
Keypoint-Guided Optimal Transport with
Applications in Heterogeneous Domain Adaptation

A Mathematical Deductions

A.1 Proof of Proposition 1

Proposition 1 in the paper is for the case that pi = qj , for all (i, j) ∈ K. As stated in the paper,
the mask-based modeling of the transport plan is applicable even for the case that there exist some
(i, j) ∈ K such that pi ̸= qj . To see this, we first mathematically give the definition of preserving the
matching of keypoint pairs and then prove Proposition A-1, a generalization of Proposition 1.
Definition A-1. Given the marginal distributions p and q, we say that the transport plan π ∈ Π(p, q)
preserves the matching of a keypoint pair with index (i, j) ∈ K, if π satisfies one of the following
conditions:

1. If pi = qj , π satisfies that πi,j′ = 0,∀j′ ̸= j;πi′,j = 0,∀i′ ̸= i;πi,j = pi = qj .

2. If pi > qj , π satisfies that πi′,j = 0,∀i′ ̸= i;πi,j = qj .

3. If pi < qj , π satisfies that πi,j′ = 0,∀j′ ̸= j;πi,j = pi.

The left part of Fig. A-1 illustrates these conditions. Specifically, the first condition implies that if
pi = qj (e.g., (i, j) is taken as (4, 4) in Fig. A-1), the all mass pi of xi will be transported to yj and
yj can only receive mass from xi. The second condition implies that if pi > qj (e.g., (i, j) is taken
as (3, 2) in Fig. A-1), yj can only receive mass from xi and consequently the partial mass pi − qj
of xi is allowed to be transported to the target points apart from yj . The third condition indicates
that if pi < qj (e.g., (i, j) is taken as (6, 5) in Fig. A-1), the all mass pi of xi will be transported to
yj and yj is enabled to receive partial mass qj − pi from the source points apart from xi. For the
convenience of description, for each pair (i, j) ∈ K, we denote j = κ(i) and i = κ′(j).
Proposition A-1. Suppose that the mask matrix M satisfies that

Mi,j =



1, if (i, j) ∈ K,
0, if i ∈ I, pi ≤ qκ(i), and (i, j) /∈ K,
0, if j ∈ J , pκ′(j) ≥ qj , and (i, j) /∈ K,
1, if i ∈ I, pi > qκ(i), and (i, j) /∈ K,
1, if j ∈ J , pκ′(j) < qj , and (i, j) /∈ K,
1, otherwise (i.e., i /∈ I, j /∈ J ).

(A-1)

Then, the transport plan π̃ = M ⊙ π with π ∈ Π(p, q;M) preserves the matching of keypoint pairs
with index in K.

According to the definition of M , Mi,j = 1 for the keypoint pair (i, j) ∈ K, implying that π̃i,j could
take non-zero value. For i ∈ I , (i, j) /∈ K and pi ≤ qκ(i), Mi,j is set to 0, enforcing that the i-th row
of π̃ are zeros except for the location κ(i) of the target keypoint paired with i (e.g., the 4-th and 6-th
rows of π̃ in Fig. A-1). Similarly, for j ∈ J , (i, j) /∈ K, and pκ′(j) ≤ qj , we set Mi,j = 0, enforcing
that the j-th column of π̃ are zeros except for the location κ′(j) of the source keypoint paired with
j (e.g., the 2-th and 4-th columns of π̃ in Fig. A-1). For the other points (corresponding to the last
three cases in Eq. (A-1)), we set Mi,j = 1, indicating that there is no additional constraint on π̃i,j . If
pi = qj , for all (i, j) ∈ K (i.e., pi = qκ(i),∀i ∈ I), Proposition A-1 degenerates to Proposition 1 in
the paper.

Proof:
For any (i, j) ∈ K, we next prove that π̃ preserves the matching of keypoint pair (i, j).

• If pi = qj , from the definition of M , we have Mi,j′ = 0 for all j′ ̸= j and Mi,j = 1. Then,
we have π̃i,j′ = Mi,j′πi,j′ = 0 for all j′ ̸= j. Since

∑n
j′=1 π̃i,j′ = pi, we have π̃i,j = pi.

Similarly, we have Mi′,j = 0 for all i′ ̸= i. Then, we have π̃i′,j = Mi′,jπi′,j = 0 for all
i′ ̸= i, and π̃i,j =

∑m
i′=1 π̃i′,j = qj .

1



1
3

2

4

6
5

1

3

2

4

65

𝒑𝒑 𝒒𝒒

𝑞𝑞1 𝑞𝑞2 𝑞𝑞3 𝑞𝑞4 𝑞𝑞5 𝑞𝑞6

𝑝𝑝1

𝑝𝑝2

𝑝𝑝3

𝑝𝑝4

𝑝𝑝5

𝑝𝑝6

0 0

0 0

�𝜋𝜋32 0

0 0 0 �𝜋𝜋44 0 0

0 0

0 0 0 0 �𝜋𝜋65 0

�𝜋𝜋 𝑀𝑀 𝜋𝜋𝒑𝒑

𝒒𝒒
1 0 1 0 1 1

1 0 1 0 1 1

1 1 0 1 1

0 0 0 1 0 0

1 0 1 0 1 1

0 0 0 0 1 0

Figure A-1: Example of modeling the matching of keypoints (red) using mask, where K =
{(3, 2), (4, 4), (6, 5)} with p3 > q2, p4 = q4, p6 < q5.

• If pi > qj , from the definition of M , we have Mi′,j = 0 for all i′ ̸= i and Mi,j = 1. Then,
we have π̃i′,j = Mi′,jπi′,j = 0 for all i′ ̸= i, and π̃i,j =

∑m
i′=1 π̃i′,j = qj .

• pi < qj , from the definition of M , we have Mi,j′ = 0 for all j′ ̸= j and Mi,j = 1. Then
π̃i,j′ = Mi,j′πi,j′ = 0 for all j′ ̸= j, and π̃i,j =

∑n
j′=1 π̃i,j′ = qi.

Thus, for any keypoint pair with index (i, j) ∈ K, π̃ satisfies the conditions in Definition A-1. This
means that π̃ preserves the matching of keypoint pairs with index in K.

A.2 Linear Programming for Solving KPG-RL

We cast the matrix G (resp. M,π) as the vector c (resp. m,x) ∈ Rmn, such that the (i+m(j−1))-th
element of c is Gij . By denoting

A =

[
1
⊤
n ⊗ Im

In ⊗ 1m

]
∗ diag(m),h =

[
p
q

]
, and c̃ = c⊙m, (A-2)

where Im is the identity matrix of size n and ⊗ is the Kronecker product, the KPG-RL model in
Eq. (9) in the paper reads

min
x

c̃⊤x

s.t. x ≥ 0,

Ax = h.

(A-3)

With the standard form of linear programming in Eq. (A-3), the Simplex algorithm can be directly
used to solve the KPG-RL model.

