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Abstract
We show that standard Transformers without graph-specific modifications can lead
to promising results in graph learning both in theory and practice. Given a graph, we
simply treat all nodes and edges as independent tokens, augment them with token
embeddings, and feed them to a Transformer. With an appropriate choice of token
embeddings, we prove that this approach is theoretically at least as expressive as an
invariant graph network (2-IGN) composed of equivariant linear layers, which is
already more expressive than all message-passing Graph Neural Networks (GNN).
When trained on a large-scale graph dataset (PCQM4Mv2), our method coined
Tokenized Graph Transformer (TokenGT) achieves significantly better results
compared to GNN baselines and competitive results compared to Transformer
variants with sophisticated graph-specific inductive bias. Our implementation is
available at https://github.com/jw9730/tokengt.

1 Introduction

In recent years, Transformer [68] has served as a versatile architecture in a broad class of machine
learning problems, such as natural language processing [17, 7], computer vision [18], and reinforce-
ment learning [9], to name a few. It is because the fully-attentional structure of Transformer is general
and powerful enough to take, process, and relate inputs and outputs of arbitrary structures, eliminating
a need for data- and task-specific inductive bias to be baked into the network architecture. Combined
with large-scale training, it opens up a new chapter for building a versatile model that can solve a wide
range of problems involving diverse data modalities and even a mixture of modalities [31, 30, 57].

In graph learning domain, inspired by the breakthroughs, multiple works tried combining self-
attention into graph neural network (GNN) architecture where message passing was previously
dominant [50]. As global self-attention across nodes cannot reflect the graph structure, however, these
methods introduce graph-specific architectural modifications. This includes restricting self-attention
to local neighborhoods [69, 51, 19], using global self-attention in conjunction with message-passing
GNN [58, 43, 34], and injecting edge information into global self-attention via attention bias [72,
78, 29, 54]. Despite decent performance, such modifications can be a limiting constraint in terms of
versatility, especially considering future integration to multi-task and multi-modal general-purpose
attentional architectures [31]. In addition, deviating from pure self-attention, these methods may
inherit the issues of message-passing such as oversmoothing [40, 8, 52], and become incompatible
with useful engineering techniques e.g., linear attention [65] developed for standard self-attention.

Instead, we explore the opposite direction of applying a standard Transformer directly for graphs. For
this, we treat all nodes and edges as independent tokens, augment them with appropriate token-wise
embeddings, and feed the tokens as input to the standard Transformer. The model operates identically
to Transformers used in language and vision; each node or edge is treated as a token, identical to the
words in a sentence or patches of an image [68, 18]. Perhaps surprisingly, we show that this simple
approach yields a powerful graph learner both in theory and practice.
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Figure 1: Overview of Tokenized Graph Transformer (TokenGT). We treat all nodes and edges of an
input graph as independent tokens, augment them with orthonormal node identifiers and trainable
type identifiers, and feed them to a standard Transformer encoder. For graph-level prediction, we
follow the common practice [17, 18] of using an extra trainable [graph] token.

As a key theoretical result, we prove that with appropriate token-wise embeddings, self-attention over
the node and edge tokens can approximate any permutation equivariant linear operator on a graph [47].
Remarkably, we show that a very simple choice of embedding composed of node identifiers and
type identifiers is sufficient for accurate approximation. This provides a solid theoretical guarantee
that, with the embeddings and enough attention heads, a Transformer is at least as expressive as a
second-order invariant graph network (2-IGN) [47, 34], which is already more expressive than all
message-passing GNNs [21]. This also immediately grants the model with the expressive power at
least as good as the 2-dimensional Weisfeiler-Lehman (WL) graph isomorphism test [46], which is
often sufficient for real-world graph data [83]. We further extend our theoretical result to hypergraphs
with order-k hyperedges, showing that a Transformer with order-k generalized token embeddings is
at least as expressive as k-IGN and, consequently k-WL test.

We test our model, named Tokenized Graph Transformer (TokenGT), mainly on the PCQM4Mv2
large-scale quantum chemical property prediction dataset containing 3.7M molecular graphs [27].
Even though TokenGT involves minimal graph-specific architectural modifications, it performs
significantly better than all GNN baselines, showing that the advantages of Transformer architecture
combined with large-scale training surpass the benefit of hard inductive bias of GNNs. Furthermore,
TokenGT achieves competitive performance compared to Transformer variants with strong graph-
specific modifications [78, 29, 54]. Finally, we demonstrate that TokenGT can naturally utilize
efficient approximations in Transformers in contrast to these variants, using kernel attention [11] that
enables linear computation cost without much degradation in performance.

2 Tokenized Graph Transformer (TokenGT)

In this section, we present the Tokenized Graph Transformer (TokenGT), a pure Transformer archi-
tecture for graphs with token-wise embeddings composed of node identifiers and type identifiers
(Figure 1). Our goal in this section is to provide a practical overview – for theoretical analysis of the
architecture, we guide the readers to Section 3.

