
DreamShard: Generalizable Embedding Table
Placement for Recommender Systems

Daochen Zha1 Louis Feng2 Qiaoyu Tan3 Zirui Liu1 Kwei-Herng Lai1
Bhargav Bhushanam2 Yuandong Tian2 Arun Kejariwal2 Xia Hu1

1Rice University 2Meta Platforms, Inc. 3Texas A&M University
{daochen.zha,Zirui.Liu,khlai,Xia.Hu}@rice.edu
{lofe,bbhushanam,yuandong,akejariwal}@fb.com

qytan@tamu.edu

Abstract

We study embedding table placement for distributed recommender systems, which
aims to partition and place the tables on multiple hardware devices (e.g., GPUs)
to balance the computation and communication costs. Although prior work has
explored learning-based approaches for the device placement of computational
graphs, embedding table placement remains to be a challenging problem because of
1) the operation fusion of embedding tables, and 2) the generalizability requirement
on unseen placement tasks with different numbers of tables and/or devices. To
this end, we present DreamShard, a reinforcement learning (RL) approach for
embedding table placement. DreamShard achieves the reasoning of operation
fusion and generalizability with 1) a cost network to directly predict the costs
of the fused operation, and 2) a policy network that is efficiently trained on an
estimated Markov decision process (MDP) without real GPU execution, where
the states and the rewards are estimated with the cost network. Equipped with
sum and max representation reductions, the two networks can directly generalize
to any unseen tasks with different numbers of tables and/or devices without fine-
tuning. Extensive experiments show that DreamShard substantially outperforms
the existing human expert and RNN-based strategies with up to 19% speedup over
the strongest baseline on large-scale synthetic tables and our production tables.
The code is available at https://github.com/daochenzha/dreamshard.

1 Introduction

Embedding learning is a commonly used technique to deal with categorical features in deep rec-
ommendation models by mapping sparse features into dense vectors [1, 2, 3, 4, 5]. However, the
embedding tables can be extremely large due to the large feature sizes [6]. For example, in the
YouTube recommendation model, a single categorical feature contains tens of millions of video
IDs [7]; the Meta recommendation model demands multi-terabyte memory [8]. Distributed training
has been adopted to place the tables on multiple hardware devices such as GPUs [3, 6, 9, 10, 11].
However, even with distributed training, the embedding tables are often still the efficiency bottlenecks.
For instance, embedding lookup is shown to dominate the training throughput in the Meta recommen-
dation model [8]. In our internal production model, which has hundreds of tables, embedding lookup
accounts for 48% and 65% of the total computation and communication costs, respectively.

How the embedding tables are placed can significantly impact the costs. Figure 1 shows the traces
of different placement strategies on a task of placing 50 tables on 4 devices. Typically, embedding
lookup consists of four stages. In the forward pass, the sparse indices are mapped into dense
vectors (forward computation), which are then sent to the target devices (forward communication).

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://github.com/daochenzha/dreamshard

Forward
Computation

Backward
Computation

Forward
Communication

Backward
Communication

GPU1

GPU2

GPU3

GPU4

D
ev

ic
e

Timestamp (millisecond)
10 20 30 40 50 60

56.6

(a) Random placement

GPU1

GPU2

GPU3

GPU4

D
ev

ic
e

Timestamp (millisecond)
10 20 30 40 50 60

42.8

(b) The existing best human expert strategy

GPU1

GPU2

GPU3

GPU4

D
ev

ic
e

Timestamp (millisecond)
10 20 30 40 50 60

35.95

(c) DreamShard

Figure 1: Visualization of random placement,
the existing best human expert strategy, and
DreamShard on a task of placing 50 tables on
4 GPUs. The dense computations and commu-
nications are omitted in the traces because they
do not have an imbalance issue. We provide
more visualizations in Appendix L.

In the backward pass, the gradients of the embed-
ding vectors are sent back from the target devices
(backward communication) and applied to the em-
bedding vectors (backward computation). The ta-
bles will easily lead to imbalances if not carefully
partitioned. The random placement in Figure 1a
is bottlenecked by GPU2 with a 56.6 milliseconds
latency, while the more balanced placements in Fig-
ure 1b and 1c significantly reduce the costs to 42.8
and 35.95 milliseconds, respectively. This work
asks: given a set of embedding tables, how can we
identify the best placement of the tables to balance
the costs?

Device placement is essentially a partition problem,
which is one of the classical NP-hard combinatorial
optimization problems [12]. A recent line of re-
search uses reinforcement learning (RL) for device
placement of computational graphs [13, 14, 15, 16,
17, 18, 19, 20]. For example, [13] proposed to train
an RNN controller with content-based attention to
predict the placement. Other studies advanced [13]
in different ways, such as using hierarchical mod-
els [14], more sophisticated RL algorithms [15],
and graph neural networks [16].

However, embedding table placement remains to be
an open and challenging problem due to the oper-
ation fusion [21] of tables and the generalizability
requirement. 1) Modern embedding implementa-
tions (e.g., FBGEMM [22]), use a single operation
to subsume multiple tables for acceleration. The
speedup of the fused operation over the sum of
the single-table operation costs is not constant and
depends on the characteristics of the fused tables
(e.g., table dimensions). Our analysis finds that the
speedups vary significantly across different table
combinations, ranging from 1X to 3X (Figure 12 in Appendix A.3.2). Thus, we not only need to
reason about cost balance but also how the tables should be fused to maximize the speedup. 2) In
real-world scenarios, the adopted embedding tables and the available devices can change frequently
(e.g., machine learning engineers/researchers may conduct concurrent experiments with various table
combinations and numbers of devices). Thus, a practical algorithm should generalize to tasks with
unseen tables, different numbers of tables, and different numbers of devices. It is non-trivial to
achieve this with the existing device placement approaches.

To this end, we introduce DreamShard, an RL approach for embedding table placement. DreamShard
achieves the reasoning of operation fusion and generalizability with two novel ideas. 1) It learns a
cost network to directly predict the costs of the fused operations. Specifically, the network takes
as input the table features (e.g., table dimension) of each single-table and outputs the computation
and communication costs. 2) It trains a policy network by interacting with an estimated Markov
decision process (MDP) without real GPU execution, where the states and the rewards are estimated
by the predictions of the cost network. Equipped with sum reductions for the table representations
and max reductions for the device representations, the two networks can directly generalize to unseen
placement tasks with different numbers of tables and/or devices without fine-tuning.

Extensive experiments show that DreamShard outperforms the existing human expert and RNN-
based [13] strategies on open-sourced synthetic tables [23] and our production tables, achieving up
to 19% speedup over the strongest baseline. Moreover, it can generalize to unseen tasks that have
different numbers of tables and/or devices with neglectable performance drop (< 0.5 milliseconds).
Additionally, its inference is very efficient. It can place hundreds of tables in less than one second.

