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Abstract

Along with Markov chain Monte Carlo (MCMC) methods, variational inference (VI)
has emerged as a central computational approach to large-scale Bayesian inference.
Rather than sampling from the true posterior π, VI aims at producing a simple but
effective approximation π̂ to π for which summary statistics are easy to compute.
However, unlike the well-studied MCMC methodology, algorithmic guarantees for
VI are still relatively less well-understood. In this work, we propose principled
methods for VI, in which π̂ is taken to be a Gaussian or a mixture of Gaussians,
which rest upon the theory of gradient flows on the Bures–Wasserstein space of
Gaussian measures. Akin to MCMC, it comes with strong theoretical guarantees
when π is log-concave.

1 Introduction

This work brings together three active research areas: variational inference, variational Kalman
filtering, and gradient flows on the Wasserstein space.

Variational inference. The development of large-scale Bayesian methods has fueled the need for
fast and scalable methods to approximate complex distributions. More specifically, Bayesian method-
ology typically generates a high-dimensional posterior distribution π ∝ exp(−V ) that is known
only up to normalizing constants, making the computation even of simple summary statistics such as
the mean and covariance a major computational hurdle. To overcome this limitation, two distinct
computational approaches are largely favored. The first approach consists of Markov chain Monte
Carlo (MCMC) methods that rely on carefully constructed Markov chains which (approximately)
converge to π. For example, the Langevin diffusion

dXt = −∇V (Xt) dt+
√
2 dBt , (1)

where (Bt)t≥0 denotes standard Brownian motion on Rd, admits π as a stationary distribution.
Crucially, the Langevin diffusion can be discretized and implemented without knowledge of the
normalizing constant of π, leading to practical algorithms for Bayesian inference. Recent theoretical
efforts have produced sharp non-asymptotic convergence guarantees for algorithms based on the
Langevin diffusion (or variants thereof), with many results known when π is strongly log-concave or
satisfies isoperimetric assumptions [see, e.g., Durmus et al., 2019, Shen and Lee, 2019, Vempala and
Wibisono, 2019, Chen et al., 2020, Dalalyan and Riou-Durand, 2020, Chewi et al., 2021, Lee et al.,
2021, Ma et al., 2021, Wu et al., 2022].
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More recently, Variational Inference (VI) has emerged as a viable alternative to MCMC [Jordan et al.,
1999, Wainwright and Jordan, 2008, Blei et al., 2017]. The goal of VI is to approximate the posterior π
by a more tractable distribution π̂ ∈ P such that

π̂ ∈ argmin
p∈P

KL(p ∥ π) . (2)

A common example arises when P is the class of product distributions, in which case π̂ is called
the mean-field approximation of P . Unfortunately, by definition, mean-field approximations fail to
capture important correlations present in the posterior π, and various remedies have been proposed,
with varied levels of success. In this paper, we largely focus on obtaining a Gaussian approximation
to π, that is, we take P to be the class of non-degenerate Gaussian distributions on Rd [Barber and
Bishop, 1997, Seeger, 1999, Honkela and Valpola, 2004, Opper and Archambeau, 2009, Zhang et al.,
2018]. The expressive power of the variational model may then be further increased by considering
mixture distributions [Lin et al., 2019, Daudel and Douc, 2021, Daudel et al., 2021].

Although the solution π̂ of (2) is no longer equal to the true posterior, variational inference remains
heavily used in practice because the problem (2) can be solved for simple models P via scalable
optimization algorithms. In particular, VI avoids many of the practical hurdles associated with MCMC
methods—such as the potentially long “burn-in” period of samplers and the lack of effective stopping
criteria for the algorithm—while still producing informative summary statistics. In this regard, we
highlight the fact that obtaining an approximation for the covariance matrix of π via MCMC methods
requires drawing potentially many samples, whereas for many choices of P (e.g., the Gaussian
approximation) the covariance matrix of π̂ can be directly obtained from the solution to the VI
problem (2).

Figure 1: Left: randomly initialized mixture of 20
Gaussians (the initial covariances are depicted as
red circles) and contour plot of a logistic target π.
Right: contour lines of a mixture of Gaussians
approximation π̂ obtained from the gradient flow
in Section 5.

However, in contrast with MCMC methods, to
date there have not been many theoretical guar-
antees for VI, even when π is strongly log-
concave and P is taken to be the class of Gaus-
sians N (m,Σ). The problem stems from the
fact that the objective in (2) is typically non-
convex in the pair (m,Σ). Obtaining such guar-
antees remains a pressing challenge for the field.

