanglement via mechanism sparsity regularization: A new principle for
nonlinear ICA. In First Conference on Causal Learning and Reasoning.

Lippe, P., Magliacane, S., Löwe, S., Asano, Y. M., Cohen, T., and Gavves, E. (2022). Citris: Causal
identifiability from temporal intervened sequences. arXiv preprint arXiv:2202.03169.

Locatello, F., Bauer, S., Lucic, M., Raetsch, G., Gelly, S., Schölkopf, B., and Bachem, O. (2019).
Challenging common assumptions in the unsupervised learning of disentangled representations. In
international conference on machine learning, pages 4114–4124. PMLR.

Locatello, F., Poole, B., Rätsch, G., Schölkopf, B., Bachem, O., and Tschannen, M. (2020). Weakly-
supervised disentanglement without compromises. In International Conference on Machine
Learning, pages 6348–6359. PMLR.

Miladinović, Ð., Gondal, M. W., Schölkopf, B., Buhmann, J. M., and Bauer, S. (2019). Disentangled
state space representations. arXiv preprint arXiv:1906.03255.

Mityagin, B. (2015). The zero set of a real analytic function. arXiv preprint arXiv:1512.07276.

Pearl, J. (2009). Causality. Cambridge university press.

Peters, J., Janzing, D., and Schölkopf, B. (2017). Elements of causal inference: foundations and
learning algorithms.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell, A.,
Mishkin, P., Clark, J., Krueger, G., and Sutskever, I. (2021). Learning transferable visual models
from natural language supervision. CoRR, abs/2103.00020.

Schölkopf, B., Locatello, F., Bauer, S., Ke, N. R., Kalchbrenner, N., Goyal, A., and Bengio, Y. (2021).
Toward causal representation learning. Proceedings of the IEEE, 109(5):612–634.

Schölkopf, B. and von Kügelgen, J. (2022). From statistical to causal learning. arXiv preprint
arXiv:2204.00607.

Shinners, P. (2011). Pygame. http://pygame.org/.

Szegedy, C., Ioffe, S., and Vanhoucke, V. (2016). Inception-v4, inception-resnet and the impact of
residual connections on learning. CoRR, abs/1602.07261.

Von Kügelgen, J., Sharma, Y., Gresele, L., Brendel, W., Schölkopf, B., Besserve, M., and Locatello,
F. (2021). Self-supervised learning with data augmentations provably isolates content from style.
Advances in Neural Information Processing Systems, 34.

12

http://pygame.org/

Yao, W., Sun, Y., Ho, A., Sun, C., and Zhang, K. (2021). Learning temporally causal latent processes
from general temporal data. arXiv preprint arXiv:2110.05428.

Zimmermann, R. S., Sharma, Y., Schneider, S., Bethge, M., and Brendel, W. (2021). Contrastive
learning inverts the data generating process. In International Conference on Machine Learning,
pages 12979–12990. PMLR.

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] Each of the main contributions listed in the introduction
correspond to a theorem in Section 3 and the final claim corresponds to the experiments
described in Section 4.

(b) Did you describe the limitations of your work? [Yes] See Section 5.
(c) Did you discuss any potential negative societal impacts of your work? [No] We do not

foresee any potential negative societal impacts specific to this work.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Section 3.
(b) Did you include complete proofs of all theoretical results? [Yes] See the Appendix

(Section A.1) in the Supplementary Material.
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main ex-
perimental results (either in the supplemental material or as a URL)? [Yes] We have
provided the codes in the Supplementary Material.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See the Appendix (Section A.3).

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] For the low-dimensional synthetic experiments, which
were computationally less demanding we ran five seeds. For image-based experiments,
the run time for each case was on average 12 hours. Since we had several such cases,
running several seeds was not feasible given the compute we had at our disposal.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See the Appendix (Section A.3).

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] See the Appendix

(Section A.3).
(b) Did you mention the license of the assets? [Yes] See the Appendix (Section A.3).
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

The codes can be found at https://github.com/ahujak/WSRL.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

13

https://github.com/ahujak/WSRL

A Appendix

We organize the Appendix into three sections. In Section A.1, we provide the proofs to all the
propositions and the theorems. In Section A.2, we discuss how some of the proposed results can be
extended. In Section A.3, we provide supplementary materials for the experiments.

A.1 Proofs

We restate all the propositions and the theorems below for convenience. In the proofs that follow, we
use ∆ (∆

′
) to denote the set of perturbations and the matrix of perturbations interchangeably (their

usage is clear from the context). We start with the proof of Proposition 1, which follows the proof
technique from Ahuja et al. (2022).

Proposition 2. (Restatement of Proposition 1) If Assumptions 1, 2, and 3 hold, then the encoder
that solves equation (3) (with ∆

′
s.t. dim

(
span

(
∆

′))
= d) identifies true latents up to an invertible

affine transform, i.e. ẑ = Az + c, where A ∈ Rd×d is an invertible matrix and c ∈ Rd is an offset.

Proof. We simplify the identity in equation (3) as follows.

f(x) + δ
′
i = f(x̃k)

f ◦ g(z) + δ
′
i = f ◦ g(z̃k)

a(z) + δ
′
i = a(z̃)

a(z) + δ
′
i′ = a(z + δi)

(6)

In the above simplification, we use the following observation. Since x and x̃k are generated from g
and g is injective, we can substitute x = g(z) and x̃k = g(z̃k), where z̃k = z + δk.

For simplicity denote the last line in above equation (6) as

a(z) + b
′
= a(z + b). (7)

We take gradient of the function in the LHS and RHS of the above equation (7) separately w.r.t z.
Consider the jth component of a(z + b) denoted as aj(z + b). We first take the gradient of aj(z + b)
w.r.t z

∇zaj(z + b) =
(dy
dz

)T

∇yaj(y), (8)

where y = z + b,∇yaj(y) is the gradient of aj w.r.t y and dy
dz denotes the Jacobian of y w.r.t z. We

simplify the above further to get

∇zaj(z + b) = ∇yaj(y) = ∇yaj(z + b). (9)

We can write the above for each component of a as follows.

