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Abstract

The cubic regularization method (CR) is a popular algorithm for unconstrained
non-convex optimization. At each iteration, CR solves a cubically regularized
quadratic problem, called the cubic regularization subproblem (CRS). One way
to solve the CRS relies on solving the secular equation, whose computational
bottleneck lies in the computation of all eigenvalues of the Hessian matrix. In this
paper, we propose and analyze a novel CRS solver based on an approximate secular
equation, which requires only some of the Hessian eigenvalues and is therefore
much more efficient. Two approximate secular equations (ASEs) are developed.
For both ASEs, we first study the existence and uniqueness of their roots and then
establish an upper bound on the gap between the root and that of the standard
secular equation. Such an upper bound can in turn be used to bound the distance
from the approximate CRS solution based ASEs to the true CRS solution, thus
offering a theoretical guarantee for our CRS solver. A desirable feature of our
CRS solver is that it requires only matrix-vector multiplication but not matrix
inversion, which makes it particularly suitable for high-dimensional applications
of unconstrained non-convex optimization, such as low-rank recovery and deep
learning. Numerical experiments with synthetic and real data-sets are conducted to
investigate the practical performance of the proposed CRS solver. Experimental
results show that the proposed solver outperforms two state-of-the-art methods.

1 Introduction

The cubic regularization method (CR) is a variant of Newton’s method proposed by Griewank [8], and
later independently by Nesterov and Polyak [12], and Weiser et al. [16]. It gained significant attention
over the last decade due to its attractive theoretical properties, such as convergence to second-order
critical points[12] and quadratic convergence rate under mild assumptions [17]. Each iteration of CR
solves a problem of the following form, called the cubic regularization subproblem (CRS):

min
x2Rn

fA,b,⇢(x) := bTx+
1

2
xTAx+

⇢

3
kxk3, (1)

where ⇢ > 0 is the regularization parameter, b 2 Rn, and A 2 Rn⇥n is a symmetric matrix, not
necessarily positive semidefinite. Many variants and generalizations of CR are developed, including
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the Adaptive Regularization Using Cubics (ARC) which allows for a dynamic choice of ⇢ and inexact
CRS solutions [3, 4], accelerated CR using momentum [15] and stochastic CR for solving stochastic
optimization [14]. Despite the theoretical success, the practicality of CR and its variants relies
critically on the CRS solver, a topic that attracts considerable research recently [2, 1, 10, 9]. The goal
of this paper is to develop a novel, efficient CRS solver along with theoretical guarantees.

A popular approach for solving the CRS is via solving the so-called secular equation. We now
review this approach. Towards that, we denote by �1  · · ·  �n the eigenvalues of A and
by v1, · · · ,vn the corresponding eigenvectors. In other words, we have the eigendecomposition
A =

Pn
i=1 �ivivT

i = V⇤VT, where ⇤ = diag(�1, . . . ,�n) and V = [v1, · · · ,vn]. Note that
eigenvalues �i are not necessarily positive due to the indefiniteness of the matrix A. Also, we denote
the Euclidean norm by k · k.
Proposition 1 ([12, 3]). A vector x⇤

solves the CRS (1) if and only if it satisfies the system

⇢
(A+ ⇢kx⇤

kI)x⇤ + b = 0,

A+ ⇢kx⇤
kI ⌫ 0.

(2)
(3)

Moreover, if A+ ⇢kx⇤
kI � 0, then x⇤

is the unique solution (and hence a critical point).

Proposition 2 ([1]). Let x⇤
be a global solution of CRS (1) and the eigendecomposition for A =Pn

i=1 �ivivT
i = V⇤VT

, where ⇤ = diag(�1, . . . ,�n) and V = [v1, · · · ,vn]. If bTv1 6= 0, then

A + ⇢kx⇤
kI � 0 and the solution x⇤

is the unique critical point (and hence the unique solution).

Conversely, if bTv1 = 0, then the CRS (1) has multiple optimal solutions.

From Proposition 2, if bTv1 6= 0, then there is only one critical point, which is also the optimal
solution, and hence the gradient norm krfA,b,⇢(x)k serves as an optimality measure. Throughout
the paper, we assume bTv1 6= 0, under which the CRS is said to be in the easy case. This is without
much loss of generality as this holds generically true in practice. Moreover, we could easily avoid the
hard case (bTv1 = 0) by slightly perturbing the vector b, see [12, 2].