Variational Kalman filtering. There is also
considerable interest in extending ideas behind
variational inference to dynamical settings of
Bayesian inference. Consider a general frame-
work where (πt)t represents the marginal laws
of a stochastic process indexed by time t, which
can be discrete or continuous. The goal is to
recursively build a Gaussian approximation to (πt)t.

As a concrete example, suppose that (πt)t≥0 denotes the marginal law of the solution to the Langevin
diffusion (1). In the context of Bayesian optimal filtering and smoothing, Särkkä [2007] proposed
the following heuristic. Let (mt,Σt) denote the mean and covariance matrix of πt. Then, it can be
checked (see Section B.4) that

ṁt = −E∇V (Xt)

Σ̇t = 2I − E[∇V (Xt)⊗ (Xt −mt) + (Xt −mt)⊗∇V (Xt)]
(3)

where Xt ∼ πt. These ordinary differential equations (ODEs) are intractable because they involve
expectations under the law of Xt ∼ πt, which is not available to the practitioner. However, if we
replace Xt ∼ πt with a Gaussian Yt ∼ pt = N (mt,Σt) with the same mean and covariance as Xt,
then the system of ODEs

ṁt = −E∇V (Yt)

Σ̇t = 2I − E[∇V (Yt)⊗ (Yt −mt) + (Yt −mt)⊗∇V (Yt)]
(4)

yields a well-defined evolution of Gaussian distributions (pt)t≥0, which we may optimistically believe
to be a good approximation of (πt)t≥0. Moreover, the system of ODEs can be numerically approxi-
mated efficiently in practice using Gaussian quadrature rules to compute the above expectations. This
is the principle behind the unscented Kalman filter [Julier et al., 2000].
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In the context of the Langevin diffusion, Särkkä’s heuristic (4) provides a promising avenue towards
computational VI. Indeed, since π ∝ exp(−V ) is the unique stationary distribution of the Langevin
diffusion (1), an algorithm to approximate (πt)t≥0 is expected to furnish an algorithm to solve the
VI problem (2). However, at present there is little theoretical understanding of how the system (4)
approximates (3); moreover, Särkkä’s heuristic only provides Gaussian approximations, and it is
unclear how to extend the system (4) to more complex models (e.g., mixtures of Gaussians).

Our contributions: bridging the gap via Wasserstein gradient flows. We show that the approxi-
mation (pt)t≥0 in Särkkä’s heuristic (4) arises precisely as the gradient flow of the Kullback–Leibler
(KL) divergence KL(· ∥ π) on the Bures–Wasserstein space of Gaussian distributions on Rd endowed
with the 2-Wasserstein distance from optimal transport [Villani, 2003]. This perspective allows us to
not only understand its convergence but also to extend it to the richer space of mixtures of Gaussian
distributions, and propose an implementation as a novel system of interacting “Gaussian particles”.
Below, we proceed to describe our contributions in greater detail.

Our framework builds upon the seminal work of Jordan et al. [1998], which introduced the celebrated
JKO scheme in order to give meaning to the idea that the evolving marginal law of the Langevin
diffusion (1) is a gradient flow of KL(· ∥ π) on the Wasserstein space P2(Rd) of probability measures
with finite second moments. Subsequently, in order to emphasize the Riemannian geometry underlying
this result, Otto [2001] developed his eponymous calculus on P2(Rd), a framework which has had
tremendous impact in analysis, geometry, PDE, probability, and statistics.

Inspired by this perspective, we show in Theorem 1 that Särkkä’s approximation (pt)t≥0 is also a gra-
dient flow of KL(· ∥ π), with the main difference being that it is constrained to lie on the submanifold
BW(Rd) of P2(Rd) consisting of Gaussian distributions, known as the Bures–Wasserstein manifold.
In turn, our result paves the way for new theoretical understanding via the powerful theory of gradient
flows. As a first step, using well-known results about convex functionals on the Wasserstein space,
we show in Corollary 1 that (pt)t≥0 converges rapidly to the solution of the VI problem (2) with
P = BW(Rd) as soon as V is convex. Moreover, in Section 4.1, we apply numerical integration
based on cubature rules for Gaussian integrals to the system of ODEs (4), thus arriving at a fast
method with robust empirical performance (details in Sections I and J).