Let G = (V, E) an input graph with n nodes V = {v1, ..., vn} and m edges E = {e1, ..., em} ⊆
V2, associated with features XV ∈ Rn×C and XE ∈ Rm×C , respectively. We treat each node
and edge as an independent token (thus (n + m) tokens in total) and construct their features by
X = [XV ;XE ] ∈ R(n+m)×C . A naïve way to process a graph is to directly provide the tokens X
as input to a Transformer, but it is inappropriate as graph connectivity is discarded. To thoroughly
represent graph structure, we augment the tokens X with token-wise embeddings, more specifically
orthonormal node identifiers used for representing the connectivity of the tokens and trainable type
identifiers that encode whether a token is a node or an edge. Despite the simplicity, we show that a
Transformer applied on these embeddings is a theoretically powerful graph learner.
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Node Identifiers The first component of token-wise embedding is the orthonormal node identifier
that we use to represent the connectivity structure given in the input graph.

For a given input graph G = (V, E), we first produce n node-wise orthonormal vectors P ∈ Rn×dp

that we refer to as node identifiers. Then, we augment the tokens X with node identifiers as follows.

• For each node v ∈ V , we augment the token Xv as [Xv,Pv,Pv].
• For each edge (u, v) ∈ E , we augment the token X(u,v) as [X(u,v),Pu,Pv].

Intuitively, a Transformer operating on the augmented tokens can fully recognize the connectivity
structure of the graph since comparing the node identifiers between a pair of tokens reveals their
incidence information. For instance, we can tell if an edge e = (u, v) is connected with a node k
through dot-product (attention) since [Pu,Pv][Pk,Pk]

⊤ = 1 if and only if k ∈ (u, v) and 0
otherwise. This allows the Transformer to identify and exploit the connectivity structure of a graph,
for instance by putting more weights on incident pairs when the local operation is important.

Notably, as the node identifiers P are only required to be orthonormal, we have a large degree of
freedom in implementation choices. We outline two practical methods below as examples. Their
implementation details can be found in Appendix A.3.1.

• Orthogonal random features (ORFs), e.g., rows of random orthogonal matrix Q ∈ Rn×n

obtained with QR decomposition of random Gaussian matrix G ∈ Rn×n [79, 12].
• Laplacian eigenvectors obtained from eigendecomposition of graph Laplacian matrix, i.e.,

rows of U from ∆ = I−D−1/2AD−1/2 = U⊤ΛU, where A ∈ Rn×n is adjacency matrix,
D is degree matrix, and Λ, U correspond to eigenvalues and eigenvectors respectively [20].

Among the two methods, node identifiers generated as ORFs do not encode any information about
the graph structure as they are entirely random. This means the Transformer that operates on the
ORF-based node identifiers needs to compile and recognize graph structure only from the incidence
information provided by the node identifiers. Although this is challenging, perhaps surprisingly, we
empirically show in Section 5 that Transformers are strong enough to learn meaningful structural
representations out of ORF-based node identifiers and outperform GNNs on large-scale task.

In contrast to ORFs, Laplacian eigenvectors provide a kind of graph positional embeddings (graph
PEs) that describes the distance between nodes on a graph. Due to the positional information, it
yields better performance compared to ORFs in our experiments in Section 5. One interesting aspect
of Laplacian eigenvectors is that they can be viewed as a generalization of sinusoidal positional
embeddings of NLP Transformers to graphs, as the eigenvectors of 1D chain graphs are sine and
cosine functions [20]. Thus, by choosing Laplacian eigenvectors as node identifiers, our approach can
be interpreted as a direct extension of the NLP Transformer for inputs involving relational structures.

Type Identifiers The second component of token-wise embedding is the trainable type identifier
that encodes whether a token is node or edge. For a given input graph G = (V, E), we first prepare a
trainable parameter matrix E = [EV ;EE ] ∈ R2×de that contains two type identifiers EV and EE for
nodes and edges respectively. Then, we further augment the tokens with type identifiers as follows.

• For each node v ∈ V , we augment the token [Xv,Pv,Pv] as [Xv,Pv,Pv,E
V ].

• For each edge (u, v) ∈ E , we augment the token [X(u,v),Pu,Pv] as [X(u,v),Pu,Pv,E
E ].

These embeddings provide information on whether a given token is a node or an edge, which is
critical, e.g., when an attention head tries to attend specifically to node tokens and ignore edge tokens.