2

2 Generalizable Embedding Table Placement Problem

The embedding table placement problem seeks a device placement1 of all the tables such that the over-
all cost (in terms of execution time) is minimized (we provide a background for the distributed training
of recommendation models in Appendix A.1). Consider M embedding tables {e1, e2, ..., eM} and D
devices, where ei ∈ RN denotes the table features that characterize the embedding lookup patterns.
In our work, we use 21 table features, including hash size, dimension, table size, pooling factor,
and distribution (their definitions are provided in Appendix A.2). A placement a = [a1, a2, ..., aM],
where ai ∈ {1, 2, ..., D}, assigns each table to a device. Let c(a) denote the cost measured on
GPUs. The goal of embedding table placement is to find the a such that c(a) is minimized. Due
to the NP-hardness of the partition problem [12], identifying the exact solution demands extensive
computational overhead. Thus, the state-of-the-art algorithms often approximate the optimal parti-
tion via sampling with RL [24, 13]. However, sampling remains expensive because obtaining c(a)
requires running operations on GPUs. Given that the embedding tables and the available devices can
frequently change, we wish to approximate the best a without GPU execution.

Motivated by this, we study the generalizable embedding table placement (GETP) problem. Let
E be the space of all the embedding tables. A placement task can be denoted as Ti = (Ei, Di),
where Ei ⊆ E is a set of tables, and Di is the number of devices. Given Ntrain training tasks
Ttrain = {T1, T2, ..., TNtrain}, and Ntest testing tasks Ttest = {T1, T2, ..., TNtest}, the goal is to train a
placement policy based on Ttrain (GPU execution is allowed during training) such that the learned
policy can minimize the costs for the tasks in Ttest without GPU execution.

3 DreamShard Framework
...

Final State

Est im ated MDP

RL Agent

Policy
Network

Device 1

Device 2

State t=0 State t=1

Real Har dwar e

Sam pled
Act ion

Est im ated
State

Est im ated
Rewar d

Placem ent

Cost
Data

Figure 2: DreamShard framework. The agent
interacts with the estimated MDP, which is
trained with the cost data collected from GPUs.

We present DreamShard, an RL framework based
on estimated MDP, to tackle the GETP problem.
An overview of the framework is shown in Figure 2.
The key idea is to formulate the table placement
process as an MDP (Section 3.1) and train a cost net-
work to estimate its states and rewards (Section 3.2).
A policy network with a tailored generalizable net-
work architecture is trained by efficiently interact-
ing with the estimated MDP (Section 3.3). The
two networks are updated iteratively to improve the
state/reward estimation and the placement policy.

3.1 MDP Formulation

Given embedding tables {e1, e2, ..., eM} and D devices, we aim to generate a placement a =
[a1, a2, ..., aM]. The key idea is to place the tables one by one at each step, where the state character-
izes the tables that have been placed so far, the action is the device ID, and the reward represents the
execution time on GPUs. Specifically, at a step t, the state st = {st,d}Dd=1 is all the table features
of the tables placed on all the devices, where st,d = {ei|i ∈ Pd} denotes all the table features
corresponding to device d (Pd is the set of table IDs that have been placed on device d). We further
augment the raw features with cost features which are obtained by collecting the operation computa-
tion and communication times from GPUs (Appendix A.3 provides a comprehensive analysis of the
cost features). Formally, the augmented state is defined as s̃t = {st, {qt,d}Dd=1}, where qt,d ∈ R3 has
three elements representing forward computation time, backward computation time, and backward
communication time for the current operation in device d (we provide detailed explanations of why
forward communication time is excluded in Appendix A.4). We find that the augmented cost features
can significantly boost the performance, evidenced by the ablations in Table 3. The action at ∈ At

is an integer specifying the device ID, where At is the set of legal actions at step t. A device ID is
considered legal if placing the current table on the corresponding device does not cause a memory
explosion. The reward rt is 0 for all the intermediate steps, and the reward at the final step M is the
negative of the cost, i.e., rM = −c(a), which encourages the agent to achieve lower cost.

1In this work, we focus on GPU devices, where all the GPU devices are identical, which is the most common
configuration in our production. We defer the mixed scenarios of both GPUs and CPUs to future work.

3

Table to be Placed Placed to Device 1 Placed to Device 2

Act ion

Device 1

Act ion

Device 2

Act ion

Device 2

Act ion

Device 1
... Act ion

Device 1

Step t=0 Step t=1 Step t=2 Step t=3 Step t=8

Final
Placem ent

Unplaced Table

Figure 3: MDP formulation of embedding table placement.

Device 1 Device 2

Shared Feature Extraction MLP

Sum Sum

Shared Policy Head MLP

Softmax Layer

Device 1 Device 2

Shared Feature Extraction MLP

Sum Sum

Overall Cost Head

Max

Pr edicted Over al l Cost
(Rewar d)

F
o

rw
ard

H

ead
B

ackw
ard

H

ead
C

o
m

m
.

H
ead

Pol i cy Networ kCost Networ k

P
red

icted

B
a

ck
w

a
rd

 C
o

st
P

red
icted

C

o
m

m
. C

o
st

P
red

icted

F
o

rw
a

rd
 C

o
st

Cost Featur es Cost Featur es

Cost
Network

Cost
Network

Pr edicted Cost
Featur es (State)

Figure 4: DreamShard’s cost network (left) and policy network (right).

The procedure is illustrated for an example task of placing 8 tables {e1, e2, ..., e8} on 2 devices
in Figure 3. At step 0, no table has been placed so s0 = {{}, {}} and the augmented state
s̃0 = {s0, {q0,0,q0,1}}, where both q0,0 and q0,1 are zero vectors (i.e., [0, 0, 0]) since all the
computation and communication times are 0 as well. Then the action a0 = 1 makes the MDP transit
to the next state s1 = {{e1}, {}} with its corresponding augmented state s̃1 = {s1, {q1,0,q1,1}},
where q1,0 becomes a non-zero vector containing the computation and communication costs by
running {e1} and {} on GPUs. We repeat the above process, and finally at step 8, we have
s8 = {{e1, e4, e7, e8}, {e2, e3, e5, e6}}. The corresponding q8,1, and q8,2 are the measured times of
running {e1, e4, e7, e8} and {e2, e3, e5, e6} on two devices. The action sequence a = [a1, a2, ..., a8]
is the generated placement, which is then evaluated on GPUs to obtain the reward.

Discussion 1. The MDP enjoys two desirable properties. 1) The legal action At can guarantee that
the generated placement satisfies the memory constraints. 2) The one-by-one placement enables the
agent to be generalized across different numbers of tables. For example, an agent trained on an MDP
with very few tables can be applied to another MDP with more tables by simply executing more steps.

Discussion 2. A straightforward idea to solve the MDP is to greedily place the current table on the
device with the lowest cost at each step, where the cost function can be one of or a combination of
the state features (e.g., the sum of the table dimensions, or the sum of all the cost features). However,
greedy heuristics are often sub-optimal. Thus, we seek a learning-based algorithm to explore various
placement possibilities and make comprehensive decisions based on all the state features.