To introduce the secular equation, note that in the easy case, conditions (2) and (3) can be written as
⇢
(⇤+ �I) · y⇤ = c,

�1 + � > 0.

where � =: ⇢kx⇤
k, [y⇤1 , · · · , y⇤n]T := y⇤ = VTx⇤ and [c1, · · · , cn]T := c = �VTb. Therefore,

y⇤i =
ci

�i + �
, i = 1, . . . , n.

Since the Euclidean norm is invariant to orthogonal transformation, we have

�2

⇢2
= kx⇤

k
2 = ky⇤

k
2 =

nX

i=1

c2i
(�i + �)2

.

Consequently, instead of solving the complicated nonlinear system (2)-(3), we could solve the CRS (1)
by first finding the (unique) root � > max{��1, 0} of the equation

w(�) =
nX

i=1

c2i
(�i + �)2

�
�2

⇢2
, (4)

called the secular equation, and then solves the linear system (A+ �I)x = �b. The first step can be
done efficiently by using existing root-finding algorithms (e.g., the bisection method and Newton’s
method etc.).

The disadvantage of the above CRS solver, based on the secular equation (4), is that it requires the full
spectrum of A, which costs O(n3). This approach is viable only for low- to moderate-dimensional
problems. However, when n is large, computing all eigenvalues of A is prohibitive. Worse still, after
the root � is solved, we still need to apply iterative methods (e.g., Lanczos method) to solve the
large-scale linear system (2). We are thus motivated to approximate the secular equation by using
only some of the eigenvalues of A, as opposed to all.

As our main contribution, we developed two different approximate secular equations (ASEs), both of
which require computing m < n eigenvalues of A. The cost for forming the approximate secular
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equations is only O(mn2), and hence the resulting CRS solver is much more efficient and scalable.
On the theoretical side, for each of the proposed approximate secular equations, we first studied the
existence and uniqueness of its root, and then derived an upper bound on the gap between the root
and that of the standard secular equation (4). This upper bound is in turn used to bound the distance
from the approximate CRS solution based ASEs to the true CRS solution, thus offering a theoretical
guarantee for the proposed CRS solver. A desirable feature of our CRS solver is that it requires
only matrix-vector multiplication but not matrix inversion, which makes it particularly suitable for
high-dimensional applications of unconstrained non-convex optimization, such as low-rank recovery
and deep learning. On the empirical side, we conducted experiments with both synthetic and real
problem instances to investigate the practical performance of the proposed CRS solver and the
associated CR. Experimental results showed that the proposed solver outperforms two state-of-the-art
methods. The selection of m for the proposed ASEM is an interesting and crucial topic. We will
discuss related issues in Section 4 and some numerical explorations are also presented in Section 5.

2 The First-Order Truncated Secular Equation

We define the first-order truncated secular equation by

w1(�;µ) =
mX

i=1

c2i
(�i + �)2

+
nX

i=m+1

c2i
(µ+ �)2

�
�2

⇢2
, (5)

where µ � �m is an input parameter that approximates the unobserved eigenvalues �m+1, · · · ,�n,
ci = �bTvi and

Pn
i=m+1 c

2
i = kbk2 �

Pm
i=1 c

2
i . Note that only m eigenvalues �1, · · · ,�m and

their corresponding eigenvectors v1, · · · ,vm are needed to form (5), which is computationally
friendlier compared with (4). The name first-order truncated secular equation comes from the fact
that w1(�, µ) is the first-order Taylor approximation to the function w(�). Below we will first study
the existence and uniqueness for the root of (5). Then, we derive an error bound for the root.

2.1 Existence and Uniqueness for the Root

In the easy case that bTv1 6= 0 (equivalently, c1 6= 0), the solution x⇤ to the CRS (1) is unique, which
implies the existence and uniqueness for the root �⇤ of (4). To show that our proposed CRS solver
is also well-defined, we prove the existence and uniqueness of the root of the first-order truncated
secular equation (5).
Lemma 1. For any µ � �m, the function w1(·;µ) as defined in (5) admits a unique root.

Proof. Existence. We first consider the case when �1  0. Then, for any fixed µ � �m,

lim
�!(��1)+

w1(�;µ) = +1 and lim
�!+1

w1(�;µ) = �1,

By the intermediate value theorem, w1(·;µ) has a root in (��1,+1). For �1 > 0, we have

w1(0;µ) > 0 and lim
�!+1

w1(�;µ) = �1.