[
∇za1(z + b), · · · ,∇zad(z + b)

]
=

[
∇ya1(z + b), · · · ,∇yad(z + b)

]
= [∇ya1(z + b), · · · ,∇yad(z + b)] = JT(z + b),

(10)

where J(z + b) is the Jacobian of a computed at z + b. We equate the gradient of LHS and RHS in
(7) to obtain

a(z + b) = a(z) + b
′
=⇒ JT(z + b)− JT(z) = 0. (11)

Consider row j of this identity. For each z ∈ Rd

14

∇aj(z + b)−∇aj(z) = 0 =⇒

∇2

1aj(θ1)
∇2

2aj(θ2)
...

∇2
daj(θd)

 (b) = 0 (12)

where ∇2aj is the Hessian of aj and ∇2
kaj(θk) corresponds to the kth row of the Hessian matrix.

Note that in the above expansion there is a different θk for each row (mean value theorem applied
to each component of ∇aj yields a different point θk on the line joinining z̃ and z̃ + b). From
Assumption 3 it follows that∇2

kaj(θk)(b) = 0 over a set with non-zero measure. Since aj is analytic
∇2

kaj(z)(b) is also analytic (each component of the vector is a weighted sum of analytic functions).
Therefore, we can conclude that ∇2

kaj(z)(b) = 0 for all z (follows from Mityagin (2015)). We
can make the same argument for each component k and conclude that ∇2aj(z)(b) = 0. From the
identity in equation (3), it follows that ∇2aj(z)(δj) = 0 for all j ∈ {1, · · · , d} and since the set
∆ = {δ1, · · · , δd} is linearly independent∇2aj(z) = 0 for all z. This implies a(z) = Az + c.

We substitute this in equation (6) to get A∆ = ∆
′
, where ∆ is the matrix of true perturbations and ∆

′

is the matrix of guessed perturbations (recall we stated above that we use ∆,∆
′

as sets and matrices
interchangeably). We now need to show that A is invertible. Suppose A was not invertible, which
implies the rank of A ≤ n−1. Following Assumption 2, rank of ∆ is n. Note that rank of ∆

′
is also n.

Note that if E = FG, where E, F , G are three matrices, then rank(E) ≤ min{rank(F), rank(G)}.
Following this identity, rank(∆

′
) ≤ n− 1, which is a contradiction. Therefore, A has to be invertible.

This completes the proof.

Theorem 5. (Restatement of Theorem 1) If Assumptions 1-4 hold and the number of perturbations
per example equals the latent dimension, m = d, then the encoder that solves equation (3) (with ∆

′

as one-sparse and dim
(
span

(
∆

′))
= d) identifies true latents up to permutation and scaling, i.e.

ẑ = ΠΛz + c, where Λ ∈ Rd×d is an invertible diagonal matrix, Π ∈ Rd×d is a permutation matrix
and c is an offset.

Proof. Since Assumptions 1, 2, and 3 hold, we can use Proposition 1 to obtain that any solution to
equation (3) achieves affine identification guarantees w.r.t the true latents, i.e. ẑ = Az + c, where
ẑ = f(x), z is the inverse image of x (x = g(z)), A ∈ Rd×d is an inverible matrix and c ∈ Rd is the
offset vector.

Define ei = [0, · · · , 1i, · · · 0] as the vector, which takes a value 1 at ith component and 0 everywhere
else. Without loss of generality set of true perturbations is ∆ = {b1e1, · · · , bded}. Note that all bi’s
are non-zero as the span of ∆ has a dimension d.

Denote the corresponding set of guesses from the agent are ∆
′
= {c1eπ(1), · · · , cdeπ(d)}, where

π : {1, · · · , d} → {1, · · · , d} is a map used by the agent to guess the coordinate impacted by the
perturbation. Note that since ∆

′
spans d dimensions π has to be a bijection cj’s are non-zero as the

span of ∆
′
.

Take bjej ∈ ∆ and the corresponding guess ckek and substitute it in the relation ẑ = Az + c to get

ẑ = Az + c,

ẑ + ckek = A(z + bjej) + c,

ckek = bjAej ,
ck
bj

ek = Aej .

(13)

Since π is a bijection, for every j there is a unique k in the RHS above. From the above equation,
we gather that the jth column of A is ck

bj
ek. We apply this to all the columns and conculde that

ẑ = ΠΛz + c, where Λ is a diagonal matrix and Π is a permutation matrix decided based on the
bijection π ((Πk = eπ(k)), where Πk is the kth colum of the matrix).

15

Theorem 6. (Restatement of Theorem 2) If Assumptions 1-3, 5, 6 hold, then the encoder that solves
equation (3) (where ∆

′
is p-sparse, dim

(
span

(
∆

′))
= d) identifies true latents up to permutation

and block-diagonal transforms, i.e. f(x) = ẑ = ΠΛ̃z + c, where Λ̃ ∈ Rd×d is an invertible
block-diagonal matrix with blocks of size p× p, Π ∈ Rd×d is a permutation matrix and c ∈ Rd is an
offset.

Proof. Since Assumptions 1, 2, and 3 hold, we can use Proposition 1 to obtain that any solution to
equation (3) achieves affine identification guarantees w.r.t the true latents, i.e. ẑ = Az + c, where
ẑ = f(x), z is the inverse image of x (x = g(z)), A ∈ Rd×d is an inverible matrix and c ∈ Rd is the
offset vector.

We start the proof by assuming that the agent knows the blocks that are impacted under each
perturbation, i.e., for each i ∈ I, the agent knows the block of the latents that are impacted denoted
as Ai. We relax this assumption later.

Following Assumption 5, we know that perturbations are p-sparse, blockwise and non-overlapping.
Without loss of generality, we can assume that the different groups on which perturbations in ∆ act
are given as {1, · · · , p}, {p + 1, · · · , 2p} and so on. Consider a perturbation δi, which belongs to
Group 1 and impacts the latents {1, · · · , p}. For this perturbation, the agent selects δ

′
i , which shares

the same sparsity pattern. Therefore, the first p elements of δ
′
i and δi are both non-zero and the rest

of the elements are zero. Under these assumptions, we can write the relationship between true and
guessed perturbations as follows.