3.2 Learning an Estimated MDP

Interacting with the above MDP is computationally expensive since obtaining the cost features and
the reward requires GPU execution. Motivated by world models [25, 26], we build an estimated
MDP by approximating the cost features and the reward with a cost network. Let fcost denote the cost
network. fcost takes as input the raw table features st, and predicts cost features {qt,d}Dd=1 and the
overall cost c(a). fcost is trained with mean squared error (MSE) loss using the cost data collected
from the GPUs. Once trained, it can predict the cost features or the reward with a single forward pass
without GPU execution. However, it is non-trivial to design the architecture of fcost because it needs

4

Algorithm 1 Training of DreamShard

1: Input: Training tasks Ttrain, the number of data collection steps Ncollect, the number of cost
network update steps Ncost, the batch size for updating the cost network Nbatch, the number RL
update steps NRL, the number of considered episodes in each RL update Nepisode

2: Initialize a cost network, a policy network, and a buffer
3: for iteration = 1, 2, ... until convergence do
4: for step = 1, 2, ... Ncollect do ▷ Collect cost data from GPUs
5: Randomly sample a training task from Ttrain
6: Generate a placement by interacting with the estimated MDP using the policy network
7: Evaluate the placement on the hardware and store the collected cost data to the buffer
8: end for
9: for step = 1, 2, ... Ncost do ▷ Update the cost network (no GPU execution)

10: Randomly sample Nbatch cost data from the buffer
11: Update the cost network based on MSE loss (Eq. 1 in Appendix B.4.1)
12: end for
13: for step = 1, 2, ... NRL do ▷ Update the policy network (no GPU execution)
14: Randomly sample a training task from Ttrain
15: Collect Nepisode episodes by interacting with the estimated MDP using the policy network
16: Update the policy network based on the policy gradient loss (Eq. 2 in Appendix B.4.1)
17: end for
18: end for

to accommodate different numbers of devices (i.e., st can have variable sizes), and different numbers
of tables in each device (i.e., st,d can have variable lengths).

The left-hand side of Figure 4 shows DreamShard’s generalizable design of fcost, which is based on
two key ideas. First, it uses a shared MLP to map raw table features into table representations. For
any unseen tables, this MLP can be directly applied to extract table representations. Second, it enables
a fixed-dimension representation for each device with sum reductions (i.e., the element-wise sum of
the table representations in the device), and similarly for the overall representation across devices
with max reductions (Appendix B.3 compares different reduction choices and finds that this sum-max
combination leads to the most accurate prediction). The reduced representations are then followed by
multiple MLP heads for cost predictions. For unseen tasks with different numbers of tables and/or
devices, the reductions will always lead to fixed-dimension device/overall representations, so that the
prediction heads can be directly applied. Appendix B.1 provides more details.

3.3 Training the Policy Network on the Estimated MDP

Generalizable policy network architecture. Let π be the policy network. π maps the augmented
state s̃t = {st, {qt,d}Dd=1} to action at, i.e., at = π(s̃t). π also adopts a generalizable design, shown
in the right-hand side of Figure 4. Like fcost, π uses a shared MLP and sum reductions to produce
a fixed-dimension representation, which is then concatenated with the cost features to obtain the
device representation. To accommodate the potentially variable action space (i.e., the number of
available devices may vary), a shared MLP will process each device representation separately to
obtain a confidence score, followed by a Softmax layer to produce action probabilities. This design
allows π to generalize across different numbers of devices. Appendix B.2 provides more details.

Training and inference. Algorithm 1 summarizes the training procedure of DreamShard, which
iteratively executes the following: 1) collect cost data from GPUs based on the placements generated
by the current policy, 2) update the cost network with the previously collected cost data, and 3)
update the policy network by interacting with the current estimated MDP. Throughout the training
process, the estimated MDP gradually becomes more accurate, and the resultant policy network tends
to generate better placements. Appendix B.4.2 provides more details of the training procedure. For
the inference, the trained cost network and policy network can be directly applied to unseen tasks to
generate placements without GPU execution, which is summarized by Algorithm 2 in Appendix B.4.3.

5

4 Experiments

Our experiments aim to answer the following research questions. RQ1: How does DreamShard
compare with the existing human expert and RL-based placement strategies? RQ2: Can DreamShard
generalize to placement tasks with different numbers of tables and/or devices? RQ3: How efficient
is the training of DreamShard? RQ4: How do the hyperparameters influence the performance of
DreamShard? RQ5: How does each component of DreamShard contribute to the performance? RQ6:
How accurate is the estimated MDP and to what extend can it accelerate the training and inference?

4.1 Experimental Setup

Datasets. Academic recommendation datasets are often too small to enable a meaningful evaluation
because the cost will always be very small no matter how the tables are placed. Thus, we use
two industrial-scale datasets. DLRM2 is a large-scale synthetic dataset with 856 tables, recently
released by Meta. It shares memory access reuse patterns similar to those arising in Meta production
workloads. Prod is an internal large-scale dataset for production recommendation models. It has a
similar scale as DLRM. The main difference is that DLRM only has a fixed dimension for all the
tables, while Prod is more challenging with diverse table dimensions, ranging from 4 to 768. For
reproducibility, we mainly focus on the DLRM dataset since it is open-sourced. We only report the
main results on the Prod dataset for verification purposes. We provide more details in Appendix C.

Baselines. We compare DreamShard against human expert strategies from previous work [27, 8, 28],
including size-based, dim-based, lookup-based, size-lookup-based greedy balancing strategies.
We also include an RNN-based RL algorithm [13], which uses RNN architecture to map operators
to devices. Since the feature extraction layers of the RNN-based method were designed for other
operations instead of embedding tables, for a fair comparison, we adapt [13] by making it have the
same feature extraction layers as in DreamShard. We provide more details in Appendix D.

Configurations. To evaluate the generalizability of DreamShard, we randomly divide the tables into
a training pool E train and a testing pool E test. The two pools have the same number of tables but they
are not overlapped. A sharding task Ti is constructed by randomly sampling a subset of |Ei| tables
from a pool, where the number of tables |Ei| ∈ {10, 20, 30, 40, 50, 60, 70, 80, 90, 100} for the DLRM
dataset, and |Ei| ∈ {20, 40, 80} for the Prod dataset. For all the experiments, we randomly sample 50
training and 50 testing tasks from E train and E test, respectively. DreamShard is trained on the training
tasks and will be evaluated on unseen tables in the testing tasks. We denote placement tasks with
different numbers of tables and devices using the format of dataset-num_tables (num_devices).
For example, DLRM-30 (4) suggests that there are 30 tables sampled from the DLRM dataset in each
training/testing task with 4 available devices. We provide more details in Appendix E.

Implementation Details. We use the same hyperparameters for all the experiments with Ncollect = 10,
Ncost = 300, Nbatch = 64, NRL = 10, Nepisode = 10, 10 training iterations, and an entropy weight of
0.001 in the policy gradient. 2080 Ti GPUs and V100 GPUs are used for the DLRM (except that we
use V100 for experiments with 8 GPUs) and Prod datasets, respectively. All the experiments are run
5 times, and we report the mean and the standard deviation. Appendix B provides more details.

4.2 Results and Analysis

Evaluation of DreamShard against baselines (RQ1). We perform qualitative and quantitative
comparisons of DreamShard against the baselines. Qualitatively, Figure 1 visualizes the traces
of DreamShard and the baselines on one of the tasks from DLRM-50 (4). DreamShard achieves
significant better overall cost than the best baseline (35.95 vs. 42.8) with 1) a better balance of forward
and backward commutation workloads, and 2) less communication time, possibly due to a better
balance of table dimensions. Quantitatively, Table 1 presents comprehensive evaluations on tasks
with different numbers of tables and devices on the DLRM and the Prod datasets. Observations: 1)
DreamShard outperforms the baselines on all the tasks. 2) DreamShard shows strong generalizability
on unseen tables, achieving the same level of performance on all the testing and training tasks. 3)
DreamShard appears to be more advantageous on harder tasks. Specifically, DreamShard achieves
more improvement over the baselines on tasks with more tables/devices on the Prod dataset. In
particular, DreamShard achieves 19% improvment over the strongest baseline on Prod-80 (8). 4)

2https://github.com/facebookresearch/dlrm_datasets

6

https://github.com/facebookresearch/dlrm_datasets

Table 1: Overall cost comparison in milliseconds and relative speedups over random placement,
averaged over 50 different randomly sampled tasks. The placement tasks are denoted as dataset-
num_tables (num_devices). For example, DLRM-30 (4) suggests that 30 tables are sampled from
the DLRM dataset for each task with 4 GPUs. More results are provided in Appendix F.