This combination of results brings VI closer to Langevin-based MCMC both on the practical and
theoretical fronts, but still falls short of achieving non-asymptotic discretization guarantees as
pioneered by Dalalyan [2017] for MCMC. To further close the theoretical gap between VI and the
state of the art for MCMC, we propose in Section 4.2 a stochastic gradient descent (SGD) algorithm as
a time discretization of the Bures–Wasserstein gradient flow. This algorithm comes with convergence
guarantees that establish VI as a solid competitor to MCMC not only from a practical standpoint but
also from a theoretical one. Both have their relative merits; whereas MCMC targets the true posterior,
VI leads to fast computation of summary statistics of the approximation π̂ to π.

In Section 5, we consider an extension of these ideas to the substantially more flexible class of
mixtures of Gaussians. Namely, the space of mixtures of Gaussians can be identified as a Wasserstein
space over BW(Rd) and hence inherits Otto’s differential calculus. Leveraging this viewpoint, in
Theorem 3 we derive the gradient flow of KL(· ∥ π) over the space of mixtures of Gaussians and
propose to implement it via a system of interacting particles. Unlike typical particle-based algorithms,
here our particles correspond to Gaussian distributions, and the collection thereof to a Gaussian
mixture which is better equipped to approximate a continuous measure. We validate the empirical
performance of our method with promising experimental results (see Section J). Although we focus
on the VI problem in this work, we anticipate that our notion of “Gaussian particles” may be a broadly
useful extension of classical particle methods for PDEs.

Related work. Classical VI methods define a parametric family P = {pθ : θ ∈ Θ} and minimize
θ 7→ KL(pθ ∥ π) over θ ∈ Θ using off-the-shelf optimization algorithms [Paisley et al., 2012, Ran-
ganath et al., 2014]. Since (2) is an optimization problem over the space of probability distributions,
we argue for methods that respect a natural geometric structure on this space. In this regard, previous
approaches to VI using natural gradients implicitly employ a different geometry [Wu et al., 2019,
Huang et al., 2022, Khan and Håvard, 2022], namely the reparameterization-invariant Fisher–Rao
geometry [Amari and Nagaoka, 2000]. The application of Wasserstein gradient flows to VI was
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introduced earlier in work on normalizing flows and Stein Variational Gradient Descent (SVGD) [Liu
and Wang, 2016, Liu, 2017].

Our work falls in line with a number of recent papers aiming to place VI on a solid theoretical
footing [Alquier et al., 2016, Wang and Blei, 2019, Domke, 2020, Knoblauch et al., 2022]. Some of
these works in particular have obtained non-asymptotic algorithmic guarantees for specific examples,
see, e.g., Challis and Barber [2013], Alquier and Ridgway [2020].

The connection between VI and Kalman filtering was studied in the static case by Lambert et al. [2021,
2022a], and extended to the dynamical case by Lambert et al. [2022b], providing a first justification
of Särkkä’s heuristic in terms of local variational Gaussian approximation. In particular, the closest
linear process to the Langevin diffusion (1) is a Gaussian process governed by a McKean–Vlasov
equation whose Gaussian marginals have parameters evolving according to Särkkä’s ODEs.

Constrained gradient flows on the Wasserstein space have also been extensively studied [Carlen and
Gangbo, 2003, Caglioti et al., 2009, Tudorascu and Wunsch, 2011, Eberle et al., 2017], although our
interpretation of Särkkä’s heuristic is, to the best of our knowledge, new.

2 Background

In order to define gradient flows on the space of probability measures, we must first endow this space
with a geometry; see Appendix B for more details. Given probability measures µ and ν on Rd, define
the 2-Wasserstein distance

W2(µ, ν) =
[

inf
γ∈C(µ,ν)

∫
∥x− y∥2 dγ(x, y)

]1/2
,

where C(µ, ν) is the set of couplings of µ and ν, that is, joint distributions on Rd × Rd whose
marginals are µ and ν respectively. This quantity is finite as long as µ and ν belong to the space
P2(Rd) of probability measures over Rd with finite second moments. The 2-Wasserstein distance has
the interpretation of measuring the smallest possible mean squared displacement of mass required
to transport µ to ν; we refer to Villani [2003, 2009], Santambrogio [2015] for textbook treatments
on optimal transport. Unlike other notions of distance between probability measures, such as the
total variation distance, the 2-Wasserstein distance respects the geometry of the underlying space Rd,
leading to numerous applications in modern data science [see, e.g., Peyré and Cuturi, 2019].