Main Transformer With node identifiers and type identifiers, we obtain augmented token features
Xin ∈ R(n+m)×(C+2dp+de), which is further projected by a trainable matrix win ∈ R(C+2dp+de)×d

to be an input to Transformer. For graph-level prediction, we prepend a special token [graph]
with trainable embedding X[graph] ∈ Rd similar to BERT [17] and ViT [18]. We utilize the
feature of [graph] token at the output of the encoder as the graph representation, on which a
linear prediction head is applied to produce the final graph-level prediction. Overall, the tokens
Z(0) = [X[graph];X

inwin] ∈ R(1+n+m)×d are used as the input to the main encoder. As an encoder,
we adopt the standard Transformer [68], which is an alternating stack of multihead self-attention
layers (MSA) and feedforward MLP layers. We provide further details in Appendix A.1.1.
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Inductive Bias Similar to Transformers in language and vision [17, 18], Tokenized Graph Trans-
former treats input nodes and edges as independent tokens and applies self-attention to them. This ap-
proach leads to much less inductive bias than current GNNs, where the sparse graph structure, or more
fundamentally, permutation symmetry of graphs is deliberately baked into each layer [21, 47, 46, 34].
For TokenGT, such information is provided entirely as a part of input using token-wise embeddings,
and the model has to learn how to interpret and utilize the information from data. Although such
weak inductive bias might raise questions on the expressiveness of the model, our theoretical analysis
in Section 3 shows that TokenGT is a powerful graph learner thanks to the token-wise embeddings
and expressive power of self-attention. For example, we show that TokenGT is more expressive than
all message-passing GNNs under the framework of Gilmer et al. (2017) [21].

3 Theoretical Analysis

We now present our theory. Our key result is that TokenGT, a standard Transformer with node and
type identifiers presented in Section 2, is provably at least as expressive as the second-order Invariant
Graph Network (2-IGN [47]), which is built upon all possible permutation equivariant linear layers
on a graph. This provides solid theoretical guarantees for TokenGT, such as being at least as powerful
as the 2-WL graph isomorphism test and more expressive than all message-passing GNNs. Our theory
is based on a general framework on hypergraphs represented as higher-order tensors, which leads to
the formulation of order-k TokenGT that is at least as expressive as order-k IGN (k-IGN [47]).

3.1 Preliminary: Permutation Symmetry and Invariant Graph Networks

Representing and Processing Sets and (Hyper)Graphs For a set of n nodes, we often represent
their features as X ∈ Rn×d where Xi ∈ Rd is the feature of the i-th node. The set is unordered and,
therefore, should be treated invariant to the renumbering of the nodes. Let Sn the symmetric group or
the group of permutations π on [n] = {1, ..., n}. By π ·X we denote permuting rows of X with π,
i.e., (π ·X)i = Xπ−1(i). Here, X and π ·X represent the identical set for all π ∈ Sn.

Generally, we consider (hyper)graphs represented as order-k tensor X ∈ Rnk×d with feature Xi =
Xi1,...,ik ∈ Rd attached to (hyper)edge represented as multi-index i = (i1, ..., ik) ∈ [n]k. Similar
to sets, the tensor should be treated invariant to node renumbering by any π ∈ Sn that acts on X
by (π ·X)i = Xπ−1(i) where π−1(i) = (π−1(i1), ..., π

−1(ik)). That is, X and π ·X represent the
identical (hyper)graph for all π. Due to such symmetry, to build a function F (X) ≈ T for tensor X
and target T , a suitable way is to make them invariant F (π ·X) = F (X) when the target is a vector
or equivariant F (π ·X) = π · F (X) when the target is also a tensor, for all X ∈ Rnk×d and π ∈ Sn.

In our theoretical analysis, we work on order-k dense tensor representation X ∈ Rnk×d of a graph as
they can represent node features (k = 1), edge features (k = 2), or hyperedge features (k > 2) in
a unified manner. This is interchangeable but slightly different from the sparse representation of a
graph with edge set E used in Section 2. Nevertheless, in Section 5 we empirically verify that our key
theoretical findings work equally well for dense and sparse graphs.

Invariant Graph Network We mainly develop our theoretical analysis upon Invariant Graph
Networks (IGNs) [47, 46], a family of expressive graph networks derived from the permutation
symmetry of tensor representation of graphs. Here we provide a summary. In general, we define:

Definition 1. An order-k Invariant Graph Network (k-IGN) is a function Fk : Rnk×d0 → R written
as the following:

Fk = MLP ◦ Lk→0 ◦ L(T )
k→k ◦ σ ◦ ... ◦ σ ◦ L(1)

k→k, (1)

where each L
(t)
k→k is equivariant linear layer [47] from Rnk×dt−1 to Rnk×dt , σ is activation function,

and Lk→0 is a invariant linear layer from Rnk×dT to R.