Task No strategy Human Experts RL
Random Size-based Dim-based Lookup-based Size-lookup-based RNN-based DreamShard

DLRM-20 (4) Train 24.0±0.6 22.7±0.0 (+5.7%) 21.3±0.0 (+12.7%) 19.1±0.0 (+25.7%) 19.1±0.0 (+25.7%) 22.4±0.5 (+7.1%) 18.6±0.2 (+29.0%)
Test 23.0±0.5 21.7±0.0 (+6.0%) 19.9±0.0 (+15.6%) 18.3±0.0 (+25.7%) 18.4±0.0 (+25.0%) 20.9±0.3 (+10.0%) 17.6±0.2 (+30.7%)

DLRM-40 (4) Train 41.3±0.2 39.6±0.0 (+4.3%) 37.4±0.1 (+10.4%) 33.6±0.0 (+22.9%) 33.6±0.1 (+22.9%) 39.2±0.7 (+5.4%) 32.8±0.3 (+25.9%)
Test 41.1±0.5 40.3±0.0 (+2.0%) 37.3±0.0 (+10.2%) 33.0±0.1 (+24.5%) 33.2±0.0 (+23.8%) 39.2±1.1 (+4.8%) 32.4±0.3 (+26.9%)

DLRM-60 (4) Train 57.7±0.8 56.6±0.1 (+1.9%) 52.9±0.0 (+9.1%) 49.2±0.1 (+17.3%) 49.3±0.0 (+17.0%) 55.5±0.9 (+4.0%) 47.6±0.4 (+21.2%)
Test 58.1±0.6 59.6±0.1 (-2.5%) 53.7±0.0 (+8.2%) 48.7±0.2 (+19.3%) 49.1±0.1 (+18.3%) 56.0±0.7 (+3.8%) 47.9±0.7 (+21.3%)

DLRM-80 (4) Train 75.7±1.0 76.0±0.0 (-0.4%) 70.0±0.3 (+8.1%) 64.8±0.0 (+16.8%) 65.3±0.1 (+15.9%) 73.2±2.7 (+3.4%) 62.2±0.2 (+21.7%)
Test 74.5±0.8 77.7±0.2 (-4.1%) 69.9±0.4 (+6.6%) 64.1±0.2 (+16.2%) 65.1±0.0 (+14.4%) 72.9±2.4 (+2.2%) 62.7±0.3 (+18.8%)

DLRM-100 (4) Train 91.8±1.7 94.1±0.3 (-2.4%) 86.7±0.3 (+5.9%) 81.2±0.4 (+13.1%) 82.2±0.2 (+11.7%) 94.5±10.7 (-2.9%) 78.4±0.6 (+17.1%)
Test 94.5±6.5 95.4±0.0 (-0.9%) 84.7±0.4 (+11.6%) 79.5±0.3 (+18.9%) 80.8±0.3 (+17.0%) 94.8±13.0 (-0.3%) 77.8±0.8 (+21.5%)

DLRM-40 (8) Train 15.6±0.4 14.1±0.0 (+10.6%) 13.4±0.1 (+16.4%) 9.8±0.0 (+59.2%) 9.9±0.0 (+57.6%) 16.2±0.8 (-3.7%) 9.8±0.6 (+59.2%)
Test 15.2±0.2 14.5±0.0 (+4.8%) 13.2±0.0 (+15.2%) 9.5±0.0 (+60.0%) 9.5±0.0 (+60.0%) 16.0±1.1 (-5.0%) 9.4±0.5 (+61.7%)

DLRM-80 (8) Train 25.0±0.2 24.0±0.0 (+4.2%) 21.7±0.0 (+15.2%) 17.1±0.0 (+46.2%) 17.5±0.0 (+42.9%) 51.4±3.9 (-51.4%) 16.1±0.3 (+55.3%)
Test 25.2±1.3 25.6±0.5 (-1.6%) 20.8±0.0 (+21.2%) 16.7±0.2 (+50.9%) 16.9±0.1 (+49.1%) 53.4±4.6 (-52.8%) 16.1±0.4 (+56.5%)

DLRM-120 (8) Train 34.0±0.3 32.3±0.0 (+5.3%) 29.8±0.0 (+14.1%) 24.5±0.0 (+38.8%) 25.3±0.0 (+34.4%) 58.6±2.7 (-42.0%) 23.3±0.2 (+45.9%)
Test 33.5±0.5 35.0±0.0 (-4.3%) 29.2±0.0 (+14.7%) 23.7±0.0 (+41.4%) 24.5±0.0 (+36.7%) 58.7±3.1 (-42.9%) 22.8±0.2 (+46.9%)

DLRM-160 (8) Train 42.8±0.3 41.6±0.0 (+2.9%) 39.0±0.0 (+9.7%) 32.0±0.0 (+33.7%) 32.7±0.0 (+30.9%) 58.3±3.5 (-26.6%) 30.3±0.2 (+41.3%)
Test 41.1±0.0 42.4±0.0 (-3.1%) 36.4±0.0 (+12.9%) 30.8±0.0 (+33.4%) 31.6±0.0 (+30.1%) 59.3±5.4 (-30.7%) 29.6±0.2 (+38.9%)

DLRM-200 (8) Train 51.5±1.2 48.2±0.0 (+6.8%) 48.0±0.0 (+7.3%) 38.9±0.0 (+32.4%) 39.9±0.0 (+29.1%) 68.7±2.4 (-25.0%) 37.2±0.2 (+38.4%)
Test 50.7±0.2 50.8±0.0 (-0.2%) 44.8±0.0 (+13.2%) 38.0±0.0 (+33.4%) 38.6±0.0 (+31.3%) 70.4±2.8 (-28.0%) 36.4±0.3 (+39.3%)

Prod-20 (2) Train 41.3±0.7 43.4±0.0 (-4.8%) 37.0±0.0 (+11.6%) 44.2±0.0 (-6.6%) 45.8±0.0 (-9.8%) 38.0±0.3 (+8.7%) 36.3±0.3 (+13.8%)
Test 42.8±0.4 46.1±0.0 (-7.2%) 39.5±0.0 (+8.4%) 45.9±0.0 (-6.8%) 45.7±0.0 (-6.3%) 39.3±0.6 (+8.9%) 37.5±0.2 (+14.1%)

Prod-40 (4) Train 35.1±0.3 39.4±0.0 (-10.9%) 31.3±0.0 (+12.1%) 36.4±0.0 (-3.6%) 38.8±0.0 (-9.5%) 33.9±2.5 (+3.5%) 28.3±0.3 (+24.0%)
Test 38.3±0.3 43.6±0.0 (-12.2%) 33.5±0.0 (+14.3%) 37.4±0.0 (+2.4%) 40.1±0.0 (-4.5%) 36.7±2.8 (+4.4%) 30.4±0.7 (+26.0%)

Prod-80 (8) Train 43.2±0.2 44.3±0.0 (-2.5%) 39.0±0.0 (+10.8%) 43.7±0.0 (-1.1%) 49.3±0.0 (-12.4%) 56.6±6.8 (-23.7%) 33.6±0.9 (+28.6%)
Test 47.7±0.4 53.9±0.0 (-11.5%) 41.9±0.0 (+13.8%) 46.1±0.0 (+3.5%) 49.6±0.0 (-3.8%) 62.5±4.2 (-23.7%) 35.2±0.8 (+35.5%)

Table 2: Generalization performance of DreamShard on target tasks w.r.t. to different numbers of
tables (top) and devices (bottom), averaged over 50 randomly sampled tasks. Appendix G provides
the results of more challenging tasks, such as mixed table-wise and device-wise transferring scenarios.