ẑ + δ
′
i = A(z + δi) + c

δ
′
i = Aδi

(14)

Denote the first p elements of row k of matrix A as ak[1 : p] and the first p elements of the vector δi
as δi[1 : p]. For k > p, we use the equation (14) to get ak[1 : p]Tδi[1 : p] = 0.

For all perturbations in Group 1, we can write the same condition, i.e., ak[1 : p]Tδi[1 : p] = 0. Since
the perturbations in Group 1 span a p dimensional space (following Assumption 2, 5), we get that
ak[1 : p] = 0. Therefore, ak[1 : p] = 0 for all k > p.

Let q denote the number of perturbations in Group 1, where q ≥ p. For all k ≤ p we can solve for the
first p× p block using the perturbations guessed by the agent and the true perturbations in Group 1.
Denote the first p× p block of A as A[1 : p, 1 : p] and the first p components of the q perturbations
in Group 1 as ∆[1 : p, 1 : q]. Similarly, the first p components of the q perturbations guessed by the
learner is denoted as ∆

′
[1 : p, 1 : q]. We now need to show that the block A[1 : p, 1 : p] is invertible.

From the above equation in (14), we get

A[1 : p, 1 : p]∆
′
[1 : p, 1 : q] = ∆[1 : p, 1 : q]

.

where q is the number of perturbations in Group 1.

Since rank of ∆[1 : p, 1 : q] and ∆
′
[1 : p, 1 : q] is p, the rank of A[1 : p, 1 : p] cannot be less

than p or else it would lead to a contradiction. This shows that A[1 : p, 1 : p] is invertible. We
derived the properties of the first p columns of matrix A. For Group 2, we similarly obtain that
A[p+ 1 : 2p, p+ 1 : 2p] is an invertible matrix and rest of the elements in columns {p+ 1, · · · , 2p}
are zero. Due to symmetry of the setting, we can apply the same argument to all the other blocks as
well. Therefore, we conclude that A is block-diagonal and invertible. This leads to the conclusion
that ẑ = Λ̃z + c, where Λ̃ ∈ Rd×d and c ∈ Rd.

So far we assumed that the agent knows how the interventions in {1, · · · ,m} impact the blocks
{A1, · · · ,Am}. Under Assumption 6, the agent knows the groups of the perturbations only. For per-
turbations {δ1, · · · , δp} in Group 1 that impact {1, · · · , p}, the agent guesses {δ′

1, · · · , δ
′
p}. Note that

perturbations in {δ′
1, · · · , δ

′
p} impact the same block of length p with indices given as {α1, · · · , αp}.

Recall the first p elements of row k of matrix A and vector δi are denoted as ak[1 : p] and δi[1 : p] re-
spectively. There exist d−p rows in A for which we get ak[1 : p]Tδi[1 : p] = 0. Thus ak[1 : p] = 0 for

16

all these rows. The first p elements of remaining p form a square matrix denoted as A[α1 : αp, 1 : p],
where {α1, · · · , αp} are the indices guessed by the agent for the block corresponding to Group 1.
A[α1 : αp, 1 : p] satisfies

A[α1 : αp, 1 : p]∆[1 : p, 1 : q] = ∆
′
[α1 : αp, 1 : q]

where ∆
′
[α1 : αp, 1 : q] is the matrix of non-zero components of the q perturbation vectors that the

agent guesses. Using the same argument as above, we can argue that A[α1 : αp, 1 : p] is invertible.
We have derived the properties of first p columns of A. We apply the same argument to other groups
as well. Since the agent selects a set of unique p indices for each group, we obtain that the matrix
A can be factorized as a permutation matrix times a block diagonal matrix. The first p rows of the
permutation matrix with index {1, . . . , p} have ones at locations {α1, · · · , αp} and so on. As a result,
we get that ẑ = ΠΛ̃z + c

This completes the proof.

Theorem 7. (Restatement of Theorem 3) Suppose Assumptions 1, 3, 6 and 7 hold. Consider the
subsets I1 and I2 that satisfy Assumption 7. For every pair of blocks, B1 ∈ BI1

and B2 ∈ BI2
, the

encoder that solves equation (3) (where ∆
′

is p-sparse, dim
(
span

(
∆

′))
= d) identifies latents in

each of the blocks B1 ∩ B2, B1 \ B2, B2 \ B1 up to invertible affine transforms.

Proof. Following Assumption 7, we know that there exists at least two subsets I1 and I2 that satisfy
blockwise non-overlapping perturbations. Like in the previous proof, we start this proof also with the
case where the agent knows the exact sparsity pattern in the perturbations. We relax this assumption
in a bit. Consider a block B1 = {β1, · · · , βp} impacted by the perturbations in I1. Since I1 is
blockwise and non-overlapping, we can follow the analysis in the first part of the previous theorem
to get [ẑβ1

, · · · , ẑβp
] is an invertible affine transform of [zβ1

, · · · , zβp
]. Hence, the latents in each

of the blocks B1 ∈ GI1
are identified up to an afffine transform. Similarly, each block B2 ∈ GI2

is
identified up to an affine transform. Consider an element i ∈ B1 ∩ B2. ẑi can be expressed as an
affine transform of two different blocks of latents z1 and z2. z1 and z2 share some components, we
denote them as z12. The components exclusive to z1 (z2) is denoted as z11 (z22).

We write this condition as follows.

ẑi = aT1 z
11 + a2z

12 + a3

ẑi = bT1 z
22 + b2z

12 + b3

aT1 z
11 + (a2 − b2)

Tz12 − bT1 z
22 = b3 − a3

(15)

If [a1, a2 − b2, b1] is non-zero, i.e., at least one element is non-zero, then the range of LHS is R. But
the range of the RHS is a constant. Therefore, for the above to be true [a1, a2 − b2, b1] = 0 and
that implies a3 = b3. As a result, the linear entanglement is now confined to only the intersecting
variables z12. We can repeat this argument for all elements in B1 ∩ B2.

In the proof so far, we relied on the assumption that the components impacted by each intervention
i ∈ I are known. We now relax this assumption and work with assumption that was used in
the previous theorem (Assumption 6), which states that the agent knows the group label of each
perturbation.

