
A Experiment Details

Source code for the training pipeline, tasks, and models used in this work, is available as part of the
supplementary material.

We used the same Adam [48] optimizer for all our experiments and a learning rate of 0.001, and a
batch size of 128. For solving the differential equations both during ground truth data generation
as well as with the neural ODEs, we use the Tsitouras 5/4 Runge-Kutta (Tsit5) method from
DifferentialEquations.jl [36].

A.1 Coupled Pendulum

The coupled pendulum dynamics are defined as

θ̈1 =
sin θ1 ∗ (m1l1θ̇1

2 − g − kl1) + kl2 sin θ2
m1l1 cos θ1

(6)

θ̈2 =
sin θ2 ∗ (m2l2θ̇2

2 − g − kl2) + kl1 sin θ1
m2l2 cos θ2

Where θi, θ̇i refer to the angle and the angular velocity of the ith pendulum respectively. mi and
li are the mass and length corresponding to the ith pendulum, which are chosen to be 1.0kg and
1.5m respectively. k is the spring constant of the coupling string (chosen to be 2.0), and g is the
gravitational acceleration. The system state is defined as [θ1, θ̇1, θ2, θ̇2].

We train the MP-NODE on a dataset of 500 trajectories, each randomly initialized with state values
between [−π/2, π/2] for the θ and [−1, 1] for θ̇, with a time step of 0.1s and each trajectory 10s long.
The dataset is normalized through Z-score normalization. We use the mean squared error loss during
training.

A.2 Lorenz Attractor Systems

A Lorenz system is a simplified model of atmospheric convection, described through a 3-dimensional
system that exhibits chaotic behavior in specific cases. The system has a three-dimensional state
whose evolution is described as ẋ = σ(y−x); ẏ = x(ρ−z)−y; ż = xy−βz. In our implementation,
we use the values of σ = 10.0, ρ = 28.0, β = 2.666 for the Lorenz attractor which match the values
originally used in [38]. We consider multiple Lorenz systems coupled in a fully connected manner.

We generate data from multiple Lorenz attractor configurations, the variables being the number of
Lorenz nodes (3, 7, 10), the length of the trajectories (2.5s, 5s) and the coupling magnitude. We
generate the coupling matrix with random coupling strengths between 0 and 1, with the diagonal
elements set to zero (as the nodes are not connected to themselves). We use an additional coupling
magnitude parameter that the coupling matrix is multiplied with to strengthen/weaken the coupling
effect: which is set to 0.01 for low coupling and 1.0 for high coupling.

We train our MP-NODE primarily on the Lorenz3 system, with trajectories that are 2.5s long with a dt
(timestep) of 0.05s and low coupling magnitude. We perform Z-score normalization on the data and
use Huber loss along the time dimension as the training loss function. This model is later finetuned
on the other configurations.

A.3 Gene Dynamics

The gene regulatory dynamics for a grid-based system are governed by the Michaelis-Menten equation
that is shown below [39].

dxi(t)

dt
= −bixi

g +

n∑

j=1

Aij
xj

h

xj
h + 1

(7)

We solve the Michaelis-Menten equation over two sizes of 2D grids: 4× 4 (gene_small) and 8× 8
(gene_large). The adjacency matrices were generated randomly according to three network topologies:
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a) Erdós-Rényi (ER) [40]; b) Barabási-Albert (BA) [41] and c) Wattz-Strogatz (WS) [42]. For each
grid with n cells in total, each cell is connected to n/2 other cells. The initial state at each cell of the
grid was chosen randomly to be between 0 and 50. Our implementation loosely follows that of [30].

The training dataset contains 200 trajectories from gene_small with five different adjacency matrices
of the power-law network type, of which 70% are used for training and the rest for evaluation. Each
trajectory is 5s long with a timestep of 0.1s. For training the MP-NODE on this system, we use
the mean squared error loss. This model is later finetuned on gene_large, and the other network
topologies.