A.3 Sinkhorn’s Algorithm for Solving KPG-RL

The entropy-regularized model for KPG-RL is

min
π
⟨M ⊙ π,G⟩F − ϵH(M ⊙ π)

s.t. π ≥ 0, (M ⊙ π)1n = p, (M ⊙ π)⊤1m = q,
(A-4)

where H(M ⊙ π) = −(⟨M ⊙ π, log(M ⊙ π)⟩F − 1
⊤
m(M ⊙ π)1n) is the entropy of the transport

plan M ⊙ π. The Lagrangian function is

L(π,f , g) =⟨M ⊙ π,G⟩F + ϵ
(
⟨M ⊙ π, log(M ⊙ π)⟩F − 1⊤

m(M ⊙ π)1n

)
− ⟨f , (M ⊙ π)1n − p⟩F − ⟨g, (M ⊙ π)⊤1m − q⟩F ,

(A-5)

where f ∈ Rm and g ∈ Rn. The first-order conditions then yield

∂L

∂πi,j
= Mi,jGi,j + ϵMi,j log(Mi,jπi,j)−Mi,jfi −Mi,jgj = 0. (A-6)

If Mi,j = 0, πi,j could be arbitrary non-negative value, and if Mi,j = 1, we have πi,j =

efi/ϵe−Gi,j/ϵegj/ϵ. Therefore, we can unify the expression as πij = Mije
fi/ϵe−Cij/ϵegj/ϵ, in
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which we enforce πi,j = 0 if Mi,j = 0. The matrix form is π = diag(u)Kdiag(v) where
u = ef/ϵ,K = M ⊙ e−G/ϵ, and v = eg/ϵ. The constraints are

diag(u)Kdiag(v)1n = p, (diag(u)Kdiag(v))⊤1m = q. (A-7)

Since the entries of K are non-negative, the Sinkhorn’s algorithm can be applied [15]. The iteration
formulas are

u(l+1) =
p

Kvl
, v(l+1) =

q

K⊤u(l+1)
. (A-8)

The division operator used above is entry-wise.

Log-domain Sinkhorn iteration. For KP, the Sinkhorn iteration in the log-domain is more stable [60].
We next deduce the log-domain Sinkhorn iteration for our KPG-RL. In the log-domain, the left
equation in Eq. (A-8) is

1

ϵ
f
(l+1)
i = log(pi)− log

 n∑
j=1

Mi,je
−Gi,j+g

(l)
j

ϵ

 . (A-9)

Let H(f , g) = 1
ϵ (−G+ f1⊤

n + g1⊤
m), then

f
(l+1)
i =ϵ log(pi)− ϵ log

 n∑
j=1

Mi,je
H(f(l),g(l))i,je−f

(l)
i /ϵ


=ϵ log(pi)− ϵ log

e−f
(l)
i /ϵ

n∑
j=1

Mi,je
H(f(l),g(l))i,j


=ϵ log(pi)− ϵ log

 n∑
j=1

Mi,je
H(f(l),g(l))i,j

+ f
(l)
i

=ϵ log(pi)− ϵ log

 n∑
j=1

elog(Mi,j)H(f(l),g(l))i,j

+ f
(l)
i

(A-10)

If Mi,j = 0, log(Mi,j)H(f (l), g(l))i,j = −∞. We define H̄(f , g) as

H̄(f , g)i,j =

{
H(f , g)i,j if Mi,j = 1,

−∞ if Mi,j = 0,
(A-11)

and define the log-sum-exp function LogSumExp : Rm×n → Rm as

LogSumExp(A) =

log(
∑
j

eA1,j ), log(
∑
j

eA2,j ), · · · , log(
∑
j

eAm,j )

⊤

. (A-12)

Then, the matrix form of Eq. (A-10) becomes

f (l+1) = ϵ log(p)− ϵLogSumExp
(
H̄(f (l), g(l))

)
+ f (l). (A-13)

Similarly, the corresponding iteration formula in the log-domain of the right equation in (A-8) is

g(l+1) = ϵ log(q)− ϵLogSumExp
(
H̄(f (l+1), g(l))⊤

)
+ g(l). (A-14)

Equations (A-13) and (A-14) consists in the formulas of the Sinkhorn iteration in the log-domain.

A.4 Frank-Walfe Algorithm for Solving KPG-RL-GW

We define the 4-order tensor L = (Li,j,k,l) ∈ Rm×n×m×n by Li,j,k,l = (Cs
i,k − Ct

j,l)
2, and define

the tensor-matrix product L ◦π = ((L ◦π)i,j) ∈ Rm×n by (L ◦π)i,j =
∑

k,l Li,j,k,lπk,l. Then, The
KPG-RL-GW model in Eq. (12) in the paper reads

min
π∈Π(p,q;M)

⟨(M ⊙ π), αL ◦ (M ⊙ π) + (1− α)G⟩F ≜ L(π) (A-15)
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The gradient of the objective function is

∇L(π) = M ⊙ (2αL ◦ (M ⊙ π) + (1− α)G). (A-16)

In k-th iteration of the Frank-Walfe algorithm, it runs the following three steps:

Step 1. Compute a linear minimization oracle over the set Π(p, q;M), i.e.,

π̂ ← argmin
π∈Π(p,q;M)

⟨∇L(π(k)), π⟩F . (A-17)

Equation (A-17) can be rewritten as

π̂ ← argmin
π∈Π(p,q;M)

⟨M ⊙ π, 2αL ◦ (M ⊙ π(k)) + (1− α)G⟩F , (A-18)

Equation (A-18) is a KPG-RL-like problem and can be solved using linear programming or Sinkhorn’s
algorithm.

Step 2. Determine optimal step-size β(k) subject to

β(k) ← argmin
β∈[0,1]

L((1− β)π(k) + βπ̂). (A-19)

β(k) can be obtained by the line-search method in [61].

Step 3. Update
π(k+1) = (1− β(k))π(k) + β(k)π̂. (A-20)

A.5 Theoretical Properties of KPG-RL-KP and KPG-RL-GW

In this section, we show that given prior “correct” paired keypoints, the KPG-RL-KP model provides
a proper metric for distributions supported in the same space, and the the KPG-RL-GW model
provides a divergence for distributions in distinct spaces, under mild conditions. Since the discrete
distributions p = 1

m

∑m
i δxi

(resp. q = 1
n

∑n
j δyj

) are invariant to the permutation of {xi}mi=1

(resp. {yj}nj=1), we assume that any two paired keypoints across domains share the same index.
Therefore, the index set of paired keypoints is K = {(iu, iu)}Uu=1. We assume piu = qiu ,∀iu, in this
section. For the convenience of description, in this section, we denote Mpq as the mask matrix for
transporting p to q, and PX

I as the set of discrete probability distributions supported on m points in
ground space X such that all distributions in PX

I share the keypoint index set I = {iu}Uu=1.