Consider the latents in the block B1 ∈ GI1 , which we denote as z1. We apply Theorem 2 to this block.
Let the set of estimated latents that affine identify B1 be ẑ1 = [ẑα1 , · · · , ẑαp], where {α1, · · · , αp} is
the set of indices in ẑ. We write this as [ẑα1

, · · · , ẑαp
] = A1z1 + c1. B̃1 denotes the set of remaining

latents not in the block B1. We denote the latents in the block B̃1 as z1c . Following Theorem 2, we
get that the remaining elements of ẑ other than ẑ1, which we denote as ẑ1c , affine identify the latents
z1c in the block B̃1.

Similarly, consider the latents in the group B2 ∈ GI2
denoted as z2. ẑ2 = [ẑβ1

, · · · , ẑβp
] denotes the

latents that affine identify z2. B̃2 is the set of remaining latents. The remaining elements of ẑ other
than ẑ2 are denoted as ẑ2c . ẑ2c affine identifies the latents in the block B̃2, which are denoted as z2c .

17

The latents z11 ∈ B1 \ B2, z12 ∈ B1 ∩ B2, and z22 ∈ B2 \ B1. Consider a latent that is shared
between ẑ1 and ẑ2. Using the same analysis from equation (15), we show that such an element puts a
non-zero weight only on z12. Therefore, all the latents shared between ẑ1 and ẑ2 have a non-zero
weight on z12. Now consider a component of ẑ1 denoted as ẑαk

, which is not present in ẑ2. We can
write the affine identification condition as

ẑαk
= cT1 z

11 + cT2 z
12 + c3 (16)

We selected ẑαk
, which is not present in ẑ2. Since ẑαk

is in ẑ2c , we have

ẑαk
= dT1 z

2
c + d3 (17)

If we take a difference of the above two equations (16) and (17), we get that c2 is equal to zero (see
the justification below).

dT1 z
2
c + d3 − cT1 z

11 − cT2 z
12 − c3 = 0 (18)

Note that there is no term associated with z12 in equation (17) as z2c is the set of elements not in z2.
Now since the above equation (17) holds for all z, we get c2 = 0.

From the above analysis we conclude that the latents in ẑ1 can be divided into two parts i) the latents
that are shared with ẑ2; these latents are an affine transform of z12, ii) the latents that are not shared
with ẑ2; these latents are an affine transform of z11. We write this condition as

ẑ1 =

[
e1 0
0 e2

] [
z11

z12

]
+ e3 (19)

Similarly, we get

ẑ2 =

[
f1 0
0 f2

] [
z22

z12

]
+ f3 (20)

We have already discussed above that f2 = e2 and the latter half of f3 corresponding to z12 is equals
corresponding half of e3.

From the previous theorem, we know that the matrices in the above equations (19) and (20) are
invertible. Thus if z12 has q components, then e2 is an invertible q × q matrix and e1 is an invertible
p − q × p − q matrix. This establishes the affine identification of the smaller blocks obtained by
intersection of the blocks across two sets of non-overlapping blockwise perturbations. This completes
the proof.

Theorem 8. (Restatement of Theorem 4) Suppose Assumptions 1, 3, 6 and 8 hold, then the encoder
that solves the identity in equation (3) (where ∆

′
is p-sparse, dim

(
span

(
∆

′))
= d) identifies true

latents up to permutations and scaling, i.e., ẑ = ΠΛz + c, where Π ∈ Rd×d matrix and Λ ∈ Rd×d is
a diagonal matrix.

Proof. In the above theorem, we use a set of perturbations I that are p-sparse and satisfy the following
property. The first d − (p − 1) blocks are {i, · · · , i + p − 1} from i = 1 to i = d − p + 1. The
remaining p − 1 blocks are {i, · · · , (i + p − 1) mod (d + 1) + 1} from i = d − p + 2 to d. In
the d blocks each latent component i is the first element of the block exactly once and also the last
component exactly once.

Construct a partition of perturbations I1 with continguous blocks {k, · · · , k + p − 1} and so on.
Similarly, construct a partition of perturbations I2 {k− (p− 1), · · · , k} and so on. Note that k is the
first element of its block in I1 and it is the last element of its block in I2. We can apply the Theorem
3 to conclude that kth component is identified up to scaling and permutation error. We can state the
same for all the components. This completes the proof.

18

A.2 Extensions

A.2.1 Extending Theorem 1

In Theorem 1, we assumed that the number of perturbations m is equal to the number of latent
dimensions d. Suppose the number of perturbations is larger than d. We subsample d distinct
perturbation indices from {1, · · · ,m}. We solve the identity with the data generated under sub-
sampled perturbations in equation (3) with one-sparse guesses. If a solution exists, then we can
continue to use the analysis in Theorem 1. If a solution does not exist, we sub-sample again and solve
the identity in equation (3) until we find a solution.

In Theorem 1, we assumed that the learner knows that the perturbations in equation (24) are one
sparse. Suppose the learner instead guesses that the perturbations are p-sparse, where 1 < p < d
and d mod p = 0. In this case, we can use analysis similar to Theorem 2 and guarantee blockwise
identification, where the blocks are of size p× p.

A.2.2 Extending Theorem 2

In this section, we discuss how we can relax Assumption 6. We first show how to extend Theorem 2
to this setting. Later we describe how the same ideas can be extended to setting presented in Theorem
4. In this section, we propose a sparsity test, which would be used to test if the encoder learned is
p-sparse or not. For the rest of the section, we assume that d mod p = 0. The number of blocks is
r = d

p .

We take each sample point (x, x̃1, · · · , x̃m) and divide it into two parts. We keep the first d pertur-
bations in one set (x̃1, · · · , x̃d) to train the encoder and we use the remaining (x̃d+1, · · · , x̃m) for
checking sparsity. We refer to the first d perturbations as training perturbations and the remaining
perturbations as validation perturbations.
Assumption 9. {δi}di=1 is the set of training perturbations, which are p-sparse, blockwise and
non-overlapping. {δi}mi=d+1 is the set of validation perturbations, which are p-sparse, blockwise and
non-overlapping. The training perturbations span Rd.

