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A Additional Implementation Details

A.1 Model Settings

We detail the different settings for our model in this section. Our model setting can be denoted
by Rdensity

vec /Rdensity
mat -Rcolor

vec /Rcolor
mat , corresponding to the number of vector- and matrix-based rank

components for the density and color features. In particular, we focus on compressing the color
components, since the density components take much less storage compared to the color components,
and a correct density is the basis for correct color. In the main paper, we choose three different model
settings to test the capability of our model at different scales. (1) The CP model only uses vector-based
rank components. It takes less storage, but needs a relatively higher number of ranks to reach good
rendering quality. Since the runtime GPU usage is determined by the total number of ranks, the CP
model also leads to higher GPU memory usage and slower model querying. The full model uses
96 ranks for density, and 384 ranks for color. We use M = 4 groups for the rank-residual learning,
so each group contains 96 ranks for color. (2) The HY model uses both vector- and matrix-based
components. The use of matrix components takes more storage, but efficiently reduces the needed
number of ranks, which consequently reduces GPU memory usage. We use 64 vector components
and 16 matrix components for density, as well as 256 vector components and 64 matrix components
for color. M = 4 groups are used for the rank-residual learning of color, with each group containing
64 vector components and 16 matrix components. (3) The HY-S model also uses both vector- and
matrix-based components, but allows the model size to be adjusted in a larger range. Both density and
color initially use 96 vector components. We then additionally append 4 groups for color, increasing
the total number of matrix components to {4, 16, 32, 64} gradually. Therefore, there are in total
M = 5 groups including the first group with only 96 vector components.

A.2 Training Details

We train the model for 30, 000 iterations on both datasets, using the Adam optimizer [2] with an
initial learning rate of 0.02 for the factorized matrices, and 0.001 for the singular values. To accelerate
the training and inference, we adopt the occupancy pruning technique used in [1, 5]. An occupancy
grid is pre-calculated at the 2, 000 and 4, 000 steps of training, and used to prune the non-occupied
points along each ray. We also shrink the bounding box based on the occupancy grid at step 2, 000 for
a more accurate modeling following [1]. This occupancy grid is also keeped in scene composition. As
the transformation matrices, we record the occupancy grid for each single object, and use the warped
rays to query the occupancy. We also apply the standard L1 regularization on the factored matrices
for density following [1]. This regularization encourages sparsity in the parameters for tensor rank
decomposition, which is shown to be beneficial in extrapolating novel views and removing floaters.
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Figure 1: Dynamic adjustment of level of detail (LOD). We show an example of using different
LODs in practice. The top image is a good use case, while the bottom image is a bad use case for
comparison. Different rendering quality of different LODs are marked by the red box. By dynamically
adjusting each model’s LOD, we can balance between model size and performance, allowing more
flexibility in scene composition.

A.3 Difference from TensoRF-SH

TensoRF [1] first brings the idea of tensor rank decomposition into modeling a neural radiance field.
We now discuss the relationships between our method and TensoRF. In TensoRF, a Sphere Harmonics
(SH) renderer variant can be used in place of the MLP renderer. However, due to the slightly worse
performance of the SH variant, the authors decide to use the MLP renderer in the final design, and
don’t consider the compressibility or composability. For the CP decomposition, our model’s structure
is identical to the TensoRF-SH variant. The basis matrix B in TensoRF plays the same role as our
rank weight matrix S, except that we further explore its role in low-rank approximation. TensoRF also
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Figure 2: Visualization of any rank compression. Qualitative results of different compression
strategies. The proposed method reaches near-optimal quality and doesn’t need the retraining for the
optimal models, while the baseline sort-and-truncate strategy fails.
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Figure 3: Comparisons with recent works. We provide qualitative comparisons with recent methods.
Although quantitatively our model is only comparable to the state-of-the-arts, the rendering quality is
good enough in most cases.

proposed a vector-matrix (VM) decomposition, but it is distinct from our hybrid (HY) decomposition.
The most important property of our HY decomposition is the ability to arbitrarily adjust the ratio of
vector- and matrix-based rank components (as demonstrated by our HY-S model setting). However,
the VM decomposition requires the same rank for vector- and matrix-based rank components (i.e.,
the ratio is always 1 : 1), which limits the flexibility of model size controlling.