A.5.1 KPG-RL-KP Providing a Proper Metric

For distributions supported in the same space, the “correct” paired keypoints indicates that if p = q,
each source keypoint is equal to its paired target keypoint, i.e., xiu = yiu , for any iu ∈ I. We denote

Skrk(p, q) = min
π∈Π(p,q;Mpq)

∑
i,j

Mpq
i,j πi,j(αCi,j + (1− α)Gi,j), (A-21)

where α ∈ (0, 1).
Theorem A-1. Suppose c is a proper distance in space X and d is a proper distance in probability
simplex Σm. Then, for any p and q in PX

I , given the “correct” paired keypoints stated above,
Skrk(p, q) is a proper distance between p and q.

Proof:

(1) Show that Skrk(p, q) = 0 if and only if p = q. (a) If p = q, we have xi = yi and pi = qi
for any i ∈ [m] (since the permutation of support points does not change the distribution). Hence,
Ci,i = c(xi, yi) = 0, and Cs

i,iu
= c(xi, xiu) = c(yi, yiu) = Ct

i,iu
,∀i ∈ [m] and ∀iu ∈ I, which

implies that Rs
i = Rt

i . Then, we have Gi,i = d(Rs
i , R

t
i) = 0. We define π by πi,j = pi if

i = j, and 0 otherwise. Obviously, Mpq ⊙ π is in Π(p, q;Mpq) and
∑

i,j M
pq
i,j πi,j(αCi,j +

(1 − α)Gi,j) = 0. Therefore, Skrk(p, q) = 0. (b) We denote π∗ as the optimal solution of
problem (A-21). If Skrk(p, q) = 0, we have ⟨Mpq ⊙ π∗, C⟩F = 0. This means that the KP problem
minπ∈Π(p,q)⟨π,C⟩F = 0. Using the Proposition 2.2 in [62], we have p = q.
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(2) Show that Skrk(p, q) = Skrk(q,p). From the definition of mask matrix in Proposition 1 in
the paper, we have Mpq

i,j = Mqp
j,i . C and G are symmetric because c and d are distances. For any

π ∈ Π(p, q;Mpq), we define π′ as π′
i,j = πj,i, and then π′ ∈ Π(q,p;Mqp). Then, we have

Skrk(p, q) = min
π∈Π(p,q;Mpq)

∑
i,j

Mpq
i,j πi,j(αCi,j + (1− α)Gi,j)

= min
π∈Π(p,q;Mpq)

∑
i,j

Mqp
j,i πi,j(αCj,i + (1− α)Gj,i)

= min
π′∈Π(q,p;Mqp)

∑
j,i

Mqp
j,i π

′
j,i(αCj,i + (1− α)Gj,i)

=Skrk(q,p).

(A-22)

(3) Show that Skrk(p, q) ≤ Skrk(p, r)+Skrk(r, q). Let Mpr⊙πpr and Mrq⊙πrq be the optimal
transport plans corresponding to Skrk(p, r) and Skrk(r, q), respectively. We define

γ̃ = (Mpr ⊙ πpr)diag
(
1

r̃

)
(Mrq ⊙ πrq), (A-23)

where the element r̃j of r̃ is rj if rj > 0, and 1 otherwise. We notice that

γ̃1m = (Mpr ⊙ πpr)diag
(
1

r̃

)
r = (Mpr ⊙ πpr)

(r
r̃

)
= (Mpr ⊙ πpr)1̃m, (A-24)

where the j-th location of 1̃m is 1 if rj > 0, and 0 otherwise. Note that for j such that rj = 0, we
have

∑
i,j(M

pr ⊙ πpr)i,j = rj = 0, which implies (Mpr ⊙ πpr)i,j = 0 for any i. Hence,

(Mpr ⊙ πpr)1̃m = (Mpr ⊙ πpr)1m = p. (A-25)

Similarity, γ̃⊤
1m = q. Since the indexes of paired keypoints across any two distribution in PX

I
are the same, for any iu ∈ I, the iu-th row and column of Mpr and Mrq are zeros except for that
Mpr

iu,iu
= Mrq

iu,iu
= 1. So the iu-th row and column of γ̃ are zeros except for γ̃iu,iu . Then, we

can write γ̃iu,iu = Mpq ⊙ γ with γ ∈ Rm×m
+ . Further, we have γ ∈ Π(p, q;Mpq). The triangle

inequality follows then from

Skrk(p, q) = min
π∈Π(p,q;Mpq)

∑
i,j

Mpq
i,j πi,j(αc(xi, yj) + (1− α)d(Rs

i , R
t
j))

≤
∑
i,j

γ̃i,j(αc(xi, yj) + (1− α)d(Rs
i , R

t
j))

=
∑
i,j

(αc(xi, yj) + (1− α)d(Rs
i , R

t
j))

∑
k

(Mpr ⊙ πpr)i,k(M
rq ⊙ πrq)k,j

r̃k

≤
∑
i,k,j

(α(c(xi, zk) + c(zk, yj)) + (1− α)(d(Rs
i , R

r
k) + d(Rr

k, R
t
j))

(Mpr ⊙ πpr)i,k(M
rq ⊙ πrq)k,j

r̃k

=
∑
i,k,j

(αc(xi, zk) + (1− α)d(Rs
i , R

r
k))

(Mpr ⊙ πpr)i,k(M
rq ⊙ πrq)k,j

r̃k

+
∑
i,k,j

(αc(zk, yj) + (1− α)d(Rr
k, R

t
j))

(Mpr ⊙ πpr)i,k(M
rq ⊙ πrq)k,j

r̃k

=
∑
i,k

(αc(xi, zk) + (1− α)d(Rs
i , R

r
k))(M

pr ⊙ πpr)i,k

+
∑
k,j

(αc(zk, yj) + (1− α)d(Rr
k, R

t
j))(M

rq ⊙ πrq)k,j

=Skrk(p, r) + Skrk(r, q),
(A-26)

where zk is the support point of r and Rr
k is the relation of zk to the keypoints of r.
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A.5.2 KPG-RL-GW Providing a Divergence

For any distribution p ∈ PX
I and q ∈ PY

I , p and q are said to be isomorphic if there exists a bijection
σ : [m] 7−→ [m] such that c(xi, xk) = c′(yσ(i), yσ(k)), and pi = qσ(i), where [m] = {1, 2, · · · ,m},
and c and c′ are respectively proper distances in X and Y . The keypoints are “correct” means that if
p = q, σ maps each source keypoint to its paired target keypoint, i.e., σ(iu) = iu, for any iu ∈ I.
We denote

Skrg(p, q) = min
π∈Π(p,q;Mpq)

∑
i,j

[
α
(∑

k,l

(Mpq ⊙ π)i,j(M
pq ⊙ π)k,l|Cs

i,k − Ct
j,l|2

)
+ (1− α)(Mpq ⊙ π)i,jGi,j

]
.