A.4 Kuramoto Systems

The Kuramoto model [43] describes the behavior of large sets of coupled oscillators. Variations of
the Kuramoto model find applications in a variety of fields, such as neuroscience [49], power systems
[50] and vehicle coordination [51]. The dynamics are defined as:

dxi(t)

dt
= bi +

N∑

j=1

Aij sin(xj − xi) (8)

We also simulate the Kuramoto systems with adjacency matrices according to three network topolo-
gies: random, power-law and small-world. We generate data for Kuramoto systems with 10 nodes,
with each node connected to 5 other nodes. The initial state at each cell of the grid was chosen
randomly to be between -1 and 1. The timestep for the trajectories was set to 0.05s.

We train the main MP-NODE model on a dataset of 500 trajectories, of which 70% are used for
training and the rest for evaluation. We perform Z-score normalization on the data and use Huber
loss along the time dimension as the training loss function. This model is later finetuned on data from
other network topologies.

A.5 Load Carrying Quadrotors

Quadrotor dynamics are defined by:

ẋ =



ṙ
q̇
v̇
ω̇


 =
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2q ⊗ ω̂
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R(q)F (u) + Fc(u5, x, x

`)
)

J−1 (τ(u)− ω × Jω)


 (9)

where r ∈ R3 is the position, q is the unit quaternion, R(q) ∈ SO(3) is quaternion dependent rotation
matrix from body frame to world frame, v ∈ R3 is the linear velocity in the world frame, ω ∈ R3

is the angular velocity in the body frame. g is the gravity vector, m is the mass of the individual
quadrotor, J ∈ S3 is the moment of inertia tensor, q2 ⊗ q1 denotes quaternion multiplication, and
ω̂ denotes a quaternion with zero scalar part and ω vector part. The forces (F ∈ R3) and torques
(τ ∈ R3) are in the body frame. For our experiments, the coupling between the quadrotors was
provided via (unobserved) state vector of the load x` ∈ R6. Therefore the state vector x ∈ R13 and
the control vector u ∈ R5. For more details please refer to [45].

The training dataset was generated using the batch trajectory optimizer in [45]. We generated a total
of 463 trajectories for the 3 quadrotor system with different initial conditions of the load and the
quadrotors. We used 70% trajectories for full training and rest for evaluation. The trajectories were
10s long with timestep, dt = 0.2s. Similar method was used to generate data for 6 quadrotor system.

The data was standardized using the Z-score transform. Mean-Square-Error between the predicted
trajectory and the ground truth trajectory was used as the training objective.

15



B Additional Experiments

B.1 Coupled Pendulum

We show coupled pendulum dynamics evolution and the corresponding messages from a different
initial state in Figure 10.
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Figure 10: Additional example of the state of each pendulum and corresponding messages that allow
for accurate predictions.

B.2 Lorenz Systems

In section 4.3, we discuss the zero-shot generalization ability of the MP-NODE. In Figure 11a and
Figure 11b, we show results of a MP-NODE model trained only on Lorenz3, but tested on Lorenz7
and Lorenz10 without any finetuning. We observe reasonably good performance on Lorenz7 and 10
which are unseen configurations during training.
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(a) Lorenz3 trained MP-NODE evaluated on Lorenz7.

(b) Lorenz3 trained MP-NODE evaluated on Lorenz10.

Figure 11: Zero-shot generalization of MP-NODE on Lorenz systems. From left to right, top to
bottom - plots depict the predicted vs. ground truth dynamics on X, Y, Z states of all 7 or 10 nodes.
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B.3 Quadrotor Systems

With increasing dimensions of messages, it is difficult to analyze the roles they play. To this end we
apply Principal Component Analysis (PCA) for all 39 messages over time for 100 trajectories and
visualize the evolution of first three principal components over the time horizon of the trajectory in
Figure 12. There is an overall trend of increasing values of these components over time. We believe
that these increasing values hint at the messages acting in to counteract the problem of simulation
drift over time. The pattern of smaller values at some time indices likely corresponds to the nature of
dynamic interaction when the quadrotors reconfigure themselves to carry the load through the narrow
doorway.
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Figure 12: First three principal components of messages over time for 100 different trajectories.
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