Therefore, w1(�;µ) has a root in (0,+1).

Uniqueness. Note that w1(�;µ) is monotonically decreasing for � 2 (��1,+1) and � 2 (0,+1)
when �1  0 and �1 > 0, respectively. Therefore, the uniqueness of the root for w1(�;µ) is
guaranteed.

2.2 Error Analysis

In order to study the quality of the CRS solution based on our proposed solver using approximate
secular equations, we need to study the quality of the root to the first-order truncated secular equation,
denoted by �⇤

1 . Towards that end, we provide an upper bound on the gap |�⇤
1 � �⇤

| between �⇤
1 and

the root �⇤ of the exact secular equation (4).
Theorem 1. Let �⇤

1 and �⇤
be the unique roots of w1(�;µ) and w(�), respectively. Then

|�⇤
1 � �⇤

|  Cm · max
m+1in

|�i � µ|, (6)
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where Cm > 0 is a constant, upper bounded by
2kbk2

(�m��1)3
· min

n
(�d+B1)

3

2kbk2 , ⇢2

2B1

o
with B1 =

��1+
p

�2
1+4⇢·kbk
2 being an upper bound for |�⇤

1 |.

We clearly see that the right-hand side of inequality (1) is decreasing in m. This confirms that using
more eigen information (i.e., larger m) helps to reduce the error |�⇤

1 � �⇤
|. The proof of Theorem 1

is technical and quite long and hence relegated to Appendix A. The approximation quality of our
CRS solver is guaranteed by combining Theorem 1 with the following proposition.
Proposition 3. Let x⇤

and x̃ be solutions to the equations (A+ �⇤I)x⇤ = �b and (A+ �⇤
1I) x̃ =

�b, respectively. Then, kx̃� x⇤
k = O (|�⇤

1 � �⇤
|).

Proof. By definition, we have

x⇤ =
nX

i=1

(�i + �⇤)�1 viv
T
i · (�b) =

nX

i=1

(�i + �⇤)�1 ci · vi,

and

x̃ =
nX

i=1

(�i + �⇤
1)

�1 viv
T
i · (�b) =

nX

i=1

(�i + �⇤
1)

�1 ci · vi,

then

kx̃� x⇤
k =

�����

nX

i=1

⇣
(�i + �⇤

1)
�1

� (�i + �⇤)�1
⌘
viv

T
i · (�b)

�����



✓
max
1in

n
(�i + �⇤

1)
�1

� (�i + �⇤)�1
o◆

· kbk

= O (|�⇤
1 � �⇤

|) .

This completes the proof.

Before ending this section, some remarks are in order. First, the parameter µ acts as an approximation
to n�m unknown eigenvalues �m+1, · · · ,�n. An intuitive choice of µ that works well in practice
and is computationally cheap is the average of unknown eigenvalues, i.e.,

µ1 =

Pn
i=m+1 �i

n�m
=

tr(A)�
Pm

i=1 �i

n�m
. (7)

Second, the error bound Cm ·maxm+1in |�i � µ| in Theorem 1 depends on the distribution of
eigenvalues of A. If the unobserved eigenvalues �m+1, · · · ,�n cluster around a small interval, then
with a suitable choice of µ 2 [�m+1,�n], maxm+1in |�i�µ| is small. Conversely, if the unknown
eigenvalues spread over a large interval, then it is hard to make the error maxm+1in |�i �µ| small.

Third, it is instructive to study the error bound (6) under some random matrix model for A. Suppose
that A = eA/

p
2n, where eA is a symmetric random matrix with i.i.d. entries on and above the

diagonal. By the Wigner semicircle law [6], as n ! 1, the eigenvalues of A distribute according to
a density of a semi-circle shape. In particular, we can deduce that with a probability of 1� o(1),

max
m+1in

|�i � µ|  O

 ✓
1�

m+ 1

n

◆2/3
!

⇡

✓
3⇡

4
p
2

◆2/3

·

✓
1�

m+ 1

n

◆2/3

(8)

The detailed proof of (8) and further discussions under random A can be found in Appendix C.