A body of previous work have shown appealing theoretical properties of k-IGN, including universal
approximation [48] and alignment to k-Weisfeiler-Lehman (k-WL) graph isomorphism test [46, 10].
In particular, it is known that k-IGNs are theoretically at least as powerful as the k-WL test [46]. It is
also known that 2-IGNs are already more expressive [47, 34] than all message-passing GNNs under
the framework of Gilmer et al. (2017) [21].
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The core building block of IGN is invariant and equivariant linear layers [47] with maximal expres-
siveness while respecting node permutation symmetry. The layers are defined as follows:

Definition 2. An equivariant linear layer is a function Lk→l : Rnk×d → Rnl×d′
written as follows

for order-k input X ∈ Rnk×d:

Lk→l(X)i =
∑
µ

∑
j

Bµ
i,jXjwµ +

∑
λ

Cλ
i bλ, (2)

where i ∈ [n]l, j ∈ [n]k are multi-indices, wµ ∈ Rd×d′
, bλ ∈ Rd′

are weight and bias parameters,
and Bµ ∈ Rnl+k

and Cλ ∈ Rnl

are binary basis tensors corresponding to order-(l + k) and order-l
equivalence classes µ and λ, respectively. Invariant linear layer is a special case of Lk→l with l = 0.

We provide the definition of the equivalence classes and basis tensors in Appendix A.1.1. For now, it
is sufficient to know that the basis tensors are binary tensors that form the orthogonal basis of the
full space of linear equivariant layers. In general, in Eq. (2) it is known that there exists bell(k + l)
number of basis tensors Bµ for the weight and bell(l) number of basis tensors Cλ for the bias.

3.2 Can Self-Attention Approximate Equivariant Basis?

Now, we present an intuition that connects Transformer (Section 2) and equivariant linear layer (Defi-
nition 2). For that, we write out the multihead self-attention layer as follows:

MSA(X)i =

H∑
h=1

∑
j

αh
ijXjw

V
h wO

h where αh = softmax

(
XwQ

h (XwK
h )⊤√

dH

)
, (3)

where H is number of heads, dH is head size, and wQ
h , w

K
h ∈ Rd×dH , wV

h ∈ Rd×dv wO
h ∈ Rdv×d.

Our intuition is that the weighted sum of values with self-attention matrix αh in Eq. (3) is analogous
to the masked sum with basis tensor Bµ in Eq. (2) up to normalization. This naturally leads to the
following question: for a given equivariant layer Lk→k : Rnk×d → Rnk×d, can we use a Transformer
layer with multihead self-attention MSA : RN×d′ → RN×d′

with N = nk to accurately approximate
Lk→k by having H = bell(2k) attention heads approximate each equivariant basis Bµ?

We show that this can be possible, but only if we provide appropriate auxiliary information to input.
For example, let us consider first-order layer L1→1. The layer has bell(2) = 2 basis tensors Bµ1 = I
and Bµ2 = 11⊤ − I for the weight, and bell(1) = 1 basis tensor Cλ1 = 1 for the bias. Given an
input set X ∈ Rn×d it computes the following with w1, w2 ∈ Rd×d, b ∈ Rd:

L1→1(X) = IXw1 + (11⊤ − I)Xw2 + 1b⊤. (4)

Now consider approximating basis tensor Bµ1 = I with an attention matrix α1. The approximation is
accurate when i-th query always only attends to i-th key and ignores the rest. To achieve the attention
structure consistently, i.e., agnostic to input X, we need to provide auxiliary input that self-attention
can "latch onto" to faithfully approximate α1 ≈ I. Without this, attention must entirely rely on the
inputs X, which is unreliable and can lead to approximation failure, e.g., when X has repeated rows.

For the auxiliary information, we prepare n node-wise orthonormal vectors P ∈ Rn×dp (note that this
is identical to node identifiers in Section 2), and augment the input to Xin = [X,P] ∈ Rn×(d+dp).
Let us assume that the query and key projections in Eq. (3) ignore X and only leave P scaled by

√
a

with a > 0. Then attention matrix is computed as α1 = softmax(S) where Sij = aP⊤
i Pj . Here,

due to the orthonormality of P, we have P⊤
i Pj = 1 only if i = j and otherwise 0, which leads to

S = aI. With a → ∞ by scaling up the query and key projection weights, the softmax becomes
arbitrarily close to the hardmax operator, and we obtain the following:

α1 = softmax(aI) → I as a → ∞. (5)
Thus, self-attention can utilize the auxiliary information P to achieve an input-agnostic approximation
of α1 to I. Notably, we can achieve a similar approximation for Bµ2 = 11⊤ − I using the same P
by flipping the sign of keys, which gives α2 = softmax(−aI) due to orthonormality. By sending
a → ∞, now attention from the i-th query to the i-th key is suppressed, and we obtain the following:

α2 = softmax (−aI) → 1

n− 1
(11⊤ − I) as a → ∞. (6)
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Note that this approximation is accurate only up to row normalization as rows of α2 always sum
to one due to softmax, while Bµ2 = 11⊤ − I is binary. In our proofs of the theoretical results, we
perform appropriate denormalization with MLP after MSA to achieve an accurate approximation.

Overall, we see that simple auxiliary input P suffices for two attention heads to approximate the
equivariant basis of L1→1 accurately. We now question the following. Given appropriate auxiliary
information as input, can a Transformer layer with bell(2k) attention heads accurately approximate
Lk→k by having each head approximate each equivariant basis Bµ? What would be the sufficient
auxiliary input? We answer the question by showing that, with (order-k generalized) node and type
identifiers presented in Section 2, Transformer layers can accurately approximate equivariant layers
Lk→k via input-agnostic head-wise approximation of each equivariant basis.