Consider d perturbations and represent them as follows ∆d

∆d =

∆11 ∆12 · · · ,∆1r

∆12 ∆22 · · · ,∆2r

...
∆r1 ∆22 · · · ,∆rr

 (21)

where ∆ij is p × p matrix. Without loss of generality under Assumption 9, we can write ∆d as a
blockdiagonal matrix such that all matrices ∆ij = 0 for all i ̸= j.

We write the inverse of ∆d as

∆−1
d =

∆̃11 ∆̃12 · · · , ∆̃1r

∆̃12 ∆̃22 · · · , ∆̃2r

...
∆̃r1 ∆̃22 · · · , ∆̃rr

 (22)

Assumption 10. Each element in the matrix along the diagonal of ∆−1
d is non-zero, i.e., ∀k ∈

{1, · · · , d
p},∀i, j ∈ {1, · · · , p}, ∆̃kk[i, j] ̸= 0

Assumption 11. ∆
′

consists of d perturbations, which are p-sparse, blockwise and non-overlapping.

We write the d corresponding perturbations that the agent guesses in the form of a matrix as

∆
′
d =

∆

′
11 ∆

′
12 · · · ,∆′

1r

∆
′
12 ∆

′
22 · · · ,∆′

2r
...

∆
′
r1 ∆

′
22 · · · ,∆′

rr

 (23)

19

where ∆
′
ij is p× p matrix.

Define an indicator mask of the underlying matrix ∆
′
; it takes a value one wherever there is a non-zero

entry and zero otherwise. Define the set of all the masks for ∆
′

that satisfy the above assumption
(Assumption 11) asM = {1, · · · , nmasks}. Now under the Assumption 9, we get that the validation
perturbations are blockwise and non-overlapping as well (though they are not required to span the
blocks). We now formalize a simple iterative procedure in which the learner searches over masks that
are compliant with the assumption above (Assumption 9)

In the sparsity test, we take a trained encoder and check if for each of the perturbations in the
validation set, it ensures only p components change. If for any perturbation more than p estimated
components change, then the encoder fails the test.

Joint mask search and encoder learning

• Select candidate mask i fromM. Fill the non-zero entries with random values from some
distribution PM (we assume that PM has no mass on zero) to generate a candidate ∆

′

• Solve the identity in equation (3) using samples from the perturbations selected in the step
above ∆

′
. Check for p-sparsity on the set of validation perturbations. If the solution is at

most p-sparse on all the validation perturbations, then select the encoder. If the solution
fails, then i = i+ 1 and go to step one.

The mask search procedure described above requires brute force search over many masks. Even
though the procedure is computationally intractable it helps demonstrate that knowledge of sparsity
can suffice (See Theorem 9 below).
Theorem 9. Suppose Assumptions 1, 3, 9, 10, and 11 hold, then an encoder that is output learned
following the joint mask search and encoder learning procedure above identifies latents up to
permutation and block-diagonal transforms with probability one.

Proof. We take the encoder f(x) learned from joint mask search and encoder learning procedure
described above. Following Assumptions 1, 3, 9 and 11, we obtain that f(x) = ẑ = Az + c, where
x = g(z), A is an invertible matrix and c is an offset. Following the analysis in Proposition 1, we
obtain A matrix is given as A = ∆

′
d∆

−1
d (substitue ẑ = Az + c, ẑ +∆d = Az + c + A∆

′
d). We

index the matrix in terms of the blocks.

The matrix at location (i, j) is Aij = ∆
′
ij∆̃jj (since ∆ is a blockdiagonal matrix, i.e., ∆ij = 0

for i ̸= j but ∆ii ̸= 0). Each column of ∆
′

consists of p non-zero entries. Using this and
Aij = ∆

′
ij∆̃jj we obtain that the number of non-zero entries in each column of A are at least p. We

write Aij [k, q] =
∑

l ∆
′
ij [k, l]∆̃jj [l, q]. Since ∆

′
ij [k, l] and ∆̃jj [l, q] both take non-zero value, the

first term in the above summation is non-zero. Since the other terms depend on random variables
drawn independently, the probability that the sum equals zero is zero. Therefore, for each of the p
indices k where the mask is non-zero, the Aij [k, q] is non-zero.

Suppose at least one column block of A, say jp+1 : (j +1)p, contains two columns which exhibit a
different sparsity pattern. Since there are at least two columns which share a different sparsity pattern,
there is at least one row where only one of them is zero and other is non-zero. Therefore, in this
column block we have at least p+ 1 rows which have at least one non-zero element. The encoder
passed the sparsity test, i.e., for all the perturbations on blocks of the form jp + 1 : (j + 1)p we
have at most p-sparse output. Therefore, at least one of the p+ 1 rows has to multiply with the block
and output a zero, which is a zero probability event (since the non-zero elements of A matrix are
all continuous random variables). Thus if any contiguous block has different sparsity pattern across
columns, then the encoder is selected with probablity zero. Thus from this we can conclude that for a
selected encoder, each column block exhibits a sparsity pattern that is same across all the columns
in the block. To ensure that A is an invertible, all blocks exhibit a non-overlapping sparsity pattern.
Therefore, A is permutation times a diagonal matrix. We now illustrate what choices of ∆

′
lead to an

A that passes the sparsity test. If for every i there exists a unique j for which ∆
′
ij is invertible and

every other value of j, ∆
′
ij = 0, then A is permutation times a diagonal matrix. This completes the

proof.

20

In this section, we showed that we we do not need to make Assumption 6 and the knowledge of
sparsity suffices to do blockwise identification. Following similar analysis as above, we can extend
Theorem 4 as well.

A.2.3 Extension to stochastic perturbations

In the DGP considered in Assumption 1, we assumed that the perturbations are determinstic. We now
consider stochastic perturbations.

Assumption 12. The DGP follows

zi ∼ PZ , nik ∼ PNk
∀k ∈ I, xi ← g(zi) z̃ik ← zi+δk+nik,∀k ∈ I x̃ik ← g(z̃ik),∀k ∈ I

(24)
where g is injective and analytic, and Z is a continuous random vector with full support over Rd,
PNk

is the noise distribution for the kth perturbation.