3 The Second-Order Truncated Secular Equation

Similarly to the equation (5), but with the second-order Taylor approximation, we define the second-
order truncated secular equation by

w2(�;µ) =
mX

i=1

c2i
(�i + �)2

+
nX

i=m+1

c2i
(µ+ �)2

� 2
nX

i=m+1

c2i · (�i � µ)

(µ+ �)3
�

�2

⇢2
, (9)

where µ � �m is an input parameter that approximates the unobserved eigenvalues �m+1, · · · ,�n.
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3.1 Existence and Uniqueness for the Root

The lemma blew shows the existence and uniqueness of the root of w2(·;µ).
Lemma 2. With

µ =

Pn
i=m+1 c

2
i · �iPn

i=m+1 c
2
i

, (10)

the function w2(·;µ) as defined in (9) admits a unique root.

Proof. When

µ =

Pn
i=m+1 c

2
i · �iPn

i=m+1 c
2
i

,

the third summation in the definition (9) vanishes, and hence w2(�, µ) becomes the same as w1(�, µ),
except with a specific choice of µ. The desired conclusion then follows from Lemma 1.

Unlike its first-order counterpart, we do not develop the existence and uniqueness of the root of the
second-order truncated secular equation for arbitrary µ. The reason is that when �1 > 0, w2(0;µ)
can potentially be positive or negative.

3.2 Error Analysis

Similar to that for the first-order truncated secular equation, we can also derive an error bound for the
root of the second-order truncated secular equation.
Theorem 2. Let �⇤

2 and �⇤
be the unique root of w2(�;µ) and w(�), respectively, and

µ =

Pn
i=m+1 c

2
i · �iPn

i=m+1 c
2
i

.

Then,

|�⇤
2 � �⇤

|  Cm · max
m+1in

(�i � µ)2, (11)

where Cm > 0 is a constant bounded by
3kbk2

(�m��1)4
· min

n
(�n+B1)

3

2kbk2 , ⇢2

2B1

o
with B1 =

��1+
p

�2
1+4⇢·kbk
2 being an upper bound for |�⇤

2 |.

The proof of Theorem 2 can be found in Appendix B. We can similarly estimate the approximation
quality by combining Theorem 2 and Proposition 3. Again, the right-hand side of the error bound (11)
is decreasing in m. We should also point out that the CRS solver based on the second-order secular
equation outperforms the first-order counterpart only if maxm+1in |�i � µ|/|�m � �1| is small
enough. The computation of µ here requires cm+1, · · · , cn, which seem to be inaccessible. We
provide a tractable form for µ in (13) and will discuss it in the next part.

4 Implementation Details

We now discuss the implementation details for solving the proposed first-order secular equation
for CRS. First, we obtain the partial eigen information {�1, · · · ,�m} and {v1, · · · ,vm} by Krylov
subspace methods. Note that only Hessian-vector products are required. This is computationally
friendlier than other methods that rely on matrix inversions and is particularly suitable for modern,
high-dimensional applications. Then, we solve the first-order secular equation (5) with µ defined
in (7) or (10), using any root-finding algorithm, such as Newton’s method. Finally, we solve the
linear system (A+ �⇤I)x = �b by iterative algorithms, e.g., the Lanczos method and the conjugate
gradient method. The resulting CRS solver, namely the approximate secular equation method
(ASEM), is summarized as follows:
Step 1: obtaining the partial eigen information {�1, · · · ,�m} and {v1, · · · ,vm} of A.
Step 2: solving the secular equation (5) with µ defined in (7) or (10); we get �⇤.
Step 3: iteratively solving the linear system (A+ �⇤I)x+ b = 0.
Output: the solution x.
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Details for Step 1. The Krylov subspace is one of the most popular iterative methods in solving eigen
problems with O(mn2) computational cost [13]. The Lanczos decomposition for a real symmetric
matrix B satisfies

BUk = TkUk + �kuk+1e
T
k ,

where Uk 2 Rn⇥k is an orthonormal matrix (i.e., UT
kUk = Ik), Tk 2 Rk⇥k is a symmetric