3.3 Pure Transformers are Powerful Graph Learners

We now present our main theoretical results that extend the discussions in Section 3.2 to any order k.
Note that k = 2 corresponds to TokenGT for graphs presented in Section 2. With k > 2, we naturally
extend TokenGT to hypergraphs. All proofs can be found in Appendix A.1.

We first introduce generalized node and type identifiers (Section 2) for order-k tensors X ∈ Rnk×d.
We define the node identifier P ∈ Rn×dp as an orthonormal matrix with n rows, and the type
identifier as a trainable matrix E ∈ Rbell(k)×de that contains bell(k) rows Eγ1 , ...,Eγbell(k) , each of
which is designated for an order-k equivalence class γ. Then, we augment each entry of input tensor
as [Xi1,...,ik ,Pi1 , ...,Pik ,E

γ ] where (i1, ..., ik) ∈ γ.

Let us exemplify. For k = 1 (sets), each i-th entry is augmented as [Xi,Pi,E
γ1 ], consistent with our

discussion in Section 3.2. For k = 2 (graphs), each (i, i)-th entry is augmented as [Xii,Pi,Pi,E
γ1 ]

and each (i, j)-th entry (i ̸= j) is augmented as [Xij ,Pi,Pj ,E
γ2 ]. This is consistent with TokenGT

in Section 2, which augments nodes with EV = Eγ1 and edges with EE = Eγ2 .

With node and type identifiers, we obtain augmented order-k tensor Xin ∈ Rnk×(d+kdp+de). We use
a trainable projection win ∈ R(d+kdp+de)×dT to map them to hidden dimension dT of a Transformer.
We now show that self-attention on Xinwin can accurately approximate equivariant basis:

Lemma 1. For all X ∈ Rnk×d and their augmentation Xin, self-attention coefficients αh (Eq. (3))
computed with Xinwin can approximate any basis tensor Bµ ∈ Rn2k

of order-k equivariant linear
layer Lk→k (Definition 2) to arbitrary precision up to normalization.

Consequently, with the node and type identifiers, a collection of bell(2k) attention heads can approxi-
mate the collection of all basis tensors of order-k equivariant layer. This leads to the following:

Theorem 1. For all X ∈ Rnk×d and their augmentation Xin, a Transformer layer with bell(2k)
self-attention heads that operates on Xinwin can approximate an order-k equivariant linear layer
Lk→k(X) (Definition 2) to arbitrary precision.

While the approximation in Lemma 1 is only accurate up to normalization over inputs (keys) due to
softmax normalization, for the approximation in Theorem 1 we perform appropriate denormalization
using MLP after multihead self-attention and can obtain an accurate approximation.

By extending the result to multiple layers, we arrive at the following:

Theorem 2. For all X ∈ Rnk×d and their augmentation Xin, a Transformer composed of T layers
that operates on Xinwin followed by sum-pooling and MLP can approximate an k-IGN Fk(X)
(Definition 1) to arbitrary precision.

This directly leads to the following corollary:
Corollary 1. A Transformer on node and type identifiers in Theorem 2 is at least as expressive as
k-IGN composed of order-k equivariant linear layers.

Corollary 1 allows us to draw previous theoretical results on the expressiveness of k-IGN [46, 47, 34]
and use them to lower-bound the provable expressiveness of a standard Transformer:
Corollary 2. A Transformer on node and type identifiers in Theorem 2 is at least as powerful as
k-WL graph isomorphism test and is more expressive than all message-passing GNNs within the
framework of Gilmer et al. (2017) [21].
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4 Related Work

We outline relevant work including equivariant neural networks, theory on expressive power of
Transformers and their connection to modeling equivariance, and Transformers for graphs.

Equivariant Neural Networks A machine learning task is often invariant or equivariant to specific
symmetry of input data, e.g., image classification is invariant to the translation of an input image. A
large body of literature advocated baking the invariance or equivariance into a neural network as a
type of inductive bias (e.g., translation equivariance of image convolution), showing that it reduces
the number of parameters and improves generalization for a wide range of learning tasks involving
various geometric structures [13, 14, 73, 66, 49, 53, 60, 6, 34, 39]. Ravanbakhsh et al. (2017) [56]
showed that any equivariant layer for discrete group actions is equivalent to a specific parameter
sharing structure. Zaheer et al. (2017) [82] and Maron et al. (2019) [47] derived the parameter sharing
for node permutation-symmetric data (sets and (hyper)graphs), which gives the maximally expressive
equivariant linear layers and k-IGN in Section 3.1. The work on equivariant neural networks underlie
our theory of how a standard Transformer can be a powerful learner for sets and (hyper)graphs.