Assumption 13. The perturbations in ∆ = {δ1, · · · , δm} are one-sparse. Further, the noise vectors
are also one-sparse and follow the same sparsity pattern, i.e. nik follows the same sparsity pattern
as the perturbation vector δk to which they are added.

The above two assumptions can be understood as follows. Each perturbation is one sparse, i.e., under
each perturbation one component of the latent z changes by a fixed amount plus some noise. In
the data generation process described above x̃ik corresponds to the kth perturbation of instance xi.
We write X for the random vector corresponding to unperturbed observation and X̃k as the random
vector associated with the kth perturbation. Denote the distribution of kth perturbation conditional
on X as P(X̃k|X). The learner guesses the perturbation x̂ik for instance xi as follows

x̂ik = f−1
(
f(xi) + δ

′
k + n

′
ik

)
(25)

where f is the encoder (assumed to be bijective here) used by the learner, δ
′
k is the perturbation

guessed by the learner and n
′
ik is the noise sampled by the learner. We write the random variable

based version of the above relationship as follows.

X̂k = f−1
(
f(X) + δ

′
k +N

′
k

)
(26)

The learner’s goal is to satisfy the following identity

P(X̂k|X) = P(Xk|X), ∀k ∈ I

f−1
(
f(X) + δ

′
k +N

′
k

)
d
= g(Z + δk +Nk), ∀k ∈ I

f(X) + δ
′
k +N

′
k

d
= f(Xk) = f ◦ g(Z + δk +Nk), ∀k ∈ I

a(Z) + δ
′
k +N

′
k

d
= a(Z + δk +Nk), ∀k ∈ I

(27)

where d
= denotes equality in distribution. The above identity is the same as the equivariance in

distribution condition arrived at in Ahuja et al. (2022). We now see how sparsity in the changes can
be exploited to guarantee strong identification similar to our result in Theorem 1.

a(Z + δk +Nk) = a(Z) +

J1(Z

′
1)

J2(Z
′
2)

...
Jd(Z

′
d)

 (δk +Nk) (28)

21

where J corresponds to the Jacobian of a. In the above equation (28), we carried out the first order
Taylor expansion. We further simplify the equivariance in distribution to get the following.

a(Z) +

J1(Z

′
1)

J2(Z
′
2)

...
Jd(Z

′
d)

 (δk +Nk)
d
= a(Z) + δ

′
k +N

′
k

J1(Z

′
1)

J2(Z
′
2)

...
Jd(Z

′
d)

 (δk +Nk)
d
= δ

′
k +N

′
k

(29)

Suppose that the first component of δk +Nk is non-zero. Due to one-sparsity we know that all the
remaining components are zero. Suppose δ

′
k +N

′
k also have the same sparsity pattern as δk +Nk

(we can arrive at qualitatively the same result that follows even in the absence of this assumption). As
a result, [J21(Z

′
2), · · · , Jd1(Z

′
d)] = 0. Suppose a is analytic. As a result, the Jacobian J is analytic

as well. Further, suppose that the support of Z
′
j for all j ≥ 2 has a non-zero measure (this condition

is the extension of Assumption 3 from deterministic case to the stochastic case). From (Mityagin,
2015) it follows that [J21(z), · · · , Jd1(z)] = 0 is identically zero. Since the identity in equation (28)
holds for all k we can conclude that the Jacobian of a is a diagonal matrix. Since ẑ = a(z), we
can conclude that changes to one component of z impact exactly one component of ẑ and not the
rest. Thus we can conclude we have perfect disentanglement. So far we analyzed the case where
perturbations are one-sparse. We can generalize the above argument to non-overlapping blockwise
perturbations following similar arguments to the deterministic case as well.

A.2.4 Extension to non-linear mechanisms for perturbations

In the main body of the paper, we assumed that the data is generated under sparse and fixed
perturbations. We now extend our analysis to the case where different perturbation can be applied to
different points z. A mechanism m : Rd → Rd takes as input the latent and outputs the perturbation
vector. We call a mechanism p-sparse, if it only changes p components out of the d latents, i.e.,
∀z ∈ Rd, ∃ d− p components of z which remain unchanged on application of m. We write this data
generation process as follows.
Assumption 14. The DGP follows

z ∼ PZ , z̃k ← z +mk(z) ∀k ∈ I, x̃k ← g(z̃k) ∀k ∈ I, (30)

where g is injective and analytic, and Z is a continuous random vector with full support over Rd, mk

is the kth perturbation mechanism.

Assumption 15. Each mk is one-sparse. For each latent dimension i ∈ {1, · · · , d}, ∃ a mechanism
mk ∈ {m1, · · · ,mm} that changes that latent dimension.

Recall that a = f ◦ g, where f is the encoder that the learner uses. We state the assumption on a
below.
Assumption 16. a is an analytic function. For each component i ∈ {1, · · · , d} of a(z) and each
component j ∈ {1, · · · , d} of z, define the set Sij = {θ | ai(z + b) = ai(z) +∇jai(θ)b, z ∈ Rd},
where b is a fixed vector in Rd. Each set Sij has a non-zero Lebesgue measure in Rd.

For each perturbation, the learner uses a m
′
k : Rn → Rd to guess the changes caused by the true

mechanism mk. We write the identity that the learner solves as follows. ∀k ∈ {1, · · · ,m} and
∀(x, x̃k) generated by the DGP in Assumption 14

f(x̃k) = f(x) +m
′
k(x). (31)

Theorem 10. If Assumption 14, 15, and 16, hold, then the solution to equation (31) (with one-sparse
m

′
k), satisfies ẑ = ΠΛ(z) + c, where Π is a permutation matrix, Λ(z) = diag[λ(z1), · · · , λ(zd)] is a

function whose each component exactly depends on one latent dimension.