tridiagonal matrix and ek 2 Rk is the k-th standard basis vector in Rk. Lanczos observed that even
for comparatively small k, Tk approximates B very well in terms of eigenvalues and eigenvectors.
Specifically, for a suitable eigenpair (�,w) of Tk with Tkw = � · w, the pair (�,Ukw) is an
approximate eigenpair of B, i.e., Bz ⇡ � ·z with z = Ukw. Here, the Krylov subspace is constructed
by u1, the first column of Uk = [u1, · · · ,uk], i.e., Kk(B,u1). Note that Tk approximates B for
eigenvalues with largest modulus (or absolute values) and the corresponding eigenvectors. Empirically,
for calculating m eigenvalues of B with largest absolute values and the corresponding eigenvectors,
we usually construct the Krylov subspace Kk(B,u1) with dimension k = max{2m, 20}. The
base vector u1 is also essential for the Krylov subspace method. Moreover, restarting is adopted
to iteratively update the base vector u1. To the best of our knowledge, the mentioned iterative
method for partial eigen information is supported in many softwares, e.g., Matlab (eigs function)
and Python (Scipy package) etc. For more details, please refer to ARPACK [11]. Returning back
to the proposed algorithm with A, instead of calculating the largest (in terms of the absolute value)
m eigenvalues of A, we aim to get m (algebraically) smallest eigenvalues {�1, · · · ,�m} and the
corresponding eigenvectors {v1, · · · ,vm}. We first roughly calculate a shift value � � kAk by
several steps of power iteration (Hessian-vector products). Then, let B = � ·I�A, whose eigenvalues
{� � �n, · · · ,� � �1} are non-negative and the corresponding eigenvectors are {vn, · · · ,v1}.
Applying the mentioned Krylov subspace algorithm, we first obtain an estimate of shifted eigenvalues
{�1, · · · ,�m} and the corresponding eigenvectors {v1, · · · ,vm} for A, since {���m, · · · ,���1}

are largest eigenvalues of B. To further lower the computational cost, we may adopt k-dimensional
Krylov subspace Kk(B,u1) for m eigenvalues without restarting in implementation with k = m.

Details for Step 2. Instead of directly solving (5), Cartis et al. [3] recommended to find the root for
the equivalent equation:

w̃1(�;µ) =

vuut
mX

i=1

c2i
(�i + �)2

+
nX

i=m+1

c2i
(µ+ �)2

�
�

⇢
, (12)

which is convex on (��1,+1). Moreover, under perfect initialization, Newton’s method is proved
to achieve (locally) quadratic convergence. However, we numerically find that it depends much on the
initialization and may converge to a point outside the feasible domain (��1,+1) if it has imperfect
initialization. Here, we recommend to use the bisection method to find the root of (5) or (12) due to
its linear convergence, stability and ease of implementation. For the weighted average µ defined in
(10), we can rewrite it as a more tractable but equivalent form:

µ2 =

Pn
i=m+1 c

2
i · �iPn

i=m+1 c
2
i

=
bT(A�Vm⇤mVT

m)b

kbk2 �
Pm

i=1 c
2
i

=
bTAb�

Pm
i=1 c

2
i · �i

kbk2 �
Pm

i=1 c
2
i

, (13)

where Vm = [v1, · · · ,vm] and ⇤m = diag(�1, · · · ,�m).

Details for Step 3. There are many well-studied, efficient and reliable iterative methods for (real
symmetric) linear systems, e.g., Krylov subspace (Lanczos) methods and conjugate gradient methods
etc. We adopt the Lanczos method for solving the linear system (A+ �⇤I)x+ b = 0, where only a
few steps of Hessian-vector products are required.

In summary, the main computational cost comes from Step 1 and Step 3 for Hessian-vector products
(O(mn2)), since solving the root of w1(�;µ) is a 1-dimensional problem in Step 2 and is of cost
O(n). Therefore, the total computational cost for the proposed algorithm is O(mn2), much lower
than the method based on full eigendecomposition (O(n3)).

The selection of m. The choice of the parameter m is important to our CRS solver: a larger m yields
a better CRS solution quality but incurs a higher computational cost. If A is a Gaussian random
matrix, by (8), we can achieve "-accuracy (i.e., |�⇤

1 � �⇤
|  ") if m  n satisfies

✓
3⇡

4
p
2

◆2/3

·

✓
1�

m+ 1

n

◆2/3

 ".
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However, the error bound (8) provides only a conservative sufficient conditions for m. Moreover,
for general problems without the Gaussian assumption on A, it is hard to choose m based on the
"-accuracy, because the error bounds (6) and (11) are implicit in m. Therefore, adaptive methods
(or heuristic methods) for selecting m are necessary in practice. A natural way is to check the
suboptimality (gradient norm) in each step, and enlarge m by m0 (i.e., we set m = max{m +
m0,mmax}, where mmax is the maximal number of eigenvalues we adopt in ASEM), if the output
does not satisfy the given condition for suboptimality. Moreover, numerical experiments on CUTEst
problems (see Experiment 6 in Section 5) shows that m = 1 is enough for most of the cases. We left
the study for the selection of m as future work. To the best of our knowledge, the Krylov subspace
method [3, 2] for CRS suffers from a similar issue of hyperparameter selection.