Expressive Power of Transformers and Its Connection to Equivariance Recent work involving
Transformers often focus on minimizing the domain- and task-specific inductive bias and scaling the
model and data so that any useful computation structure can be learned [18, 31, 30, 7, 17, 9, 39]. The
success of this approach is, to some degree, attributed to the high expressive power of Transformers
that allows learning diverse functions suited for the data at hand [81, 39, 3, 4, 41]. Recent theory has
shown that Transformers are expressive enough to even model certain equivariant functions [1, 15, 39].
Andreoli et al. (2019) [1] cast self-attention and convolution into a unified framework using basis
tensors similar to ones in Section 3.1. Cordonnier et al. (2020) [15] advanced the idea and showed
that Transformers with relative positional encodings can approximate any image convolution layers.
Lee et al. (2019) [39] and Kim et al. (2021) [34] showed that Transformers can model equivariant
linear layers for sets [82], which can be viewed as the first-order case of our theory (see Section 3.2).
To our knowledge, our work is the first to show that standard Transformers are expressive enough to
provably model maximally expressive equivariant layers and k-IGN for (hyper)graphs with k ≥ 2.

Transformers for Graphs Unlike in language and vision, developing Transformers for graphs
is challenging due to (1) the presence of edge connectivity and (2) the absence of canonical node
ordering that prevents adopting simple positional encodings [50]. To incorporate the connectivity
of edges, early methods restricted self-attention to local neighborhoods (thus reducing to message-
passing) [19, 51, 69] or used global self-attention with auxiliary message-passing modules [58, 43].
As message-passing suffers from limited expressive power [77] and oversmoothing [40, 8, 52], recent
works often discard them and use global self-attention on nodes with heuristic modifications to
process edges [78, 29, 54, 38, 42]. Ying et al. (2021) [78] proposed to inject edge encoding based on
shortest paths through self-attention bias. Kreuzer et al. (2021) [38] proposed to incorporate edges
into self-attention matrix via elementwise multiplication. On the contrary, we leave the self-attention
unmodified and provide both nodes and edges with certain token-wise embeddings (Section 2) as
its input. To incorporate graph structure into nodes, on the other hand, some approaches focus on
developing graph positional encoding, e.g., based on Laplacian eigenvectors [20, 42, 38]. While
these can be directly incorporated into our work via auxiliary node identifiers for better performance,
we leave this as future work. We further note that current graph Transformers that utilize Laplacian
positional encoding rely heavily on heuristic edge encoding [29, 38] while ours does not. Another
closely related approach is the Higher-order Transformer [34] which generalizes k-IGN with masked
self-attention. While it is highly complex to implement due to hard-coded head-wise equivariant
masks, our method can be implemented effortlessly using any available implementation of standard
Transformer. Furthermore, our method is more flexible as the model can choose to use different
attention heads to focus on a specific equivariant operator (e.g., local propagation) if needed. We
further discuss the difficulty in applying linear attention to graph Transformers in Appendix A.2.

5 Experiments

We first conduct a synthetic experiment that directly confirms our key claims in Lemma 1 (Section 3).
Then, we empirically explore the capability of Tokenized Graph Transformer (TokenGT) (Section 2)
using the PCQM4Mv2 large-scale quantum chemistry regression dataset [27]. We further present
experiments on transductive node classification datasets involving large graphs in Appendix A.4.3.
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Table 1: Second-order equivariant basis approximation. We report average and standard deviation
of L2 error averaged over heads over 3 runs. For Random/ORF (first-order), we sample random
embeddings independently for each token.

dense input sparse input
node id. type id. train L2 ↓ test L2 ↓ train L2 ↓ test L2 ↓
× × 47.95 ± 0.600 53.93 ± 1.426 29.88 ± 0.450 34.70 ± 1.167
× ⃝ 32.38 ± 0.448 40.06 ± 1.202 15.92 ± 0.275 20.39 ± 0.765
Random (first-order) ⃝ 32.19 ± 0.476 32.49 ± 3.687 15.87 ± 0.247 16.56 ± 0.904
ORF (first-order) ⃝ 32.35 ± 0.369 39.87 ± 1.263 15.87 ± 0.247 16.56 ± 0.908
Random × 5.909 ± 0.019 5.548 ± 0.090 8.152 ± 0.042 8.270 ± 0.285
ORF × 5.472 ± 0.035 5.143 ± 0.078 7.167 ± 0.025 7.190 ± 0.217
Laplacian eigenvector × 1.899 ± 3.050 1.702 ± 2.912 0.288 ± 0.019 0.064 ± 0.010
Random ⃝ 0.375 ± 0.009 0.234 ± 0.011 0.990 ± 0.108 0.875 ± 0.042
ORF ⃝ 0.080 ± 0.001 0.009 ± 5e-5 0.129 ± 0.002 0.011 ± 0.002
Laplacian eigenvector ⃝ 0.053 ± 1.5e-5 0.005 ± 1e-4 0.101 ± 0.003 0.019 ± 0.007

No embedding Type id. only Node id. only Node id. + type id. Equivariant basis
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Self-attention matrix αh Basis tensor Bµ

Figure 2: Self-attention maps learned under various node and type identifier configurations for two
target equivariant basis tensors (out of 15). For better visualization, we clamp the entries by 0.01.
Self-attention learns acute patterns coherent to equivariant basis when orthonormal node identifiers
and type identifiers are both provided as input. More images can be found in Appendix A.4.1.