Source Task → Target Task Random Best baseline strategy DreamShard (trained on target task) DreamShard (trained on source task)

DLRM-20 (4) → DLRM-100 (4) 94.5±6.5 79.5±0.3 (+18.9%) 77.8±0.8 (+21.5%) 77.9±0.4 (+21.3%)
DLRM-40 (4) → DLRM-80 (4) 74.5±0.8 64.1±0.2 (+16.2%) 62.7±0.3 (+18.8%) 62.7±0.5 (+18.8%)
DLRM-80 (4) → DLRM-40 (4) 41.1±0.5 33.0±0.1 (+24.5%) 32.4±0.3 (+26.9%) 32.4±0.2 (+26.9%)
DLRM-100 (4) → DLRM-20 (4) 23.0±0.5 18.3±0.0 (+25.7%) 17.6±0.2 (+30.7%) 17.7±0.3 (+29.9%)

DLRM-20 (4) → DLRM-20 (2) 29.9±0.4 26.0±0.0 (+15.0%) 25.8±0.2 (+15.9%) 25.8±0.1 (+15.9%)
DLRM-40 (4) → DLRM-40 (2) 58.6±0.7 52.4±0.0 (+11.8%) 51.9±0.1 (+12.9%) 52.0±0.3 (+12.7%)
DLRM-20 (2) → DLRM-20 (4) 23.0±0.5 18.3±0.0 (+25.7%) 17.6±0.2 (+30.7%) 17.8±0.3 (+29.2%)
DLRM-40 (2) → DLRM-40 (4) 41.1±0.5 33.0±0.1 (+24.5%) 32.4±0.3 (+26.9%) 32.6±0.3 (+26.1%)

RNN-based method is only better than the random strategy on tasks with few tables/devices, but is
worse on harder tasks. A possible reason is that RNN-based algorithm does not have a cost network,
and using RL alone could lead to unstable performance. 5) Lookup-based strategy is the best baseline
on the DLRM dataset, while dim-based strategy is better on the Prod dataset. A potential reason is
that the tables in the Prob dataset have very diverse table dimensions, while the tables in the DLRM
dataset have the same dimension. As such, the dimensions on Prod tasks can more easily become
imbalanced, leading to poor communication efficiency. Dim-based strategy can better balance the
dimensions, which leads to a better overall performance. DreamShard outperforms the baselines on
both the DLRM and the Prod datasets, showing its flexibility in dealing with different scenarios.

Analysis of generalizability (RQ2). In Table 2, we directly apply a DreamShard model trained
from one task to another task without any fine-tuning (the rightmost column), where the source and
the target tasks have different numbers of tables and/or devices. DreamShard shows neglectable
performance drop, suggesting that it is generalizable across different numbers of tables and/or devices.

7

0 2 4 6 8
Iteration

40

50

60

70

80

Co
st

on
Tr
ai
ni
ng

Ta
sk

s

50 100 150 200 250 300 350
Time in Seconds

40

50

60

70

80

Co
st

on
Tr
ai
ni
ng

Ta
sk
s

Figure 5: Performance (↓) of DreamShard on
the DLRM-50 (4) datasets w.r.t. the numbers of
iterations (left) and running time (right). Curves
for other tasks are in Appendix H.

1 5 10 15 20
RL Update Steps NRL

40.0

40.5

41.0

Co
st

Training
Testing

50100 200 300 500
Cost Network Update Steps Ncost

39.5

40.0

40.5

41.0

41.5

Co
st

Training
Testing

Figure 6: Impacts of the number of RL update
steps NRL (left) and cost network update steps
Ncost (right) on the DLRM-50 (4) dataset. Curves
for other tasks are in Appendix I.

Table 3: Ablation study of DreamShard. Results on other tasks are in Appendix J.
Task w/o dim w/o hash size w/o pooling factor w/o table size w/o distribution w/o cost w/ RNN DreamShard

DLRM-50 (4) Train 40.8±0.4 40.7±0.1 46.3±0.3 40.8±0.4 40.6±0.2 47.5±1.2 40.5±0.2 40.4±0.5
Test 40.9±0.6 40.6±0.3 47.2±0.1 40.6±0.7 40.5±0.2 46.3±0.1 40.5±0.1 40.4±0.6

Analysis of training efficiency (RQ3). Figure 5 plots the performance of DreamShard w.r.t. the
number of iterations and running time in seconds on four 1080Ti GPUs. The training of DreamShard
is highly efficient. On DLRM-50 (4), it can achieve strong performance in less than 5 iterations or
200 seconds. Note that we only need to re-train or fine-tune DreamShard when the table pools have
significant changes. Once trained, it only needs a forward pass for inference.

Hyperparameter study (RQ4). We study the impacts of two key hyperparameters: 1) NRL, which
controls the RL update frequency, and 2) Ncost, which determines the cost network update frequency.
We vary one of them with the other fixed, shown in Figure 6. Increasing NRL or Ncost will both
lead to improvement, suggesting that both the cost network and the policy network need to be
sufficiently trained. However, when NRL and Ncost are large enough, increasing them will not bring
more improvement. Considering that larger values will lead to more computational costs, we set
NRL = 10 or Ncost = 300 as a trade-off between the performance and the training efficiency.

Ablation study (RQ5). We study the importance of each table feature and check whether the
RNN architecture helps, with the following ablations. 1) We remove each of the features in the
state. 2) We add an RNN upon the device representation in the policy network. We makes several
observations from the results in Table 3. 1) Cost features play a significant role, which demonstrates
the effectiveness of our proposed augmented state. 2) The most contributing table features are the
pooling factor and the dimension, which aligns with our intuitions since these two feature are the
determining factors of computation and communication workloads. 3) Using more features leads
to consistently good performance. 4) While the policy makes decisions sequentially, RNN does
not provide clear benefits. This is why we have kept the architecture simple with only MLP in
DreamShard.