5 Experimental Results

Without the loss of generality (see Appendix D), we assume that A is diagonal in the synthetic CRS
instances, for simplicity and fair comparison. Furthermore, we also test the proposed ASEM on
CUTEst library [7]. All experiments were run on a Macbook Pro M1 laptop. For more experimental
details, please refer to Appendix E.

Experiment 1. The distribution for eigenvalues of the matrix A. In the error analysis (Theorem 1 and
Theorem 2), the error is controlled by the approximation of µ to unobserved eigenvalues {�i}

n
i=m+1,

i.e., maxm+1in |�i � µ| and maxm+1in(�i � µ)2. It further implies that the distribution of
eigenvalues {�i}

n
i=m+1 is essential for the proposed method. Intuitively, if eigenvalues {�i}

n
i=m+1

cluster around a small interval, then the rough estimate (7) for µ is enough to approximate the
unknown eigenvalues well. Conversely, if eigenvalues {�i}

n
i=m+1 spread across a large interval, then

we cannot expect a single µ to estimate all eigenvalues {�i}
n
i=m+1. Here, we have four specially

designed cases for distributions of eigenvalues of the matrix A to illustrate our theoretical observations
for the proposed method. Case 1 (evenly spaced): all eigenvalues {�i}

n
i=1 are evenly spaced in

[�1, 1]; Case 2 (separated): half of eigenvalues are far away from the remaining, i.e., eigenvalues
{�i}

n/2
i=1 are evenly spaced in [�1,�4/5] and the remaining eigenvalues {�i}

n
i=n/2+1 are evenly

spaced in [4/5, 1]; Case 3 (right centered): the minimal 2% of eigenvalues and the remaining 98%

of eigenvalues gather together respectively, i.e., eigenvalues {�i}
n/50
i=1 and {�i}

n
i=n/50+1 are spaced

evenly in [�1, 4/5] and [4/5, 1] respectively; Case 4 (left centered): the maximal 2% of eigenvalues
and the remaining 98% of eigenvalues gather together respectively, i.e., eigenvalues {�i}

49/50n
i=1 and

{�i}
n
i=49/50n+1 are evenly spaced in [�1, 4/5] and [4/5, 1] respectively. The vector b is proportional

to [1, · · · , 1]T with kbk = 0.1. The remaining parameters are n = 5⇥ 103 and ⇢ = 0.1. Here we
adopt the first-order ASEM (i.e., µ is defined in (7)). Figure 1 validates our theories that the proposed
algorithm converges fast if unknown eigenvalues {�i}

n
i=m+1 are close. Moreover, without the need

to compute all eigenvalues, partial eigen information is enough to achieve satisfactory solutions in
practice, except for the hard case (e.g., Case 4).

Figure 1: Trajectories of
suboptimality (gradient norm
krfA,b,⇢(x)k) with different
distributions for eigenvalues in
Experiment 1.

Figure 2: Trajectories of
suboptimality (gradient norm
krfA,b,⇢(x)k) with different
µ in Experiment 2.

Figure 3: Trajectories of
suboptimality (gradient norm
krfA,b,⇢(x)k) with exact
and approximated eigenvalues
and eigenvectors in Experi-
ment 3.

Experiment 2. The effect of the parameter µ (first-order and second-order ASEMs). For the first- and
second-order ASEMs, we define µ according to (7) and (10) respectively. Here, we test the effect of
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(a) Case 1:  = 103. (b) Case 2:  = 106.

Figure 4: Trajectories of suboptimality (gradient norm krfA,b,⇢(x)k) for ASEM, the Krylov sub-
space method and the gradient descent method in Experiment 4.