22

Proof.

f(x̃k) = f(x) +m
′
k(x),

a(z̃k) = a(z) +m†
k(z),

a(z +mk(z)) = a(z) +m†
k(z),

(32)

where m†
k = m

′
k ◦ g. We drop k from the above equation for ease of presentation and get

a(z +m(z)) = a(z) +m†(z) (33)

We do a Taylor expansion of a around z to get

a(z) + [J1(z
′
1), J2(z

′
2), · · · , Jd(z

′
d)]m(z) = a(z) +m

′
(z)

=⇒ [J1(z
′
1), J2(z

′
2), · · · , Jd(z

′
d)]m(z) = m

′
(z)

(34)

Suppose m(·) and m
′
(·) are both one-sparse and impact the first component of z. From the above it

follows that all elements of [J21(z′1), · · · , Jd1(z′d)] are zero except J11(z
′
j). Since the above holds

true for all z, [J21(z′1), · · · , Jd1(z′d)] would be zero on a set of measure non-zero. Thus [J21, · · · , Jd1]
is identically zero. We can repeat the same argument for all the columns and conclude that in each
column all rows except one are zero. From this we can conclude that a(z) = ΠΛ(z) + c.

We can follow the same line of reasoning and argue for blockwise identification as well.

23

A.2.5 Connection with causal interventions

In the DGP in equation (24), we assumed that Z is sampled from any distribution PZ . We now
consider a special case, where Z = [Z1, · · · , Zd] follows a certain structural causal model S given as

Zi ← fi(Pa(Zi), Ui),∀i ∈ {1, · · · , d} (35)

where Zi is generated from its parent variables denoted by Pa(Zi) using the mechanism fi :
ΠPa(Zi)Zi × Ui → R, which also takes the noise variable Ui as input. The support of Zi is
denoted by Zi and that of Ui is denoted by Ui. Suppose we perturb Zk. Under this perturbation all
the latent variables for which Zk is an ancestor are going to be also affected, while keeping the rest
of the variables unchanged.

Post the perturbation, the immediate children of Zk are affected and then their children and so on.
Therefore, it is reasonable to assume that we first observe the impact of perturbation on Zk itself and
eventually observe the impact on child variables. Consider a sample point [(z1, · · · zd), (x1, · · · , xn)]
generated by equation (1). The different observations under perturbations are

• Pre perturbation: [(z1, · · · zk, · · · , zd), (x1, · · · , xn)]

• At the time of perturbation: [(z1, · · · zk + δ, · · · , zd), (x
′
1, · · · , x

′
n)]

• Sufficiently long after the perturbation: [(z1, · · · zk + δ, · · · , z′′
d), (x

′′
1 , · · · , x

′′
n)]

In the above, the latent of the sample pre perturbation and at the time of perturbation only differ in
the perturbed components. However, when sufficient period has passed, other latent variables that are
on the downstream path from Zk also change. In this work, we only deal with original samples and
the samples at the time of perturbation. In works that rely on causal interventions such as Brehmer
et al. (2022), one assumes access to samples before perturbation and those generated sufficiently long
after the perturbation.

24

−5 0

True Z1

−5.0

−2.5

0.0

2.5

P
re

d
ic

te
d

Z

m = 0.5

−20 0 20

True Z2

−5.0

−2.5

0.0

2.5

5.0 m = 2

Figure 4: Regression of predicted latent values against true latent values for componentwise perturba-
tions (d = 10).

A.3 Supplementary materials for experiments

Loss function, architecture, and other hyperparameters In all the experiments, we optimized
equation (4) with square error loss. The encoder f was an MLP with two hidden layers of size 100
for the low-dimensional synthetic experiments and a ResNet-18 (He et al., 2015) for the image-based
experiments. For the low-dimensional synthetic experiments, we used the Adam optimizer (Kingma
and Ba, 2014) with a learning rate of 0.005 with batches of 10000 examples for 2000 epochs. For the
image-based experiments, we trained online with a learning rate of 1e− 4 and a batch size of 100.

Evaluation metrics Blockwise MCC (BMCC) is a natural extension of MCC. We compute the R2

score (using linear regression) between every pair of blocks impacted under true perturbation and the
guessed perturbation. We find the optimal matching between pairs of blocks to maximize the average
R2 score between the matched blocks. We report the R2 score under the optimal matching in Table 1.

Supplementary figures In Figure 4, we plot the predicted latents against the true latent value
for two of the ten latent dimensions (the two dimensions that we plot are randomly selected) when
we perturb one component at a time (setting corresponds to the paragraph on non-overlapping
perturbations in Section 4). The plot shows a linear relationship between the true and the predicted
latent; note that there are different slope and intercept for the different latents. The slope depends
on the ratio between the change in the true latents and the predicted latent. In Figure 5, we plot the
predicted latents against the true latent value for two of the ten latent dimensions (the two dimensions
that we plot are randomly selected) when we perturb a block of two components at a time and the
blocks overlap (setting corresponds to the paragraph on overlapping perturbations in Section 4). In
Figure 6, we show a full set of images for the experiment shown in Figure 1.

25

−10 0

True Z1

−10

0

10

P
re

d
ic

te
d
Z
i

m = 2.4

−10 0 10

True Z2

−20

0

20

m = 3

Figure 5: Regression of predicted latent values against true latent values for overlapping perturbations
(d = 10).

Figure 6: Full set of images for the experiment shown in Figure 1 used to render the supplementary
animation. The three balls on the diagonal are stationary throughout and the fourth ball is moved
across a 10 × 10 grid; we get the associated network predictions and animate them to show the
predicted movement of the stationary balls in the attached animation.

26

Table 4: Comparing MCC and BMCC for stochastic perturbations

d MCC BMCC MCC (overlap)
C-wise B-wise C-wise

6 0.99± 0.00 0.99± 0.00 0.95± 0.00

10 0.99± 0.00 0.99± 0.00 0.96± 0.00

20 0.99± 0.00 0.99± 0.00 0.98± 0.00

Table 5: Comparing MCC for perturbations (Normal latent)

d MCC MCC MCC
β = 1 β = 10 β = 100

6 0.68± 0.04 0.69± 0.02 0.72± 0.02

10 0.69± 0.03 0.69± 0.02 0.72± 0.02

20 0.70± 0.02 0.74± 0.03 0.72± 0.04

A.3.1 Experiments for the stochastic model

In Section 4, we provided experiments for deterministic perturbation model. In Section A.2.3, we
discussed the extension of the theory to stochastic perturbation model. In this section, we present the
results for the experiments on stochastic perturbation model. We consider the same data generation
process that is used in Table 1 and Table 2. We draw the latents from normal distribution used in Table
1 and Table 2. To each deterministic perturbation, we add standard normal noise (consistent with the
data generation process described in Assumption 12). Instead of exactly equating the distribution in
the LHS and RHS of the identity in equation (27), we take the expectation of the random variables on
the LHS and RHS of equation (27). Note that when we take expectation we get the same identity that
we use in equation (3). Therefore, we continue to use the loss defined in equation (4). We show the
results of the experiments averaged over five trials in Table 4. These results show that the insights
from the deterministic case carry over to the stochastic case as well.