Study of the estimated MDP (RQ6). First, we study how many data points are required to train
an accurate cost network, and how accurate the cost network needs to be to enable a strong policy.
Specifically, we randomly sample 10,000 cost data points from the DLRM-50 (4) dataset. Then
we use 20% for testing, and vary the size of the training data to train the cost network. Further,
we fully train a policy network with 100 iterations based on each of the trained cost networks. We
make two observations from the results in Figure 7. 1) As expected, more data points lead to a
more accurate cost network. 2) Interestingly, after around 100 data points, the policy network does
not keep improving even though the cost network becomes more accurate. Thus, we only need a
sufficiently (but not perfectly) accurate cost estimation to achieve the best performance. This also
partially explains why DreamShard can generalize: even though the cost network could be not very
accurate on unseen tables, DreamShard can still find strong placements with the policy network.
Second, we study the necessity of the estimated MDP. We consider a variant that obtains the cost
features and rewards directly from GPUs, shown in Figure 8. Using the estimated MDP can make the
training and the inference orders of magnitudes faster, while achieving the same level of performance.
In particular, the inference time is less than one second even with a hundred tables.

8

101 102 103 104

Number of Training Data Points

0

50

100

150

200

Te
st
in
g
M
SE

101 102 103 104

Number of Training Data Points

40

60

80

100

120

Co
st

Figure 7: MSE of the cost network w.r.t. the num-
ber of training data points collected from GPUs
(left), and the corresponding performance of a
fully trained policy network based on the trained
cost network (right) on the DLRM-50 (4) dataset.

102 103 104 105

Time in Seconds

40

50

60

70

80

Co
st

on
Tr
ai
ni
ng

Ta
sk
s w/ Estimated MDP

w/o Estimated MDP

20 40 60 80 100
Number of Tables

0

100

200

300

In
fe
re
nc

e
Ti
m
e
in

Se
co

nd
s

w/ Estimated MDP
w/o Estimated MDP

Figure 8: Training curves w/ or w/o the estimated
MDP on DLRM-50 (4) dataset (left), and their
inference times w.r.t. the number of tables (right).
Using cost network to estimate the MDP leads
orders of magnitudes faster training and inference.

5 Related Work

Embedding tables. Embedding tables are commonly used to deal with sparse features in recommen-
dation models [1, 2, 3, 4, 5, 29, 30, 31]. However, the extremely large embedding tables are often
the storage and efficiency bottlenecks [6, 7, 8, 3, 6, 9, 10, 11, 32]. To our knowledge, the only two
studies that target the embedding table placement problem are RecShard [27] and our previous work
AutoShard [33]. RecShard approaches table placement at a per-row granularity through exploitation
of the underlying feature distributions. RecShard leverages these distributions, along with charac-
teristics of the training system, to shard embedding tables across a tiered memory hierarchy using
a mixed integer linear program, with more frequent rows placed in GPU HBM and the remaining
placed in CPU DRAM. In contrast, our work develops a neural cost network for cost estimation
and an RL-based optimization algorithm, and focuses on sharding across a single memory layer as
opposed to a tiered memory hierarchy. AutoShard also leverages RL for embedding table sharding.
However, it only balances the computational costs, which will lead to sub-optimal solutions since
communication also account for significant costs. In addition, our DreamShard is more efficient in
training than AutoShard due to the design of the estimated MDP. Another line of work focuses on
reducing the embedding table sizes [34, 35, 36, 37, 38, 39, 40], which is orthogonal to our work since
DreamShard is also applicable to compressed tables.

Device placement optimization. The existing device placement techniques can be mainly grouped
into two categories: RL-based algorithms, and cost modeling methods. 1) RL-based algorithms treat
the device placement as a black box and optimize the cost objective in a trial-and-error fashion [13, 14,
15, 16, 17, 18, 19, 20]. Unfortunately, these methods are computationally expensive and often require
training from scratch on unseen tasks. While Placeto [16] shows generalizabily on computational
graphs with graph embeddings, it can not deal with various table combinations since there is no graph
structure, and it can not handle different numbers of devices. 2) Cost modeling methods build a cost
model to reflect the real performance and adopt offline algorithms (e.g., scheduling, and dynamic
programming) to optimize the placement [41, 42, 43, 44, 45]. However, the cost model could be
inaccurate. In particular, they can not deal with the operation fusion of embedding tables. Whereas,
DreamShard combines the advances of RL with a neural cost model for accurate cost prediction.

Deep RL. Deep RL has recently made significant progress in games [46, 47, 48, 49, 50, 51, 52, 53, 54].
Our work is related to using RL to optimize machine learning model designs, such as neural
architecture search [55, 56, 57, 58, 59], data augmentation [60], data sampling [61, 62], pipeline
search [63, 64, 65]. However, these methods often only focus on one task and can not generalize to
unseen tasks. Our work is related to meta-learning [66, 67, 68]. Instead of performing meta-learning
for machine learning tasks, we focus on machine learning system design. Our work is also related
to solving combinational optimization problems with RL [24, 69]. Unlike the above studies, we
show that RL can tackle a practical problem of embedding table placement and the learned policy is
generalizable.

6 Conclusions and Future Work

We present DreamShard for embedding table placement in recommender systems. We formulate
the problem as an MDP which places the tables one by one at each step. Then we leverage RL to

9

solve the MDP. To accelerate the training and the inference, we build an estimated MDP by training a
cost network to approximate the state features (i.e., computation and communication times) and the
reward (i.e., the overall cost), leading to orders of magnitudes faster training and inference speeds.
Extensive experiments on the open-sourced DLRM dataset and our production dataset demonstrate
the superiority of DreamShard over the existing algorithms. Moreover, DreamShard shows strong
generalizability, making it a desirable choice in real-world applications. In the future, we will extend
DreamShard to tiered memory hierarchy and large-scale training clusters with complex topologies.

Acknowledgements

The work is, in part, supported by NSF (#IIS-2224843). The views and conclusions in this paper are
those of the authors and should not be interpreted as representing any funding agencies. We would
also like to thank the helpful feedback from the anonymous reviewers.

References

[1] Shuai Zhang, Lina Yao, Aixin Sun, and Yi Tay. Deep learning based recommender system: A
survey and new perspectives. ACM Computing Surveys (CSUR), 52(1):1–38, 2019.

[2] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra, Hrishi Aradhye,
Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, et al. Wide & deep learning for
recommender systems. In DLRS Workshop, 2016.

[3] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu Huang, Narayanan Sun-
daraman, Jongsoo Park, Xiaodong Wang, Udit Gupta, Carole-Jean Wu, Alisson G Azzolini,
et al. Deep learning recommendation model for personalization and recommendation systems.
arXiv preprint arXiv:1906.00091, 2019.

[4] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng Chua. Neural
collaborative filtering. In WWW, 2017.

[5] Weiping Song, Chence Shi, Zhiping Xiao, Zhijian Duan, Yewen Xu, Ming Zhang, and Jian
Tang. Autoint: Automatic feature interaction learning via self-attentive neural networks. In
CIKM, 2019.

[6] Weijie Zhao, Deping Xie, Ronglai Jia, Yulei Qian, Ruiquan Ding, Mingming Sun, and Ping Li.
Distributed hierarchical gpu parameter server for massive scale deep learning ads systems. In
MLSys, 2020.

[7] Paul Covington, Jay Adams, and Emre Sargin. Deep neural networks for youtube recommenda-
tions. In RecSys, 2016.

[8] Bilge Acun, Matthew Murphy, Xiaodong Wang, Jade Nie, Carole-Jean Wu, and Kim Hazelwood.
Understanding training efficiency of deep learning recommendation models at scale. In HPCA,
2021.