The space (P2(Rd),W2) is a metric space [Villani, 2003, Theorem 7.3], and we refer to it as the
Wasserstein space. However, as shown by Otto [Otto, 2001], it has a far richer geometric structure:
formally, (P2(Rd),W2) can be viewed as a Riemannian manifold, a fact which allows for considering
gradient flows of functionals on P2(Rd). A fundamental example of such a functional is the KL
divergence KL(· ∥ π) to a target density π ∝ exp(−V ) on Rd, for which Jordan et al. [1998] showed
that the Wasserstein gradient flow is the same as the evolution of the marginal law of the Langevin
diffusion (1). This optimization perspective has had tremendous impact on our understanding and
development of MCMC algorithms [Wibisono, 2018].

3 Variational inference with Gaussians

In this section we describe our problem using two equivalent approaches: a variational approach based
on a modified version of the JKO scheme of Jordan et al. [1998] (Section 3.1), and a Wasserstein
gradient flow approach based on Otto calculus (Section 3.2). Both lead to the same result (Section
3.3). While the former is more accessible to readers who are unfamiliar with gradient flows on the
Wasserstein space, the latter leads to strong convergence guarantees (Section 3.4).

3.1 Variational approach: the Bures–JKO scheme

The space of non-degenerate Gaussian distributions on Rd equipped with the W2 distance forms the
Bures–Wasserstein space BW(Rd) ⊆ P2(Rd). On BW(Rd), the Wasserstein distance W 2

2 (p0, p1)
between two Gaussians p0 = N (m0,Σ0) and p1 = N (m1,Σ1) admits the following closed form:

W 2
2 (p0, p1) = ∥m0 −m1∥2 + B2(Σ0,Σ1) , (5)
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where B2(Σ0,Σ1) = tr(Σ0 +Σ1 − 2 (Σ
1
2
0 Σ1Σ

1
2
0 )

1
2 ) is the squared Bures metric [Bures, 1969].

Given a target density π ∝ exp(−V ) on Rd, and with a step size h > 0, we may define the iterates
of the proximal point algorithm

pk+1,h := argmin
p∈BW(Rd)

{
KL(p ∥ π) + 1

2h
W 2

2 (p, pk,h)
}
. (6)

Using (5), this is an explicit optimization problem involving the mean and covariance matrix of p.
Although (6) is not solvable in closed form, by letting h ↘ 0 we obtain a limiting curve (pt)t≥0

via pt = limh↘0 p⌊t/h⌋,h, which can be interpreted as the Bures–Wasserstein gradient flow of the
KL divergence KL(· ∥ π). This procedure mimics the JKO scheme [Jordan et al., 1998] with the
additional constraint that the iterates lie in BW(Rd), and we therefore call it the Bures–JKO scheme.

3.2 Geometric approach: the Bures–Wasserstein gradient flow of the KL divergence

In the formal sense of Otto described above, BW(Rd) is a submanifold of P2(Rd). Moreover, since
Gaussians can be parameterized by their mean and covariance, BW(Rd) can be identified with the
manifold Rd × Sd

++, where Sd
++ is the cone of symmetric positive definite d× d matrices. Hence,

BW(Rd) is a genuine Riemannian manifold in its own right [see Modin, 2017, Malagò et al., 2018,
Bhatia et al., 2019], and gradient flows can be defined using Riemannian geometry [do Carmo,
1992]. See Section B.3 for more details. Since the functional µ 7→ F(µ) = KL(µ ∥ π) defined over
P2(Rd) restricts to a functional over BW(Rd), we can also consider the gradient flow of F over the
Bures–Wasserstein space; note that this latter gradient flow is necessarily a curve (pt)t≥0 such that
each pt is a Gaussian measure.

3.3 Variational inference via the Bures–Wasserstein gradient flow

Using either approach, we can prove the following theorem.

Theorem 1. Let π ∝ exp(−V ) be the target density on Rd. Then, the limiting curve (pt)t≥0 where
pt = N (mt,Σt) is obtained via the Bures–JKO scheme (6), or equivalently, the Bures–Wasserstein
gradient flow (pt)t≥0 of the KL divergence KL(· ∥ π), satisfies Särkkä’s system of ODEs (4).

Proof. The proof using the Bures–JKO scheme is given in Section A.1 and the proof using Otto
calculus is presented in Section C.