(A-27)

Theorem A-2. Suppose c and c′ are proper distances in spaces X and Y . Suppose d is a divergence
in probability simplex Σm. Then, for any p in PX

I and any q in PY
I , given the “correct” paired

keypoints stated above, Skrg(p, q) = 0 if and only if p and q are isomorphic.

Proof:

(a) If p and q are isomorphic, for any i ∈ [m] and any iu ∈ I, we have c(xi, xiu) =
c′(yσ(i), yσ(iu)) = c′(yσ(i), yiu), implying that Rs

i = Rt
σ(i). We define π as πi,j = pi if j = σ(i),

and 0 otherwise. We then have∑
i,j

α
(∑

k,l

(Mpq ⊙ π)i,j(M
pq ⊙ π)k,l|Cs

i,k − Ct
j,l|2

)
+ (1− α)(Mpq ⊙ π)i,jGi,j

=
∑
i

[
α
(∑

k

(Mpq ⊙ π)i,σ(i)(M
pq ⊙ π)k,σ(k)|Cs

i,k − Ct
σ(i),σ(k)|

2
)

+ (1− α)(Mpq ⊙ π)i,σ(i)Gi,σ(i)

]
=
∑
i

[
α
(∑

k

(Mpq ⊙ π)i,σ(i)(M
pq ⊙ π)k,σ(k)|c(xi, xk)− c′(xσ(i), xσ(k))|2

)
+ (1− α)(Mpq ⊙ π)i,σ(i)d(R

s
i , R

t
σ(i))

]
=0.

(A-28)

This implies Skrg(p, q) = 0.

(b) Let (Mpq)⊙π∗ be the optimal transport plan corresponding to Skrg(p, q) = 0. If Skrg(p, q) = 0,
we have ∑

i,j,k,l

(Mpq ⊙ π∗)i,j(M
pq ⊙ π∗)k,l|Cs

i,k − Ct
j,l|2 = 0. (A-29)

This indicates that the Gromov-Wasserstein distance

min
π∈Π(p,q)

∑
i,j,k,l

πi,jπk,l|Cs
i,k − Ct

j,l|2 = 0. (A-30)

By virtue to Gromov-Wasserstein properties in [27], there exists a bijection σ : [m] 7−→ [m] such
that c(xi, xk) = c′(yσ(i), yσ(k)), and pi = qσ(i).

From Theorem A-2, the KPG-RL-GW model provides a divergence in the sense of isomorphism.

A.6 Motivations of the Solving Algorithm for Partial-KPG-RL Model

In the partial-KPG-RL model in Eq. (13) in the paper, only s-unit mass of source and target distribu-
tions is matched. Inspired by [20], we add a dummy point with mass ∥q∥1 − s for source domain
(the left black circle in Fig. A-2) and a dummy point with mass ∥p∥1 − s for target domain (the right
black circle in Fig. A-2). We denote p̄ = (p⊤, ∥q∥1 − s)⊤ and q̄ = (q⊤, ∥p∥1 − s)⊤. As illustrated
in Fig. A-2, we aim to design the extended guiding matrix Ḡ and extended mask matrix M̄ such that
performing KPG-RL between p̄ and q̄ will transport ∥p∥1 − s mass from source real data points to
the target dummy point and transport ∥q∥1 − s mass from source dummy point to target real data
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points. As a sequence, only s mass of source and target real data points are matched. Meanwhile, the
keypoints should not be matched to the dummy points because they are annotated data to guide the
matching. To do this, we extend G,M by

Ḡ =

[
G ξ1n

ξ1⊤
m 2ξ +A

]
, M̄ =

[
M a
b⊤ 1

]
,

where A > 0, ξ > 0,a ∈ Rm, b ∈ Rn, and M is constructed as in Proposition A-1. The element
ai of a is 0 if i ∈ I, and 1 otherwise. The element bj of b is 0 if j ∈ J , and 1 otherwise. By
Theorem A-3, solving partial-KPG-RL model boils down to solving the KPG-RL-like problem
minπ̄∈Π(p̄,q̄;M̄)⟨M̄ ⊙ π̄, Ḡ⟩F .

1
3

2

4

6

5

1

3
2

4

6
5

𝒑𝒑 𝒒𝒒

‖ ‖𝒒𝒒 1 − 𝑠𝑠 ‖ ‖𝒑𝒑 1 − 𝑠𝑠

Source Target

Figure A-2: Illustration of dummy points (black circles) for source and target domains.

A.7 Proof of Theorem 1

For the convenience of understanding, the Theorem 1 in the paper is for the case that pi = qj for all
(i, j) ∈ K. In this appendix, we provide and prove the Theorem A-3, a generalization of Theorem 1
in the paper, for the general case that there could exist some (i, j) ∈ K such that pi ̸= qj . Before that,
we rewrite the partial-KPG-RL model first.

Partial-KPG-RL model:
min

π∈Πs(p,q;M)
{Lkpg(M ⊙ π) = ⟨M ⊙ π,G⟩F } , (A-31)

where Πs(p, q;M) = {π ∈ Rm×n
+ |(M ⊙ π)1n ⩽ p, (M ⊙ π)⊤1m ⩽ q,1⊤

m(M ⊙ π)1n =

s; (M ⊙ π)i,:1n = pi,∀i ∈ I;1⊤
m(M ⊙ π):,j = qj ,∀j ∈ J }.

Theorem A-3. Suppose A > 0, ξ > 0,
∑

i∈I pi + max{qκ(i) − pi, 0} < s, and
∑

j∈J qj +

max{pκ′(j) − qj , 0} < s, then the optimal transport plan M ⊙ π∗ of partial-KPG-RL model
is the m-by-n block in the upper left corner of the optimal transport plan M̄ ⊙ π̄∗ of problem
minπ̄∈Π(p̄,q̄;M̄)⟨M̄ ⊙ π̄, Ḡ⟩F .

The definitions of κ(i) and κ′(j) are given in Appendix A.1. The condition
∑

i∈I pi +max{qκ(i) −
pi, 0} < s implies that the sum of the mass (

∑
i∈I pi) of source keypoints and the mass

(
∑

i∈I max{qκ(i) − pi, 0}) of the other source points apart from keypoints that should be trans-
ported to target keypoints is less than s. The condition

∑
j∈J qj +max{pκ′(j) − qj , 0} < s implies

that the sum of the mass (
∑

j∈J qj) of target keypoints and the mass (
∑

j∈J max{pκ′(j) − qj , 0})
of the other target points apart from keypoints received from source keypoints is less than s. The
two conditions are reasonable to guarantee the admissible solutions of problem (A-31). If pi = qj
for all (i, j) ∈ K (i.e., pi = qκ(i),∀i ∈ I and qj = pκ′(j),∀j ∈ J ), Theorem A-3 degenerates to the
Theorem 1 in the paper.