[9] Amazon dsstne: Deep scalable sparse tensor network engine. https://github.com/
amazon-archives/amazon-dsstne.

[10] Udit Gupta, Carole-Jean Wu, Xiaodong Wang, Maxim Naumov, Brandon Reagen, David
Brooks, Bradford Cottel, Kim Hazelwood, Mark Hempstead, Bill Jia, et al. The architectural
implications of facebook’s dnn-based personalized recommendation. In HPCA, 2020.

[11] Maxim Naumov, John Kim, Dheevatsa Mudigere, Srinivas Sridharan, Xiaodong Wang, Whitney
Zhao, Serhat Yilmaz, Changkyu Kim, Hector Yuen, Mustafa Ozdal, et al. Deep learning
training in facebook data centers: Design of scale-up and scale-out systems. arXiv preprint
arXiv:2003.09518, 2020.

[12] Wikipedia. Partition problem — Wikipedia, the free encyclopedia. http://en.wikipedia.
org/w/index.php?title=Partition%20problem&oldid=1085673119, 2022. [Online;
accessed 05-May-2022].

[13] Azalia Mirhoseini, Hieu Pham, Quoc V Le, Benoit Steiner, Rasmus Larsen, Yuefeng Zhou,
Naveen Kumar, Mohammad Norouzi, Samy Bengio, and Jeff Dean. Device placement opti-
mization with reinforcement learning. In ICML, 2017.

10

https://github.com/amazon-archives/amazon-dsstne
https://github.com/amazon-archives/amazon-dsstne
http://en.wikipedia.org/w/index.php?title=Partition%20problem&oldid=1085673119
http://en.wikipedia.org/w/index.php?title=Partition%20problem&oldid=1085673119

[14] Azalia Mirhoseini, Anna Goldie, Hieu Pham, Benoit Steiner, Quoc V Le, and Jeff Dean. A
hierarchical model for device placement. In ICLR, 2018.

[15] Yuanxiang Gao, Li Chen, and Baochun Li. Spotlight: Optimizing device placement for training
deep neural networks. In ICML, 2018.

[16] Ravichandra Addanki, Shaileshh Bojja Venkatakrishnan, Shreyan Gupta, Hongzi Mao, and Mo-
hammad Alizadeh. Placeto: learning generalizable device placement algorithms for distributed
machine learning. In NeurIPS, 2019.

[17] Yanqi Zhou, Sudip Roy, Amirali Abdolrashidi, Daniel Wong, Peter C Ma, Qiumin Xu, Ming
Zhong, Hanxiao Liu, Anna Goldie, Azalia Mirhoseini, et al. Gdp: Generalized device placement
for dataflow graphs. arXiv preprint arXiv:1910.01578, 2019.

[18] Aditya Paliwal, Felix Gimeno, Vinod Nair, Yujia Li, Miles Lubin, Pushmeet Kohli, and Oriol
Vinyals. Reinforced genetic algorithm learning for optimizing computation graphs. In ICLR,
2019.

[19] Yuanxiang Gao, Li Chen, and Baochun Li. Post: Device placement with cross-entropy mini-
mization and proximal policy optimization. In NeurIPS, 2018.

[20] Anna Goldie and Azalia Mirhoseini. Placement optimization with deep reinforcement learning.
In ISPD, 2020.

[21] Wei Niu, Jiexiong Guan, Yanzhi Wang, Gagan Agrawal, and Bin Ren. Dnnfusion: accelerating
deep neural networks execution with advanced operator fusion. In PLDI, 2021.

[22] Daya Khudia, Jianyu Huang, Protonu Basu, Summer Deng, Haixin Liu, Jongsoo Park, and
Mikhail Smelyanskiy. Fbgemm: Enabling high-performance low-precision deep learning
inference. arXiv preprint arXiv:2101.05615, 2021.

[23] github. Embedding lookup synthetic dataset, 2021.

[24] Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio. Neural combina-
torial optimization with reinforcement learning. arXiv preprint arXiv:1611.09940, 2016.

[25] David Ha and Jürgen Schmidhuber. World models. arXiv preprint arXiv:1803.10122, 2018.

[26] Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control:
Learning behaviors by latent imagination. In ICLR, 2019.

[27] Geet Sethi, Bilge Acun, Niket Agarwal, Christos Kozyrakis, Caroline Trippel, and Carole-
Jean Wu. Recshard: Statistical feature-based memory optimization for industry-scale neural
recommendation. In ASPLOS, 2022.

[28] Michael Lui, Yavuz Yetim, Özgür Özkan, Zhuoran Zhao, Shin-Yeh Tsai, Carole-Jean Wu, and
Mark Hempstead. Understanding capacity-driven scale-out neural recommendation inference.
In ISPASS, 2021.

[29] Jizhe Wang, Pipei Huang, Huan Zhao, Zhibo Zhang, Binqiang Zhao, and Dik Lun Lee. Billion-
scale commodity embedding for e-commerce recommendation in alibaba. In KDD, 2018.

[30] Fuzheng Zhang, Nicholas Jing Yuan, Defu Lian, Xing Xie, and Wei-Ying Ma. Collaborative
knowledge base embedding for recommender systems. In KDD, 2016.

[31] Weijie Zhao, Jingyuan Zhang, Deping Xie, Yulei Qian, Ronglai Jia, and Ping Li. Aibox: Ctr
prediction model training on a single node. In CIKM, 2019.

[32] Xiangru Lian, Binhang Yuan, Xuefeng Zhu, Yulong Wang, Yongjun He, Honghuan Wu, Lei
Sun, Haodong Lyu, Chengjun Liu, Xing Dong, et al. Persia: A hybrid system scaling deep
learning based recommenders up to 100 trillion parameters. arXiv preprint arXiv:2111.05897,
2021.

[33] Daochen Zha, Louis Feng, Bhargav Bhushanam, Dhruv Choudhary, Jade Nie, Yuandong Tian,
Jay Chae, Yinbin Ma, Arun Kejariwal, and Xia Hu. Autoshard: Automated embedding table
sharding for recommender systems. In KDD, 2022.

[34] Caojin Zhang, Yicun Liu, Yuanpu Xie, Sofia Ira Ktena, Alykhan Tejani, Akshay Gupta,
Pranay Kumar Myana, Deepak Dilipkumar, Suvadip Paul, Ikuhiro Ihara, et al. Model size
reduction using frequency based double hashing for recommender systems. In RecSys, 2020.

11

[35] Hao-Jun Michael Shi, Dheevatsa Mudigere, Maxim Naumov, and Jiyan Yang. Compositional
embeddings using complementary partitions for memory-efficient recommendation systems. In
KDD, 2020.

[36] Xiangyu Zhao, Chong Wang, Ming Chen, Xudong Zheng, Xiaobing Liu, and Jiliang Tang.
Autoemb: Automated embedding dimensionality search in streaming recommendations. In
SIGIR, 2020.

[37] Manas R Joglekar, Cong Li, Mei Chen, Taibai Xu, Xiaoming Wang, Jay K Adams, Pranav
Khaitan, Jiahui Liu, and Quoc V Le. Neural input search for large scale recommendation
models. In KDD, 2020.

[38] Siyi Liu, Chen Gao, Yihong Chen, Depeng Jin, and Yong Li. Learnable embedding sizes for
recommender systems. In ICLR, 2021.