This theorem shows that Särkkä’s heuristic (4) precisely yields the Wasserstein gradient flow of the
KL divergence over the submanifold BW(Rd). Equipped with this interpretation, we are now able
to obtain information about the asymptotic behavior of the approximation (pt)t≥0. Namely, we can
hope that it converges to constrained minimizer π̂ = argminp∈BW(Rd) KL(p ∥ π), i.e., precisely the
solution to the VI problem (2). In the next section, we show that this convergence in fact holds as
soon as V is convex, and moreover with quantitative rates.

The solution π̂ to (2), and consequently the limit point of Särkkä’s approximation, is well-studied in
the variational inference literature [see, e.g., Opper and Archambeau, 2009], and we recall standard
facts about π̂ here for completeness. It is known that π̂ satisfies the equations

Eπ̂∇V = 0 and Eπ̂∇2V = Σ̂−1, (7)

where Σ̂ is the covariance matrix of π̂ (these equations can also be derived as first-order necessary
conditions by setting the Bures–Wasserstein gradient derived in Section C to zero). In particular, it
follows from (7) that if ∇2V enjoys the bounds αI ⪯ ∇2V ⪯ βI for some −∞ ≤ α ≤ β ≤ ∞,
then any solution π̂ to the constrained problem also satisfies β−1 I ⪯ Σ̂ ⪯ (α ∨ 0)−1 I .

3.4 Continuous-time convergence

Besides providing an intuitive interpretation of Särkkä’s heuristic, Theorem 1 readily yields conver-
gence criteria for the system (4) which rest upon general principles for gradient flows. We begin with
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Figure 2: Two left plots: approximation of a bimodal target and a logistic target. Two right plots:
convergence of the KL in dimension 2 and 100 for the logistic target. Our algorithm yields better
approximation in KL than the Laplace approximation (see Appendix I.4 for details).

a key observation. For a functional F : BW(Rd)→ R ∪ {∞} and α ∈ R, we say that F is α-convex
if for all constant-speed geodesics (pt)t∈[0,1] in BW(Rd),

F(pt) ≤ (1− t)F(p0) + tF(p1)−
α t (1− t)

2
W 2

2 (p0, p1) , t ∈ [0, 1] .

Lemma 1. For any α ∈ R, if∇2V ⪰ αI , then KL(· ∥ π) is α-convex on BW(Rd).

Proof. The assumption that ∇2V ⪰ αI entails that the functional KL(· ∥ π) is α-convex on the
entire Wasserstein space (P2(Rd),W2) [see, e.g., Villani, 2009, Theorem 17.15]. Since BW(Rd) is a
geodesically convex subset of P2(Rd) (see Section B.3), then the geodesics in BW(Rd) agree with
the geodesics in P2(Rd), from which it follows that KL(· ∥ π) is α-convex on BW(Rd).

Consequently, we obtain the following corollary. Its proof is postponed to Section D.
Corollary 1. Suppose that ∇2V ⪰ αI for some α ∈ R. Then, for any p0 ∈ BW(Rd), there is a
unique solution to the BW(Rd) gradient flow of KL(· ∥ π) started at p0. Moreover:

1. If α > 0, then for all t ≥ 0, W 2
2 (pt, π̂) ≤ exp(−2αt)W 2

2 (p0, π̂).

2. If α > 0, then for all t ≥ 0, KL(pt ∥ π)− KL(π̂ ∥ π) ≤ exp(−2αt) {KL(p0 ∥ π)− KL(π̂ ∥ π)}.
3. If α = 0, then for all t > 0, KL(pt ∥ π)− KL(π̂ ∥ π) ≤ 1

2t W
2
2 (p0, π̂).

The assumption that ∇2V ⪰ αI for some α > 0, i.e., that π is strongly log-concave, is a standard
assumption in the MCMC literature. Under this same assumption, Corollary 1 yields convergence
for the Bures–Wasserstein gradient flow of KL(· ∥ π); however, the flow must first be discretized in
time for implementation. If we assume additionally that the smoothness condition ∇2V ⪯ βI holds,
then a surge of recent research has succeeded in obtaining precise non-asymptotic guarantees for
discretized MCMC algorithms. In Section 4.2 below, we will show how to do the same for VI.