A.7.1 Proof

We denote π̈ = π̄∗
1:m,1:n and t = π̄∗

m+1,n+1. To prove Theorem A-3, we first give some preparations,
and then conduct the following three steps. In step 1, we show that t = 0. In step 2, we show that
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π̈ ∈ Πs(p, q;M) which means that π̈ is a feasible solution of problem (A-31). In step 3, we show
that M ⊙ π̈ is the optimal transport plan of problem (A-31). We next detail these steps.

Preparations:

Since π̄∗ ∈ Π(p̄, q̄; M̄) and t = π̄∗
m+1,n+1, we have

1
⊤
m+1(M̄ ⊙ π̄∗)1n+1 =

[
1
⊤
m 1

]([M a
b 1

]
⊙

[
π̈ π̄∗

1:m,n+1

π̄∗
m+1,1:n π̄∗

m+1,n+1

])[
1n

1

]
=1⊤

m(M ⊙ π̈)1n +

m∑
i=1

aiπ̄
∗
i,n+1 +

n∑
j=1

bj π̄
∗
m+1,j + t.

(A-32)

Meanwhile, we have

1
⊤
m+1(M̄ ⊙ π̄∗)1n+1 = 1

⊤
m+1p̄ = ∥p̄∥1 = ∥p∥1 + ∥q∥1 − s, (A-33)

m∑
i=1

aiπ̄
∗
i,n+1 + t = ∥p∥1 − s, (A-34)

and
n∑

j=1

bj π̄
∗
m+1,j + t = ∥q∥1 − s. (A-35)

Combining the above four equations, we have

1
⊤
m(M ⊙ π̈)1n + ∥p∥1 + ∥q∥1 − 2s− t = ∥p∥1 + ∥q∥1 − s. (A-36)

Therefore,

1
⊤
m(M ⊙ π̈)1n = s+ t. (A-37)

Step 1: show that t = π̄∗
m+1,n+1 = 0.

First, we have

⟨M̄ ⊙ π̄∗, Ḡ⟩F =

m∑
i=1

n∑
j=1

Mi,j π̄
∗
i,jGi,j + ξ

m∑
i=1

aiπ̄
∗
i,n+1

+ξ

n∑
j=1

bj π̄
∗
m+1,j + (2ξ +A)π̄∗

m+1,n+1

=

m∑
i=1

n∑
j=1

Mi,j π̄
∗
i,jGi,j + ξ(∥p∥1 + ∥q∥1 − 2s− 2t) + (2ξ +A)t

=

m∑
i=1

n∑
j=1

Mi,j π̄
∗
i,jGi,j + ξ(∥p∥1 + ∥q∥1 − 2s) +At.

(A-38)

Suppose π̄∗
m+1,n+1 > 0, we next construct a solution γ such that γm+1,n+1 = 0 and leads to conflict.

We randomly select a set S = {(i, j)|π̄∗
i,j > 0, i ≤ m, j ≤ n, i /∈ I, j /∈ J } and a index pair (i0, j0)

satisfying the constraints of elements in S, such that
∑

(i,j)∈S π̄∗
i,j ≤ t and

∑
(i,j)∈S π̄∗

i,j+ π̄∗
i0,j0

> t.
In the rest part of this section, the involved i, j satisfy i ≤ m and j ≤ n. Such non-empty S and
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(i0, j0) always exist, because

1
⊤
m(M ⊙ π̈)1n =

m∑
i=1

n∑
j=1

Mi,j π̄
∗
i,j =

∑
i∈I,j

π̄∗
i,j +

∑
i/∈I,j∈J

Mi,j π̄
∗
i,j +

∑
i/∈I,j /∈J

π̄∗
i,j

=
∑
i∈I,j

π̄∗
i,j +

∑
i/∈I,j∈J

Mi,j π̄
∗
i,j +

∑
i/∈I,j /∈J

π̄∗
i,j

=
∑
i∈I,j

π̄∗
i,j +

∑
i/∈I,i′∈I

Mi,κ(i′)π̄
∗
i,κ(i′) +

∑
i/∈I,j /∈J

π̄∗
i,j

≤
∑
i∈I

pi +
∑

i′∈I,i̸=i′

Mi,κ(i′)π̄
∗
i,κ(i′) +

∑
i/∈I,j /∈J

π̄∗
i,j

=
∑
i∈I

pi +
∑
i′∈I

max{qκ(i′) − pi′ , 0}+
∑

i/∈I,j /∈J

π̄∗
i,j ,

(A-39)

1
⊤
m(M ⊙ π̈)1n = s + t, and

∑
i∈I pi + max{qκ(i) − pi, 0} < s, we have

∑
i/∈I,j /∈J π̄∗

ij > t.
We now move the mass of index pairs in S and (i0, j0) to their marginal such that a total mass
of t is moved. Specifically, for (i, j) ∈ S, we set γi,j = 0, γi,n+1 = π̄∗

i,n+1 + π̄∗
i,j , γm+1,j =

π̄∗
m+1,j + π̄∗

i,j . For (i0, j0), we set γi0,j0 = π̄∗
i0,j0
− (t −

∑
i/∈I,j /∈J π̄∗

i,j), γi0,n+1 = π̄∗
i0,n+1 +

(t −
∑

i/∈I,j /∈J π̄∗
i,j), γm+1,j0 = π̄∗

m+1,j0
− (t −

∑
i/∈I,j /∈J π̄∗

i,j). For (i, j) /∈ S, we set γi,j =

π̄∗
i,j , γi,n+1 = π̄∗

i,n+1, γm+1,j = π̄∗
m+1,j . It is easy to verify that γ ∈ Π(p̄, q̄; M̄). Similar to

Eq. (A-38), we have

⟨M̄ ⊙ γ, Ḡ⟩F =

m∑
i=1

n∑
j=1

Mi,jγi,jGi,j + ξ(∥p∥1 + ∥q∥1 − 2s). (A-40)

Using the optimality of M̄ ⊙ π̄∗, we have

⟨M̄ ⊙ γ, Ḡ⟩F − ⟨M̄ ⊙ π̄∗, Ḡ⟩F =

m∑
i=1

n∑
j=1

Mi,j(γi,j − π̄∗
i,j)Gi,j −At > 0. (A-41)

From the definition of γ, we can see that γi,j ≤ π̄∗
i,j , and thus

∑m
i=1

∑n
j=1 Mi,j(γi,j− π̄∗

i,j)Gi,j ≤ 0.
Hence, from Eq. (A-41), we have A < 0, contradicting the assumption that A > 0. Therefore,
t = π̄∗

m+1,n+1 = 0 holds.

Step 2: show that π̈ is a feasible solution of problem in Eq. (A-31).

We verify the constraints as follows.

(1) Since π̄∗ ≥ 0, we have π̈ ≥ 0.

(2) (M̄ ⊙ π̄∗)1n+1 =

[
M ⊙ π̈ a⊙ π̄∗

1:m,n+1

b⊙ π̄∗
m+1,1:n 0

] [
1n

1

]
=

[
p

∥q∥1 − s

]
, then (M ⊙ π̈)1n +

a⊙ π̄∗
1:m,n+1 = p, and (M ⊙ π̈)1n ≤ p.