[39] Wang-Cheng Kang, Derek Zhiyuan Cheng, Ting Chen, Xinyang Yi, Dong Lin, Lichan Hong,
and Ed H Chi. Learning multi-granular quantized embeddings for large-vocab categorical
features in recommender systems. In WWW, 2020.

[40] Wang-Cheng Kang, Derek Zhiyuan Cheng, Tiansheng Yao, Xinyang Yi, Ting Chen, Lichan
Hong, and Ed H Chi. Learning to embed categorical features without embedding tables for
recommendation. In KDD, 2021.

[41] Eugene L Lawler, Jan Karel Lenstra, Alexander HG Rinnooy Kan, and David B Shmoys.
Sequencing and scheduling: Algorithms and complexity. Handbooks in operations research
and management science, 4:445–522, 1993.

[42] Zhihao Jia, Matei Zaharia, and Alex Aiken. Beyond data and model parallelism for deep neural
networks. In MLSys, 2019.

[43] Zhihao Jia, Sina Lin, Charles R Qi, and Alex Aiken. Exploring hidden dimensions in paralleliz-
ing convolutional neural networks. In ICML, 2018.

[44] Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri, Nikhil R Devanur,
Gregory R Ganger, Phillip B Gibbons, and Matei Zaharia. Pipedream: generalized pipeline
parallelism for dnn training. In SOSP, 2019.

[45] Jakub M Tarnawski, Amar Phanishayee, Nikhil Devanur, Divya Mahajan, and Fanny Nina Par-
avecino. Efficient algorithms for device placement of dnn graph operators. In NeurIPS, 2020.

[46] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

[47] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur
Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of
go without human knowledge. nature, 550(7676):354–359, 2017.

[48] Daochen Zha, Jingru Xie, Wenye Ma, Sheng Zhang, Xiangru Lian, Xia Hu, and Ji Liu. Douzero:
Mastering doudizhu with self-play deep reinforcement learning. In ICML, 2021.

[49] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[50] Daochen Zha, Kwei-Herng Lai, Kaixiong Zhou, and Xia Hu. Simplifying deep reinforcement
learning via self-supervision. arXiv preprint arXiv:2106.05526, 2021.

[51] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In
ICLR, 2016.

[52] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder,
Bob McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience
replay. NeurIPS, 2017.

[53] Daochen Zha, Wenye Ma, Lei Yuan, Xia Hu, and Ji Liu. Rank the episodes: A simple approach
for exploration in procedurally-generated environments. In ICLR, 2021.

[54] Daochen Zha, Kwei-Herng Lai, Songyi Huang, Yuanpu Cao, Keerthana Reddy, Juan Vargas,
Alex Nguyen, Ruzhe Wei, Junyu Guo, and Xia Hu. Rlcard: a platform for reinforcement
learning in card games. In IJCAI, 2021.

12

[55] Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. In ICLR,
2017.

[56] Yicheng Wang, Xiaotian Han, Chia-Yuan Chang, Daochen Zha, Ulisses Braga-Neto, and Xia
Hu. Auto-pinn: Understanding and optimizing physics-informed neural architecture. arXiv
preprint arXiv:2205.13748, 2022.

[57] Yuening Li, Zhengzhang Chen, Daochen Zha, Kaixiong Zhou, Haifeng Jin, Haifeng Chen, and
Xia Hu. Automated anomaly detection via curiosity-guided search and self-imitation learning.
IEEE Transactions on Neural Networks and Learning Systems, 2021.

[58] Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean. Efficient neural architecture
search via parameters sharing. In ICML, 2018.

[59] Yuening Li, Zhengzhang Chen, Daochen Zha, Kaixiong Zhou, Haifeng Jin, Haifeng Chen, and
Xia Hu. Autood: Neural architecture search for outlier detection. In ICDE, 2021.

[60] Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V Le. Autoaugment:
Learning augmentation policies from data. arXiv preprint arXiv:1805.09501, 2018.

[61] Daochen Zha, Kwei-Herng Lai, Mingyang Wan, and Xia Hu. Meta-aad: Active anomaly
detection with deep reinforcement learning. In ICDM, 2020.

[62] Daochen Zha, Kwei-Herng Lai, Qiaoyu Tan, Sirui Ding, Na Zou, and Xia Hu. Towards
automated imbalanced learning with deep hierarchical reinforcement learning. In CIKM, 2022.

[63] Iddo Drori, Yamuna Krishnamurthy, Remi Rampin, Raoni de Paula Lourenco, Jorge Piazentin
Ono, Kyunghyun Cho, Claudio Silva, and Juliana Freire. Alphad3m: Machine learning pipeline
synthesis. arXiv preprint arXiv:2111.02508, 2021.

[64] Daochen Zha, Zaid Pervaiz Bhat, Yi-Wei Chen, Yicheng Wang, Sirui Ding, Anmoll Kumar Jain,
Mohammad Qazim Bhat, Kwei-Herng Lai, Jiaben Chen, et al. Autovideo: An automated video
action recognition system. In IJCAI, 2022.

[65] Kwei-Herng Lai, Daochen Zha, Guanchu Wang, Junjie Xu, Yue Zhao, Devesh Kumar, Yile
Chen, Purav Zumkhawaka, Minyang Wan, Diego Martinez, et al. Tods: An automated time
series outlier detection system. In AAAI, 2021.

[66] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adapta-
tion of deep networks. In ICML, 2017.

[67] Yue Zhao, Ryan Rossi, and Leman Akoglu. Automatic unsupervised outlier model selection.
NeurIPS, 2021.

[68] Yue Zhao and Leman Akoglu. Towards unsupervised hpo for outlier detection. arXiv preprint
arXiv:2208.11727, 2022.

[69] Thomas Barrett, William Clements, Jakob Foerster, and Alex Lvovsky. Exploratory combinato-
rial optimization with reinforcement learning. In AAAI, 2020.

[70] Guorui Zhou, Na Mou, Ying Fan, Qi Pi, Weijie Bian, Chang Zhou, Xiaoqiang Zhu, and Kun
Gai. Deep interest evolution network for click-through rate prediction. In AAAI, 2019.

[71] David C Liu, Stephanie Rogers, Raymond Shiau, Dmitry Kislyuk, Kevin C Ma, Zhigang Zhong,
Jenny Liu, and Yushi Jing. Related pins at pinterest: The evolution of a real-world recommender
system. In WWW, 2017.

[72] Carlos A Gomez-Uribe and Neil Hunt. The netflix recommender system: Algorithms, business
value, and innovation. ACM Transactions on Management Information Systems (TMIS), 6(4):1–
19, 2015.

[73] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine learning, 8(3):229–256, 1992.

13

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] We have described the limitations

in the future work.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] Our work

does have any potential negative societal impacts to our knowledge.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] The datasets
are public. All the codes will be open-sourced.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] We provide all the details in the appendix.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] We have run all the experiments five times. The mean
and the standard deviation are reported.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] We have described the hardware
in the appendix.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [No] But it is mentioned in the link we

provided.
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [Yes]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

14

	Introduction
	Generalizable Embedding Table Placement Problem
	DreamShard Framework
	MDP Formulation
	Learning an Estimated MDP
	Training the Policy Network on the Estimated MDP

	Experiments
	Experimental Setup
	Results and Analysis

	Related Work
	Conclusions and Future Work