4 Time discretization of the Bures–Wasserstein gradient flow

We are now equipped with dual perspectives on a dynamical solution to Gaussian VI: ODE and
gradient flow. Each perspective leads to a different implementation. On the one hand, we discretize
the system of ODEs defined in (4) using numerical integration. On the other, we discretize the
gradient flow using stochastic gradient descent in the Bures–Wasserstein space.

4.1 Numerical integration of the ODEs

The system of ODEs (4) can be integrated in time using a classical Runge–Kutta scheme. The
expectations under a Gaussian support are approximated by cubature rules used in Kalman filter-
ing [Arasaratnam and Haykin, 2009].

Moreover, a square root version of the ODE is also considered to ensure that covariance matrices
remain symmetric and positive. See Appendix I.2 for more details. We have tested our method on a
bimodal distribution and on a posterior distribution arising from a logistic regression problem. We
observe fast convergence as shown in Figure 2.
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4.2 Bures–Wasserstein SGD and theoretical guarantees for VI

Although the ODE discretization proposed in the preceding section enjoys strong empirical perfor-
mance, it is unclear how to quantify its impact on the convergence rates established in Corollary 1.
Therefore, we now propose a stochastic gradient descent algorithm over the Bures–Wasserstein space,
for which useful analysis tools have been developed [Chewi et al., 2020, Altschuler et al., 2022]. This
approach bypasses the use of the system of ODEs (4), and instead discretizes the Bures–Wasserstein
gradient flow directly. Under the standard assumption of strong log-concavity and log-smoothness, it
leads to an algorithm (Algorithm 1) for approximating π̂ with provable convergence guarantees.

Algorithm 1 Bures–Wasserstein SGD
Require: strong convexity parameter α > 0; step

size h > 0; mean m0 and covariance matrix Σ0

for k = 1, . . . , N do
draw a sample X̂k ∼ pk
set mk+1 ← mk − h∇V (X̂k)

set Mk ← I − h (∇2V (X̂k)− Σ−1
k )

set Σ+
k ←MkΣkMk

set Σk+1 ← clip1/α Σ+
k

end for

Algorithm 1 maintains a sequence of Gaussian
distributions (pk)k∈N; here (mk,Σk) denote the
mean vector and covariance matrix at iteration k
(see Section E for a derivation of the algorithm
as SGD in the Bures–Wasserstein space). The
clipping operator clipτ , which is introduced
purely for the purpose of theoretical analysis,
simply truncates the eigenvalues from above;
see Section E. Our theoretical result for VI is
given as the following theorem, whose proof is
deferred to Section E.
Theorem 2. Assume that 0 ≺ αI ⪯ ∇2V ⪯ I .
Also, assume that h ≤ α2

60 and that we initialize Algorithm 1 at a matrix satisfying α
9 I ⪯ Σµ0 ⪯ 1

α I .
Then, for all k ∈ N,

EW 2
2 (pk, π̂) ≤ exp(−αkh)W 2

2 (p0, π̂) +
36dh

α2
.

In particular, we obtain EW 2
2 (pk, π̂) ≤ ε2 provided we set h ≍ α2ε2

d and the number of iterations to
be k ≳ d

α3ε2 log(W2(p0, π̂)/ε).

The upper bound∇2V ⪯ I is notationally convenient for our proof but not necessary; in any case,
any strongly log-concave and log-smooth density π can be rescaled so that the assumption holds.

Theorem 2 is similar in flavor to modern results for MCMC, both in terms of the assumptions (Hessian
bounds and query access to the derivatives1 of V ) and the conclusion (a non-asymptotic polynomial-
time algorithmic guarantee). We hope that such an encouraging result for VI will prompt more
theoretical studies aimed at closing the gap between the two approaches.

5 Variational inference with mixtures of Gaussians

Thus far, we have shown that the tractability of Gaussians can be readily exploited in the context
of Bures–Wasserstein gradient flows and translated into useful results for variational inference.
Nevertheless, these results are limited by the lack of expressivity of Gaussians, namely their inability
to capture complex features such as multimodality and, more generally, heterogeneity. To overcome
this limitation, mixtures of Gaussians arise as a natural and powerful alternative; indeed, universal
approximation of arbitrary probability measures by mixtures of Gaussians is well-known [see, e.g.,
Delon and Desolneux, 2020]. As we show next, the space of mixtures of Gaussians can also be
equipped with a Wasserstein structure which gives rise to implementable gradient flows.