5.1 Approximating Second-Order Equivariant Basis

As in Theorem 1 and 2 (Section 3), our argument on the expressive power of TokenGT relies on
its capability to approximate order-k permutation equivariant linear layers Lk→k (Definition 2).
Specifically, Lemma 1 states that such capability depends on the ability of each self-attention head
α1, ...,αH (Eq. (3)) to accurately approximate each equivariant basis Bµ1 , ...,Bµbell(2k) (Definition 2)
up to normalization.

We verify this claim for k = 2 (second-order; graphs) in a synthetic setup using Barabási-Albert
random graphs. We use a multihead self-attention layer (Eq. (3)) with bell(2 + 2) = 15 heads and
explicitly supervise head-wise attention scores αh to approximate each (normalized) equivariant
basis tensor Bµh by minimizing L2 loss. Having the layer hyperparameters fixed, we provide
different combinations of node and type identifiers, and test if multihead self-attention can jointly
approximate all 15 equivariant basis on unseen graphs. We experiment with both dense and sparse
graph representations; for graphs with n nodes and m edges, the dense graph considers all n2 pair-
wise edges as input as in Section 3, whereas the sparse graph considers only the present m edges as
in Section 2. Further details can be found in Appendix A.3.2.

We outline the results in Table 1. Consistent with Lemma 1, self-attention achieves accurate approxi-
mation of equivariant basis only when both the orthonormal node identifiers and type identifiers are
given. Here, Laplacian eigenvectors (Lap, ⃝) often yield slightly better results than orthogonal ran-
dom features (ORF, ⃝) presumably due to less stochasticity. Interestingly, we see that self-attention
transfers the learned (pseudo-)equivariant self-attention structure to unseen graphs near perfectly.
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Table 2: Results on PCQM4Mv2 large-scale graph regression benchmark. We report the Mean
Absolute Error (MAE) on the validation set, and report MAE on the unavailable test set if possible.

method # parameters valid MAE ↓ test-dev MAE ↓ asymptotics
Message-passing GNNs
GCN [27] 2.0M 0.1379 0.1398 O(n+m)
GIN [27] 3.8M 0.1195 0.1218 O(n+m)
GAT 6.7M 0.1302 N/A O(n+m)
GCN-VN [27] 4.9M 0.1153 0.1152 O(n+m)
GIN-VN [27] 6.7M 0.1083 0.1084 O(n+m)
GAT-VN 6.7M 0.1192 N/A O(n+m)
GAT-VN (large) 55.2M 0.1361 N/A O(n+m)

Transformers with strong graph-specific modifications
Graphormer [63] 48.3M 0.0864 N/A O(n2)
EGT [29] 89.3M 0.0869 0.0872 O(n2)
GRPE [54] 46.2M 0.0890 0.0898 O(n2)

Pure Transformers
Transformer 48.5M 0.2340 N/A O((n+m)2)
TokenGT (ORF) 48.6M 0.0962 N/A O((n+m)2)
TokenGT (Lap) 48.5M 0.0910 0.0919 O((n+m)2)
TokenGT (Lap) + Performer 48.5M 0.0935 N/A O(n+m)
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Figure 3: Attention distance by head and network depth. Each dot shows mean attention distance in
hops across graphs of a head at a layer. The visualization is inspired by Dosovitskiy et al. (2020) [18].
More images can be found in Appendix A.4.2.

Non-orthogonal random embeddings lead to inaccurate approximation (Random, ⃝), highlighting
the importance of orthogonality of node identifiers. The approximation is also inaccurate when we
sample ORF Pt independently for each token t (ORF (first-order), ⃝) instead of using concatenated
node identifiers [Pu,Pv] for token (u, v). This supports our argument in Section 2 that the incidence
information implicitly provided via node identifiers plays a key role in approximation.

In Figure 2, we provide a visualization of self-attention maps learned under various node and type
identifier choices. Additional results can be found in Appendix A.4.1.

5.2 Large-Scale Graph Learning

An exclusive characteristic of TokenGT is its minimal graph-specific inductive bias, which requires it
to learn internal computation structure largely from data. As such models are commonly known to
work well with large-scale data [68, 18], we explore the capability of TokenGT on the PCQM4Mv2
quantum chemistry regression dataset [27], one of the current largest with 3.7M molecular graphs.