A.3.2 Supplementary experiments for comparisons with beta-VAE

In this section, we use β-VAE from (Higgins et al., 2016). We consider three different values of β
– 1, 10 and 100. We use the similar encoder architecture as in our earlier experiments for synthetic
datasets, except now we have two linear heads one for the mean embedding and other for variance
embedding. We use the same decoder architecture as the encoder architecture used for our earlier
experiments for synthetic datasets. We use the Adam optimizer with a learning rate of 0.001. Recall
that in Table 1 we used two choices for the latent distributions. For the normal distribution (which
satisfies blockwise independence), we show the results in Table 5. For the uniform distribution, we
show the results in Table 6.

Table 6: Comparing MCC for perturbations (Uniform latent)

d MCC MCC MCC
β = 1 β = 10 β = 100

6 0.63± 0.03 0.60± 0.02 0.50± 0.08

10 0.53± 0.01 0.51± 0.01 0.43± 0.03

20 0.42± 0.01 0.40± 0.01 0.36± 0.01

27

A.3.3 Stationary point

Recall our learning objective is to minimize the objective given in Equation 4. We use a deep network,
f̃(·; θ) parameterized by θ as our encoder and we can rewrite Equation 4 as a loss function that
depends on our choice of θ and ∆′ (the learner’s guess for the offsets),

L(θ,∆
′
) = E

[∥∥∥f(x̃k; θ)− f(x; θ)− δ
′
k

∥∥∥2] = E
[∑

j

(
fj(x̃k; θ)− fj(x; θ)− δ

′
jk

)2]
(36)

We take the partial derivative of the loss with respect to one of the parameters θi and obtain

∂L(θ,∆′
)

∂θi
= Ex,x̃k

∑
j

(fj(x̃k; θ)− fj(x; θ)− δ
′
jk)︸ ︷︷ ︸

=:ej(x,x̃k,θ)

(
∂fj(x̃; θ)

∂θi
− ∂fj(x; θ)

∂θi
)︸ ︷︷ ︸

=:ϕj(x,x̃k,θ)

Suppose we learn a function f̃ for which ej(x, x̃k, θ) is independent of x and x̃ and we denote it as
ej(θ) for all j ∈ {1, · · · , d}. Under this assumption, we simplify the above expression as follows.

∂L(θ,∆′
)

∂θi
=

∑
j

ej(θ)Ex,x̃k

[
ϕj(x, x̃k, θ)

]
=

∑
j

ej(θ)µj(θ)

where µj(θ) = Ex,x̃k

[
ϕj(x, x̃k, θ)

]
. µj(θ) measures the expected difference in the guessed pertur-

bation for the component j when parameter θi of the neural network is changed. If the impact of
change in the parameter is similar on average across all the components, then µj(θ) = µk(θ) = µ(θ)
for all j ̸= k, which leads to

∂L(θ,∆′
)

∂θi
=

∑
j

ej(θ)Ex,x̃k

[
ϕj(x, x̃k, θ)

]
= µ(θ)

∑
j

ej(θ) (37)

Under these conditions, this is a stationary point if
∑

j ej(θ) = 0. Empirically we observe that if j is
perturbed by c, then ej(θ) =

c
2 and other components k ̸= j, ej(θ) = −c

2(nballs−1) . If we substitute this
in the equation above, we find that the partial derivative is zero. Since this holds for all the components
θi, we can conclude that the point observed empirically is a stationary point. Under the assumption
that ej(x, x̃k, θ) is independent of x, x̃k, we can follow the analysis presented in proof of Theorem 1,
we get ẑ = Az+ c. If z changes by [c, 0, · · · , 0], then ẑ = [c2 ,−

c
2(nballs−1) , · · · ,−

c
2(nballs−1)]. We use

this to obtain A[i, j] = −1
2(nballs−1) , where i ̸= j and A[i, i] = 1

2 . If nballs =∞, then A is a diagonal
matrix, which implies that the MCC is one. In the discussion above, we assumed that the learner
knows the component that changes. If the learner does not know the component that changes, then
that introduces permutation errors as well.

A.3.4 Compute used

The synthetic experiments were conducted on a 2.2 GHz Quad-core Intel Core i7. The image-based
experiments were each conducted on a single GPU on a 6 core node with 16GB of allocated memory.
The nodes were requested from am internal shared compute cluster with approximately 500 GPUs
shared across a large number of users. Most of the GPUs are Nvidia RTX-8000 and a small number are
Nvidia V100s; both types of GPUs were used to conduct the experiments depending on availability.

A.3.5 Assets used and the license details

We used the code from https://github.com/brendel-group/cl-ica, which uses the MIT
license. We also used code from https://github.com/pygame/, which is distributed under GNU
LGPL version 2.1.

28

https://github.com/brendel-group/cl-ica
https://github.com/pygame/

	Introduction
	Related works
	Latent identification under sparse perturbations
	Sparse perturbations
	Non-overlapping perturbations
	Overlapping perturbations

	Experiments
	Discussion and limitations
	Acknowledgements
	Appendix
	Proofs
	Extensions
	Extending Theorem 1
	Extending Theorem 2
	Extension to stochastic perturbations
	Extension to non-linear mechanisms for perturbations
	Connection with causal interventions

	Supplementary materials for experiments
	Experiments for the stochastic model
	Supplementary experiments for comparisons with beta-VAE
	Stationary point
	Compute used
	Assets used and the license details