5.1 Geometry of the space of mixtures of Gaussians

We begin with the key observation already made by Chen et al. [2019], that any mixture of Gaussians
can be canonically identified with a probability distribution (the mixing distribution) over the param-
eter space Θ = Rd × Sd

++ (the space of means and covariance matrices). Explicitly a probability
measure µ ∈ P(Θ) corresponds to a Gaussian mixture as follows:

µ ↔ pµ :=

∫
pθ dµ(θ) , (8)

1A notable downside of Algorithm 1 is the requirement of a Hessian oracle for V , which results in a higher
per-iteration cost than typical MCMC samplers.
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where pθ is the Gaussian distribution with parameters θ ∈ Θ. Equivalently, µ can be thought of as a
probability measure over BW(Rd), and hence the space of Gaussian mixtures on Rd can be identified
with the Wasserstein space P2(BW(Rd)) over the Bures–Wasserstein space which is endowed with
the distance (5) between Gaussian measures. Indeed, the theory of optimal transport can be developed
with any Riemannian manifold (rather than Rd) as the base space [Villani, 2009]. As before, the
space P2(BW(Rd)) is endowed with a formal Riemannian structure, which respects the geometry of
the base space BW(Rd), and we can consider Wasserstein gradient flows over P2(BW(Rd)).

Note that this framework encompasses both discrete mixtures of Gaussians (when µ is a discrete
measure) and continuous mixtures of Gaussians. In the case when the mixing distribution µ is
discrete, the geometry of P2(BW(Rd)) was studied by Chen et al. [2019], Delon and Desolneux
[2020]. An important insight of our work, however, is that it is fruitful to consider the full space
P2(BW(Rd)) for deriving gradient flows, even if we eventually develop algorithms which propagate
a finite number of mixture components.

5.2 Gradient flow of the KL divergence and particle discretization

We consider the gradient flow of the KL divergence functional

µ 7→ F(µ) := KL(pµ ∥ π) (9)

over the space P2(BW(Rd)). The proof of the following theorem is given in Section F.

Theorem 3. The gradient flow (µt)t≥0 of the functional F defined in (9) over P2(BW(Rd)) can be
described as follows. Let θ0 = (m0,Σ0) ∼ µ0, and let θt = (mt,Σt) evolve according to the ODE

ṁt = −E∇ ln
pµt

π
(Yt)

Σ̇t = −E∇2 ln
pµt

π
(Yt) Σt − Σt E∇2 ln

pµt

π
(Yt)

(10)

where Yt ∼ N (mt,Σt). Then θt ∼ µt.

The gradient flow in Theorem 3 describes the evolution of a particle θt which describes the parameters
of a Gaussian measure, hence the name Gaussian particle. The intuition behind this evolution is
as follows. Suppose we draw infinitely many initial particles (each being a Gaussian) from µ0.
By evolving all those particles through (10), which interact with each other via the term pµt , they
tend to aggregate in some parts of the space of Gaussian parameters and spread out in others. This
distribution of Gaussian particles is precisely the mixing measure µt, which, in turn, corresponds to a
Gaussian mixture. Since an infinite number of Gaussian particles is impractical, consider initializing
this evolution at a finitely supported distribution µ0, thus corresponding to a more familiar Gaussian
mixture model with a finite number of components:

µ0 =
1

N

N∑
i=1

δ
θ
(i)
0

=
1

N

N∑
i=1

δ
(m

(i)
0 ,Σ

(i)
0 )

↔ pµ0
:=

1

N

N∑
i=1

p
(m

(i)
0 ,Σ

(i)
0 )

.

Interestingly, it can be readily checked that the system of ODEs (10) thus initialized maintains a finite
mixture distribution:

µt =
1

N

N∑
i=1

δ
θ
(i)
t

=
1

N

N∑
i=1

δ
(m

(i)
t ,Σ

(i)
t )

,

where the parameters θ(i)t = (m
(i)
t ,Σ

(i)
t ) evolve according to the following interacting particle

system, for i ∈ [N ]

ṁ
(i)
t = −E∇ ln

pµt

π
(Y

(i)
t ) , (11)

Σ̇
(i)
t = −E∇2 ln

pµt

π
(Y

(i)
t ) Σ

(i)
t − Σ

(i)
t E∇2 ln

pµt

π
(Y

(i)
t ) , (12)

where Y (i)
t ∼ p

θ
(i)
t

. This finite system of particles can now be implemented using the same numerical
tools as for Gaussian VI, see Section J. Note that due to this property of the dynamics, we can hope at
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best to converge to the best mixture of N Gaussians approximating π, but this approximation error
is expected to vanish as N → ∞. Also, similarly to (4), it is possible to write down Hessian-free
updates using integration by parts, see Appendix A.2.