For TokenGT, we use both node and type identifiers, and use main Transformer encoder config-
uration based on Graphormer [78] with 12 layers, 768 hidden dimension, and 32 attention heads.
We try both ORF and Laplacian eigenvector as node identifiers, and denote corresponding mod-
els as TokenGT (ORF) and TokenGT (Lap) respectively. As an ablation, we also experiment
with the same Transformer without node and type identifiers, which we denote as Transformer.
Finally, we apply the kernel attention [11] that approximates the attention computation to linear
cost (TokenGT (Lap) + Performer). We use AdamW optimizer with (β1, β2) = (0.99, 0.999) and
weight decay 0.1, and 60k learning rate warmup steps followed by linear decay over 1M iteration with
batch size 1024. For fine-tuning, we use 1k warmup, 0.1M training steps, and cosine learning rate
decay. We train the models on 8 RTX 3090 GPUs for 3 days. Further details are in Appendix A.3.3.
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We provide the results in Table 2. A standard Transformer on the node and edge tokens cannot
recognize graph structure and shows low performance (0.2340 valid MAE). Yet, the picture changes
as soon as we augment the tokens with node and type identifiers. Notably, TokenGT (ORF) achieves
0.0962 MAE, which is already better than all GNN baselines. This is a somewhat surprising result, as
both ORF and the Transformer are not aware of graph structures. This implies Transformer is strong
enough to learn to interpret and reason over the incidence structure of tokens provided only implicitly
by the node and type identifiers. By further switching to Laplacian eigenvectors that encode position
on graphs [20], we observe a performance boost to 0.0910 MAE, competitive to Transformers
with sophisticated graph-specific modifications (e.g., shortest path-based spatial encoding [78]).
While such methods inject graph structure into attention matrix via bias term and therefore strictly
require O(n2) cost, TokenGT enables adopting kernelization for pure self-attention [11], resulting in
TokenGT (Lap) + Performer with the best performance among O(n +m) models (0.0935 MAE).
Further discussion on the empirical performance of TokenGT can be found in Appendix A.5.

While our theory in Section 3 guarantees that TokenGT can reduce to an equivariant layer by learning
fixed equivariant basis at each attention head, in practice, it can freely utilize multihead self-attention
to learn less restricted and more useful computation structure from data. To analyze such a structure,
we compute the attention distance across heads and network depth by averaging pairwise token
distances on a graph weighted by their attention scores (Figure 3). This distance is analogous to the
number of hops in message-passing. In both TokenGT (ORF) and TokenGT (Lap), in the lowest
layers, some heads attend globally over the graph while others consistently have small receptive fields
(acting like a local message-passing operator). In deeper layers, the attention distances increase, and
most heads attend globally. Interestingly, this behavior is highly consistent with Vision Transformers
on image patches [18], suggesting that hybrid architectures based on convolution to aid ViT [16, 80]
might also work well for graphs. While TokenGT (ORF) shows relatively consistent attention distance
over heads, TokenGT (Lap) shows higher variance, implying that it learns more diverse attention
patterns. Judging from the higher performance of TokenGT (Lap), this suggests that the graph
structure information of the Laplacian eigenvector facilitates learning useful and diverse attention
structures, which calls for future exploration of better node identifiers based on graph PEs [38, 42].

6 Conclusion

We showed that Transformers directly applied to graphs can work well in both theory and practice. In
the theoretical aspect, we proved that with appropriate token-wise embeddings, a Transformer on node
and edge tokens is at least as expressive as k-IGN and k-WL test, making it more expressive than all
message-passing GNNs. For such token-wise embeddings, we showed that a combination of simple
orthonormal node identifiers and trainable type identifiers suffices, which we also verified with a
synthetic experiment. In an experiment with PCQM4Mv2 large-scale dataset, we show that Tokenized
Graph Transformer (TokenGT) performs significantly better than all GNNs and is competitive with
Transformer variants with strong graph-specific architectural components [78, 29, 54].

While the results suggest a promising research direction, there are challenges to be addressed in
future work. First, treating each node and edge as tokens requires O((n+m)2) asymptotic cost due
to the quadratic nature of self-attention. While we address this to some degree with kernelization and
achieve O(n +m) cost, other types of efficient Transformers (e.g., sparse) that can deliver better
performance are left to be tested. Another issue is slightly lower performance compared to the state-
of-the-art. Adopting Transformer engineering techniques from vision and language domains, such as
data scaling [7, 18], deepening [70, 74], hybrid architectures [16, 80], and self-supervision [17, 7, 24],
are promising. In the societal aspect, to prevent the potential risky behavior in, e.g., decision making
from graph-structured inputs, interpretability research regarding self-attention on graphs is desired.

We finish with interesting research directions that stem from our work. As our approach advocates
viewing a graph as (n+m) tokens [37], it opens up new paradigms of graph learning, including au-
toregressive decoding, in-context learning, prompting, and multimodal learning. Another interesting
direction is to extend our theory and use self-attention to approximate equivariant basis for general
discrete group actions, which might be a viable approach for learning equivariance from data.
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Technology Planning & Evaluation (IITP) (No. 2022-0-00926, 2022-0-00959, 2021-0-02068, and
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