B Additional Experimental Results

B.1 Visualization of Different Levels of Detail

We show in Figure 1 an example of adopting different LODs for the same object in different cases.
We transform and compose two bulldozers from the nerf-synthetic dataset [4] into the barn scene from
the Tanks And Temples dataset [3]. The left bulldozer is placed as the primary object and requires
more details for better visual effect, while the top right bulldozer is scaled down as a secondary object
with fewer details. Our models are suitable for such cases due to the compressibility. We can use
the full model for the primary object, while truncating it to a smaller model for the secondary object.
This won’t harm the quality of the overall rendering, but significantly saves storage space.

B.2 Visualization of the Near-optimal Compression

In Figure 2, we visualize the results for different compression strategies. We use the HY-S model on
the LEGO dataset as an example, and only apply rank-residual supervision in 5 groups (i.e., M = 5)
where we also retrain an optimal model. The baseline models are gradually truncated from the
optimal model of the full rank. This further demonstrates the near-optimal low-rank approximation
property of the proposed rank-residual learning.

3



Table 1: Training time. Comparison of the training time and PSNR between different methods.

Method Time PSNR↑
NeRF [4] ∼ 35h 31.01
TensoRF-CP-384 [1] 25m 31.56
TensoRF-VM-192 [1] 17m 33.14
Plenoxels [6] 11.4m 31.71
Instant-ngp [5] 5m 33.18

Ours-CP 29m 30.55
Ours-HY-S 30m 31.22
Ours-HY 41m 32.37

Table 2: SH degrees. Comparison of training time and PSNR between different SH degrees.

Degree 1 2 3 4
Time (minute) 54 44 49 73
PSNR 28.29 28.97 28.99 28.65

B.3 Qualitative Comparisons with SOTA

We provide qualitative comparisons with recent works in Figure 3. Although we only reach compara-
ble quantitative results to the state-of-the-art method like TensoRF [1], the difference in rendering
quality is hard to discern in most cases. Such rendering quality is enough to use for our compression
and composition property.

B.4 Time Analysis

In Table 1, we also report the average training time over the nerf-synthetic dataset. Although our
method cannot reach same level of speed compared to the recent works focusing on this problem [6, 5],
it has been much more efficient compared to the vanilla NeRF [4]. Due to the rank-residual learning,
the training time of our method is increased compared to TensoRF [1].

C Additional Ablation Study

C.1 Influence of the SH degrees

In Table 2, we performed an ablation study on the SH degrees with the materials dataset, which
contains rich view-dependent effects. We show that SH degree of 3 achieves the best PSNR to model
view-dependent effects. With too few or too many degrees, e.g., 1 or 4, the model is hard to converge
and takes more time to train.

C.2 Parallel rank-residual training

To verify the proposed parallel rank-residual training strategy, we experimented with three settings
on the chair dataset in Table 3: (1) sequentially training per stage until its convergence, freezing the
previous stages before training a new stage, (2) parallel training all stages, but for each stage we
detach the output from the previous stages so each loss only applies on its corresponding rank group,
which can be viewed as training each stage independently in parallel, (3) parallel training all stages
without detaching, so each loss applies to all its previous rank groups.

The first setting is significantly slower to assure convergence of each stage. The second setting’s
final performance is worse due to optimizing later stages with not fully converged earlier stages.
Compared to the first two settings, we think the third setting eases the training of the earlier stages,
by letting the later stages model the complex details. Therefore, the earlier stages can focus on the
fundamentals.
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Table 3: Parallel rank-residual training. Comparison of the training time and PSNR on parallel and
sequential training strategy.

Settings Sequential Parallel w/ detaching Parallel w/o detaching
Time (minute) 83 28 26
PSNR 34.16 33.69 34.37
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