The above system of particles may also be derived using a proximal point method similar to the
Bures–JKO scheme, see Section A.2. Indeed, infinitesimally, it has the variational interpretation

(θ
(1)
t+h, . . . , θ

(N)
t+h) ≈ argmin

θ(1),...,θ(N)∈Θ

{
KL

( 1

N

N∑
i=1

pθ(i)

∥∥∥ π)+
1

2Nh

N∑
i=1

W 2
2 (pθ(i) , p

θ
(i)
t
)

}
.

Reassuringly, Equations (11)-(12) reduce to (4) when µ0 = δ(m0,Σ0) is a point mass, indicating that
the theorem provides a natural extension of our previous results. However, although the model (8)
is substantially more expressive than the Gaussian VI considered in Section 3, it has the downside
that we lose many of the theoretical guarantees. For example, even when V is convex, the objective
functional F considered here need not be convex; see Section G. We nevertheless validate the practical
utility of our approach in experiments (see Figure 3 and Section J).

Unlike typical interacting particle systems which arise from discretizations of Wasserstein gradient
flows, at each time t, the distribution pµt

is continuous. This extension provides considerably more
flexibility—from a mixture of point masses to a mixture of Gaussians—compared to interacting
particle-based algorithms hitherto considered for either sampling [Liu and Wang, 2016, Liu, 2017,
Duncan et al., 2019, Chewi et al., 2020], or solving partial differential equations [Carrillo et al., 2011,
2012, Bonaschi et al., 2015, Craig and Bertozzi, 2016, Carrillo et al., 2019, Craig et al., 2022].

Figure 3: Approximation of a Gaussian mixture target π with 40 Gaussian particles. The particles are
represented by their covariance ellipsoids shown at Steps 0, 1, and 2. The right figure shows the final
step with the approximated density in contour-lines. More figures are available in Appendix J.

6 Conclusion

Using the powerful theory of Wasserstein gradient flows, we derived new algorithms for VI using either
Gaussians or mixtures of Gaussians as approximating distributions. The consequences are twofold.
On the one hand, strong convergence guarantees under classical conditions contribute markedly to
closing the theoretical gap between MCMC and Gaussian VI. On the other hand, discretization of
the Wasserstein gradient flow for mixtures of Gaussians yields a new Gaussian particle method
for time discretization which, unlike classical particle methods, maintains a continuous probability
distribution at each time.

We conclude by briefly listing some possible directions for future study. For Gaussian variational
inference, our theoretical result (Theorem 2) can be strengthened by weakening the assumption that π
is strongly log-concave, or by developing algorithms which do not require Hessian information for V .
For mixtures of Gaussians, it is desirable to design a principled algorithm which also allows for the
mixture weights to be updated.

Towards the latter question, in Section H we derive the gradient flow of the KL divergence with
respect to the Wasserstein–Fisher–Rao geometry [Liero et al., 2016, Chizat et al., 2018, Liero et al.,
2018], which yields an interacting system of Gaussian particles with changing weights. The equations
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are given as follows: at each time t, the mixing measure is the discrete measure

µt =

N∑
i=1

w
(i)
t δ

(m
(i)
t ,Σ

(i)
t )

.

Let Y (i)
t ∼ N (m

(i)
t ,Σ

(i)
t ), and let r(i)t =

√
w

(i)
t . Then, the system of ODEs is given by

ṁ
(i)
t = −E∇ ln

pµt

π
(Y

(i)
t ) ,

Σ̇
(i)
t = −E∇2 ln

pµt

π
(Y

(i)
t ) Σ

(i)
t − Σ

(i)
t E∇2 ln

pµt

π
(Y

(i)
t ) ,

ṙ
(i)
t = −

(
E ln

pµt

π
(Y

(i)
t )− 1

N

N∑
j=1

E ln
pµt

π
(Y

(j)
t )

)
r
(i)
t .

We have implemented these equations and their empirical performance is encouraging. However, a
fuller investigation of algorithms for VI with changing weights is beyond the scope of this work and
we leave it for future research.

Code for the experiments is available at https://github.com/marc-h-lambert/W-VI.
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