(3) Similarly, from 1
⊤
m+1(M̄ ⊙ π̄∗) = (q, ∥q∥1 − s)⊤, we have 1⊤

m(M ⊙ π̈) ≤ q.

(4) 1⊤
m(M ⊙ π̈)1n = s holds, because t = 0 as in Step 1.

(5) ∀i ∈ I, (M̄ ⊙ π̄∗)i,:1n+1 = (M ⊙ π̈)i,:1n + aiπ̄
∗
i,n+1 = pi. Since ai = 0, we have (M ⊙

π̈)1,:1n = pi.

(6) ∀j ∈ J ,1⊤
m+1(M̄ ⊙ π̄∗):,j = 1

⊤
m(M ⊙ π̈):,j + bj π̄

∗
m+1,j = qj . Since bj = 0, we have

1
⊤
m(M ⊙ π̈):,j = qj .

Therefore, we have π̈ ∈ Πs(p, q;M), and π̈ is a feasible solution of problem in Eq. (A-31).

Step 3: show that M ⊙ π̈ is the optimal transport plan of problem in Eq. (A-31).

Suppose there exist a transport plan M ⊙ γ with γ ∈ Πs(p, q;M) such that
m∑
i=1

n∑
j=1

Mi,jγi,jGi,j <

m∑
i=1

n∑
j=1

Mi,j π̈i,jGi,j .
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We construct γ̄ as follows. For i ≤ m, j ≤ n, γ̄i,j = γi,j . γ̄i,n+1 = pi −
∑n

j=1 γi,j ,∀i ≤ m.
γ̄m+1,j = qj −

∑n
i=1 γi,j ,∀j ≤ n. γ̄m+1,n+1 = 0. Easily, we can verify that γ̄ is in Π(p̄, q̄; M̄).

Meanwhile,

⟨M̄ ⊙ γ̄, Ḡ⟩F =

m∑
i=1

n∑
j=1

Mi,jγi,jCi,j + ξ(∥p∥1 + ∥q∥1 − 2s)

<

m∑
i=1

n∑
j=1

Mi,j π̈i,jGi,j + ξ(∥p∥1 + ∥q∥1 − 2s)

=⟨M̄ ⊙ π̄∗, Ḡ⟩F .

(A-42)

This contradicts the fact that M̄ ⊙ π̄∗ is the optimal transport plan of problem minπ̄∈Π(p̄,q̄;M̄)⟨M̄ ⊙
π̄, Ḡ⟩F . Therefore, M ⊙ π̈ is the optimal transport plan of problem in Eq. (A-31).

B Additional Experimental Details and Results

B.1 Toy Experiment for Evaluating Partial-KPG-RL model

Matching
accuracy: 43.3%

(a) Partial-OT

Matching
accuracy: 43.3%

(b) Partial-GW

Matching
accuracy: 100.0%

(c) Partial-KPG-RL (ours)

Figure A-3: Matching produced by (a) partial-OT model, (b) partial-GW model, and (c) our proposed
partial-KPG-RL model.

Figure A-3 illustrates the toy data experiment for evaluating the partial-KPG-RL model. In Fig. A-3,
the source (blue) and target (green) distributions are Gaussian mixtures. The source (resp. target)
distribution is composed of three (resp. two) distinct Gaussian components indicated by different
shapes where the same shapes indicate the points of the same class. When conducting OT, the
source class data represented by “△” should not be transported. In Figs. A-3(a) and A-3(b), we
can observe that both the partial-OT model (defined in Eq. (2) in the paper) and the partial-GW
model [20] wrongly transport some source points of class “△” to target domain and lead to low
matching accuracy. With the guidance of a few keypoints (red pairs), our proposed partial-KPG-RL
model does not transport the source points of class “△” to target domain and apparently improves the
matching accuracy as in Fig. A-3(c).

B.2 Additional Experimental Details and Results for Open-set HDA

More experimental details. In open-set HDA, we are given a large amount of labeled source
domain data {(xi, ti)}mi=1, a few labeled target domain data {yj , t̄j}nl

j=1, and a large number of
unlabeled target domain data {yj}nj=nl+1. The fraction of unknown class data is η. To apply the
partial-KPG-RL model defined in Eq. (13) in the paper to open-set HDA, for each labeled target
domain data, we take its corresponding source class center to construct a keypoint pair. We then
resample the source domain data such that the total number of resampled source domain data and
the source keypoints is m′ = (1− η)n. We define the source distribution as p = 1−η

m′ (
∑nl

j=1 δcj +∑m′

j=nl+1 δx′
j
), where x′

j is a resmapled source domain sample and cj is the source class center
corresponding to the target labeled sample yj . The target distribution is defined as q = 1

n

∑n
j=1 δyj

.
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The partial-KPG-RL model is conducted to transport mass from p to q with s = 1−η. After transport,
the η-fraction unlabeled target data receiving smallest mass from source domain are detected as
unknown class and the rest unlabeled target data are taken as common class ones. Finally, we train
the kernel SVM on the transported source domain data and labeled target domain data to classify the
unlabeled target domain common class data.

Table A-1: Results on Office-31 for open-set HDA with unknown η. η̂ is the estimate of η (the true
η = 0.67).

Method
A→A A→D A→W D→A D→D

(η̂ = 0.57) (η̂ = 0.48) (η̂ = 0.62) (η̂ = 0.57) (η̂ = 0.48)
OS∗ UNK HOS OS∗ UNK HOS OS∗ UNK HOS OS∗ UNK HOS OS∗ UNK HOS

Baseline 38.2 61.9 47.2 20.0 69.3 31.0 28.2 80.1 41.7 38.2 61.9 47.2 20.0 69.3 31.0
Partial-KPG-RL 49.1 70.1 57.8 61.8 59.3 60.5 54.5 73.2 62.5 59.1 73.6 65.5 83.6 66.7 74.2

Method
D→W W→A W→D W→W Avg(η̂ = 0.62) (η̂ = 0.57) (η̂ = 0.48) (η̂ = 0.62)

OS∗ UNK HOS OS∗ UNK HOS OS∗ UNK HOS OS∗ UNK HOS OS∗ UNK HOS

Baseline 28.2 80.1 41.7 38.2 61.9 47.2 20.0 69.3 31.0 28.2 80.1 41.7 28.8 70.4 40.0
Partial-KPG-RL 78.2 87.4 82.6 60.9 74.5 67.0 81.8 66.7 73.5 78.2 87.0 82.4 67.5 73.2 69.5

Results for open-set HDA with unknown η. For the more practical open-set HDA setting that
η is unknown, researchers can design methods to estimate η and then apply our method using the
estimate of η, or take η as a hyper-parameter and design methods to tune it. We directly use the
positive-unlabeled learning [63] method [64] to estimate the fraction of common class data among
the target domain unlabeled data, by taking the labeled target data as positive samples. The results of
different methods for open-set HDA using the estimate η̂ of η are given in Table A-1. According to
Table A-1, the positive transfer is achieved by our method. We can see that η̂ in all tasks is lower
than the true η, implying that less unknown class samples are detected. Correspondingly, the UNK
value (73.2%) achieved by partial-KPG-RL using η̂ in Table A-1 is smaller than that (83.5%) using
η in Table 3 in the paper. Surprisingly, the OS∗ value (67.5%) of partial-KPG-RL in Table A-1 is
higher than that (59.7%) in Table 3 in the paper. As a balance, the HOS value (69.5%) achieved by
partial-KPG-RL using η̂ is similar to the HOS value (69.1%) of partial-KPG-RL using the true η.

In the following Table A-2, we take η as a hyper-parameter and show the average HOS achieved by
partial-KPG-RL using varying magnitude of η. It is observed that the average HOS is stable to η in a
relatively large range of [0.50, 0.80].

Table A-2: Average HOS of partial-KPG-RL using varying magnitude of η (the unknown true value
of η is 0.67).

η 0.50 0.55 0.60 0.65 0.70 0.75 0.80

Average HOS 67.2 69.2 69.9 68.7 69.2 68.5 65.5

B.3 Application in Deep Unsupervised Domain Adaptation

In this section, we apply our method to deep unsupervised domain adaptation where the mini-batch-
based implementation is required. The main challenge is that some of the samples in the mini-batch
may not be matched. For instance, the categories of some samples in the source mini-batch may not
be present in the target mini-batch, and thus these source samples should not be transported/matched.
Inspired by [65] that uses partial OT over the mini-batch data to implement deepJDOT [66], we use
our partial KPG-RL-KP model to partially match the mini-batch data in the training of the deep
network. The partial KPG-RL-KP model is modified from Eq. (13) by replacing G by αC+(1−α)G.
As an experimental example, we apply the partial KPG-RL-KP to the unsupervised domain adaptation
experiment on the Office-Home dataset [67]. We take the source and target class centers of the same
class as a keypoint pair. The centers are online updated by exponential moving average in training,
same as in [68]. We use the pseudo labels of target data to update the target class centers, due to the
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lack of target labels. The protocol is the same as that in [65] . The batch size is set to 65 and the
total transport mass (s in Eq. (13)) is set to 0.6, which are the same as those in [65]. The results are
reported in the following Table A-3.

Table A-3: Results for unsupervised domain adaptation. “A”, “C”, “P”, and “R” are the domains of
“Art”, “Clipart”, “Product”, and “RealWorld” in Office-Home dataset.

Method A→C A→P A→R C→A C→P C→R P→A P→C P→R R→A R→C R→P Avg

ROT [23] 47.20 71.80 76.40 58.60 68.10 70.20 56.50 45.00 75.80 69.40 52.10 80.60 64.30
m-OT [66] 51.75 70.01 75.79 59.60 66.46 70.07 57.60 47.88 75.29 66.82 55.71 78.11 64.59
m-UOT [69] 54.99 74.45 80.78 65.66 74.93 74.91 64.70 53.42 80.01 74.58 59.88 83.73 70.17
m-POT [65] 55.65 73.80 80.76 66.34 74.88 76.16 64.46 53.38 80.60 74.55 59.71 83.81 70.34

m-KPG-RL-KP 52.13 63.65 74.53 61.12 67.84 67.88 59.84 52.93 76.90 71.92 59.21 82.55 65.88
m-PKPG-RL-KP 57.96 74.45 78.75 66.30 75.22 74.39 66.87 58.47 80.47 75.15 61.15 84.23 71.12

In Table A-3, ROT [23] is a robust OT method. m-OT is the direct mini-batch implementation of
deepJDOT [66]. m-UOT [69] and m-POT [65] are respectively unbalanced deepJDOT and partial
deepJDOT on mini-batch data. m-KPG-RL-KP is the direct mini-batch implementation of our KPG-
RL-KP model. m-PKPG-RL-KP is the mini-batch implementation of our partial KPG-RL-KP model.
We can see that by partially matching the samples in the mini-batches, m-KPG-RL-KP outperforms
m-KPG-RL-KP by a margin of 6.24%. Our partial KPG-RL-KP (m-PKPG-RL-KP) outperforms
partial DeepJDOT (m-POT) by 0.68%, indicating that using partial matching, our approach is effective
for unsupervised domain adaptation under mini-batch implementation.

B.4 Additional Details for HDA Experiments

Kernel SVM. In the kernel SVM, we use the radial basis function kernel k(x, y) = exp(−γ∥x−
y∥2), where γ is set to the reciprocal of the feature dimension. We use the scikit-learn packadge of
python to implement it by simply running the following codes:

clf = SVC(gamma=‘auto’)
clf.fit(feat_train,label_train)

Barycentric mapping. The barycentric mapping is defined as follows. Given the transport plan
π ∈ Σm×n and source data point xi0 , the barycentric mapping [49] is defined as Bπ(xi0) =
argminy

∑n
j=1 πi0,jc(xi0 , yj). Since c is the squared L2-distance in our paper, Bπ(xi0) has closed-

form expression of

Bπ(xi0) =
1∑n

j=1 πi0,j

n∑
j=1

πi0,jyj . (A-43)

B.5 Additional Ablation Studies

Matching accuracy on real data in HDA application. We compare the matching accuracy of
different OT models on Office-31 dataset in Table A-4. To compute the matching accuracy, for each
transported source data point, we find its nearest neighbor among the target data points to construct a
matched pair. If the two points in a pair have the same class labels, the matching is correct, otherwise
the matching is incorrect. The matching accuracy is the ratio of correctly matched pairs. In Table A-4,
we can see that without the guidance of keypoints, the matching accuracy of GW model is less than
3%. SGW improves the matching accuracy of GW. Our proposed KPG-RL and KPG-RL-GW models
achieve better matching accuracy than SGW.
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Table A-4: Matching accuracy of different OT models on Office-31 for HDA tasks.

OT models A→A A→D A→W D→A D→D D→W W→A W→D W→W Avg
GW [27] 2.5 0.7 1.4 2.9 1.8 1.8 2.5 0.4 0.4 1.6
SGW [37] 43.4 61.7 64.3 43.8 73.1 68.9 43.4 72.5 72.7 60.4
KPG-RL 48.7 67.7 66.1 50.7 86.8 81.0 51.0 82.9 83.3 68.7
KPG-RL-GW 50.3 67.4 66.2 49.7 86.5 81.0 51.9 82.9 82.6 68.7

Comparison of different choices for d. Since Rs
k and Rt

l are in the probability simplex, it is
reasonable to measure their difference by a distribution divergence/distance. The widely used distribu-
tion divergences/distances include the KL-divergence, JS-divergence, and Wasserstein distance. The
KL-divergence is not symmetric, so we need to determine the order of inputs. For the Wasserstein
distance, one should define the ground metric first. A possible strategy is to set the ground metric to
0 if the two keypoints are paired, otherwise 1. Such a ground metric makes the Wasserstein distance
equal to the L1-distance. In this work, d is taken as the JS-divergence. We compare the performance
of different choices of d in the experiment of HDA on Office-31, as in Table A-5.

Table A-5: Results of different choices of d in HDA experiment on Office-31.

Choices of d A→A A→D A→W D→A D→D D→W W→A W→D W→W Avg
KL-ST 59.0 89.7 83.6 56.8 95.2 89.0 57.7 93.6 88.1 79.2
KL-TS 58.1 89.0 82.3 54.2 93.9 88.1 54.2 93.2 89.4 78.0
L1-distance 57.4 85.8 79.0 58.0 85.8 82.9 58.4 92.6 83.6 75.9
L2-distance 52.3 85.8 81.3 53.2 91.3 82.3 52.6 90.3 82.9 74.7
GW 42.0 71.6 70.0 41.6 71.0 69.4 42.3 71.3 70.0 61.0
JS 60.0 91.6 83.6 57.4 95.8 87.7 59.1 95.2 88.4 79.9

In Table A-5, KL-ST and KL-TS denote the KL-divergence KL(Rs
k, R

t
l) and KL(Rt

l , R
s
k) respec-

tively. GW is the Gromov-Wasserstein distance between Rs
k and Rt

l where the source/target cost is
taken as the L2-distance of source/target keypoints. We find that the JS-divergence achieves the best
performance, compared with KL-ST, KL-TS, L1-distance, L2-distance, and Gromov-Wasserstein.

Results of KPG-RL without using the guiding matrix G. The guiding matrix is the core to
impose the relation preservation. We below show in Table A-6 the results for our KPG-RL without
using the guiding matrix G, i.e., Lkpg(π) = ⟨M,π⟩F .

Table A-6: Results for different definitions of Lkpg(π) in HDA experiment.

Definition of Lkpg(π) ⟨M,π⟩F ⟨M ⊙ π,G⟩F
KPG-RL 60.7 79.9

KPG-RL-GW 60.6 79.6

We can see that without G, both the results of KPG-RL model and KPG-RL-GW model decrease.
This may be because Lkpg(π) = ⟨M,π⟩F may not well impose the guidance of keypoints, since it
does not model the “relation” of each point to keypoints.

Sensitivity to source keypoints. In the experiments of the paper, the source keypoints are taken as
the source class centers. To study the sensitivity to the location of source keypoints, we randomly
sample one data point from each class as a keypoint to construct the source keypoints. We run the
experiments with five different samplings for constructing the source keypoints (these five runs are
denoted as S1, S2, S3, S4, S5 respectively). The results are reported in the Table A-7. We can see that
using the class center as the keypoints achieves the best results, compared with randomly sampling
one data point per class as the keypoints. This may be because the class centers are estimated using
all the data of each class, and these centers can better represent each class than a randomly sampled
data point of each class.
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Table A-7: Results for different locations of source keypoints.

S1 S2 S3 S4 S5 Centers

76.8 77.5 78.2 77.8 76.9 79.9

We next study the sensitivity to the number of source keypoints, of which the results are reported in
Table A-8. In this experiment, we randomly sample 3/5/7/9 samples (keypoints) or use all the source
samples (keypoints) for each class in the source domain to compute the source class centers, which
are paired with labeled target samples for constructing the keypoint pairs. The results in Table A-8
show that as the number of source keypoints increases, the accuracy gradually increases. The best
result is obtained when all source samples are used to compute the class centers.

Table A-8: Results for different numbers of source keypoints.

Number 3 5 7 9 All

Accuracy 78.4 79.2 79.6 79.8 79.9

On defining keypoints in other practical applications. According to the results in Table A-7, the
class centers are better to be the keypoints than the randomly selected samples. For other practical
applications, there may not be “class labels” available. We could first cluster the points and then
annotate the points near to the center of the clusters as the keypoints.

Time and memory cost. We report the memory and time cost of KPG-RL with different sizes of
the guiding matrix G in the bottom row of Tables A-9 and A-10 respectively. For comparisons, we
also report the memory and time cost of the Kantorovich Problem (KP). KP needs to calculate the
pair-wised cost matrix C, as in Eq. (1). KPG-RL calculates the relation score, and then computes the
guiding matrix G. Since we have deduced Sinkhorn’s algorithm for solving KPG-RL, we solve both
KP and KPG-RL using Sinkhorn’s algorithm with ϵ = 0.005. Table A-9 shows that KPG-RL costs
a slightly larger memory than KP. Table A-10 shows the computational time for solving KPG-RL
and KP problems. In the experiment on Office-31, the maximum memory of G is 38M, and the peak
memory of the running process is 780M.

Table A-9: Peak memory for computing KP and KPG-RL.

Size (m× n) of C/G 500× 500 1000× 1000 2000× 2000

KP 201M 218M 330M
KPG-RL 207M 232M 378M

Table A-10: Time cost for computing KP and KPG-RL.

Size (m× n) of C/G 500× 500 1000× 1000 2000× 2000

KP 6.9s 27.7s 60.1s
KPG-RL 10.8s 42.1s 76.5s

Sensitivity to hyper-parameters. We show the sensitivity of our method to hyper-parameters τ , τ ′
in Table A-11, ϵ in Table A-12, and α in Table A-13. ϵ is the the coefficient of entropy regularization.
τ and τ ′ are used to define the relation in Eqs. (7) and (8) in the paper. We set τ = ρmaxi,j{Cs

i,j}
and τ ′ = ρmaxi,j{Ct

i,j}. We then show the results with varying values of ρ. It can be observed that
the best value of α is 0.4 in this task, and the results are relatively stable when α ranges in [0.2, 0.5].
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Table A-11: Sensitivity of KPG-RL to hyper-parameters τ and τ ′ in HDA task A→W. We set
τ = ρmaxi,j{Cs

i,j} and τ ′ = ρmaxi,j{Ct
i,j}. We then show the results with varying values of ρ.

ρ 0.05 0.07 0.09 0.1 0.2 0.3 0.4 0.5

Accuracy 82.3 83.2 83.2 83.6 83.2 82.9 82.6 82.6

Table A-12: Sensitivity of KPG-RL to hyper-parameter ϵ in HDA task A→W.

ϵ 0.0001 0.0005 0.001 0.005 0.01 0.05 0.1 1

Accuracy 83.2 83.2 83.3 83.6 82.3 76.5 74.8 71.0

Table A-13: Sensitivity of KPG-RL-GW to hyper-parameter α in HDA task A→W.

α 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

Accuracy 74.3 78.1 81.5 82.9 84.2 84.5 84.0 84.0 83.7
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