µ for the proposed method in solving the cubic regularized quadratic problem, with other parameters
fixed. Case 1 (first-order ASEM): µ is adopted as the mean value of unknown eigenvalues, defined in
(7); Case 2 (second-order ASEM): µ is selected as the weighted average of unknown eigenvalues
with weights c2i (see (10)); Case 3 (first-order ASEM): µ = �m, the maximal eigenvalue we observe;
Case 4: µ = 106, much larger than the eigenvalues of A, as an approximation to +1. The vector
b is proportional to [�1, · · · ,�n]T with length kbk = 0.1. Eigenvalues of the matrix A are evenly
spaced in [�1, 1]. The remaining parameters are d = 5 ⇥ 103 and ⇢ = 0.1. Figure 2 shows the
superiority of the second-order ASEM over the first-order ASEM that it is more stable and converges
faster when m is large, consistent with Theorem 1 and Theorem 2. Moreover, the results further
imply the importance of the choice of µ. There are several observations from Figure 2. Firstly, we
cannot discard the residual term with the unknown eigenvalues {�i}

n
i=m+1, where they still contain

much information, as is shown in Case 1 and Case 4. Secondly, the random selection of µ does not
work well and may even cause divergence (e.g., see Case 3 and Case 4). Furthermore, a suitable
choice of µ leads to a well-behaved algorithm (e.g., see Case 1 and Case 2).

Experiment 3. Approximation capabilities of the Krylov subspace method for ASEM. As is in-
troduced in Section 4, we adopt m-dimensional Krylov subspace Km(B,u1) to approximately
calculate m algebraically smallest eigenvalues {�1, · · · ,�m} and the corresponding eigenvectors
{v1, · · · ,vm}. We now investigate the performance of ASEM with estimated eigenvalues and eigen-
vectors. The vector b is proportional to the vector [1, · · · , 1]T with length kbk = 0.1. Eigenvalues of
the matrix A are evenly spaced in [�1, 1]. The remaining parameters are n = 5⇥ 103 and ⇢ = 0.1.
We adopt the first-order ASEM (i.e., µ is defined in (7)) here. Trajectories for suboptimality with
exact and approximated eigenvalues and eigenvectors are shown in Figure 3. The Krylov subspace
Km(B,u1) with relatively low dimension m for ASEM matches well with ASEM with exact eigen-
values. This experiment justifies the use of the m-dimensional Krylov subspace for m eigenvalues
and eigenvectors in ASEM.

Experiment 4. Comparison of ASEM with the Krylov subspace method [3, 2] and the gradient
descent method [1] on synthetic problems. For large-scale problems, the Krylov subspace method
and the gradient descent method are two state-of-the-art methods for CRS (1). In this experiment, we
compare the proposed ASEM against the Krylov subspace method and the gradient descent method.
The dominant computation steps for these three methods are Hessian-vector products (O(mn2)). The
vector b is proportional to the vector [1, · · · , 1]T with length kbk = 0.1. Eigenvalues of the matrix
A are evenly spaced in [�1, 1]. Similar to the setting in [2], we define the condition number for (1) as
 = �n+⇢·kx⇤k

�1+⇢·kx⇤k = �n+�⇤

�1+�⇤ . Then, we have �⇤ = �n�·�1
�1 and ⇢ = �⇤

k(A+�⇤I)�1bk . Case 1: easy case
that  = 103; Case 2: harder case that  = 106. The remaining parameter is n = 5⇥ 103. We adopt
the first-order ASEM (i.e., µ is defined in (7)). As shown in Figure 4, ASEM outperforms both the
gradient descent method and the Krylov subspace method when m is relatively large. It is reasonable
that ASEM underperforms when m is small since the m-dimensional Krylov subspace cannot well
approximate eigenvalues and eigenvectors of A. The results further demonstrate the performance of
the proposed ASEM method.
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Experiment 5. Comparison of ASEM with the Cauchy point method [5], the gradient descent method
and the Krylov subspace method on the CUTEst problems [7]. The CUTEst library collects various
unconstrained and constrained optimization problems that arise in real applications. In this part, we
compare the numerical performances of the ARC algorithm [3] on four unconstrained optimization
problems from the CUTEst library, where subproblems are solved by the Cauchy point method (ARC-
CP), the gradient descent method (ARC-GD), the Krylov subspace method (ARC-Krylov(k), where
k is the number of Lanczos basis vectors) and the ASEM method (ARC-ASEM(m), where m is the
number of eigenvalues for ASEM). The architecture of the ARC algorithm is provided in Appendix
E.2. Four unconstrained optimization problems (e.g., TOINTGSS, BRYBAND, DIXMAANG, and
TQUARTIC) in the CUTEst library are adopted for testing, where the dimensions are 1000, 2000,
3000, and 5000, respectively. We use the first-order ASEM (µ is defined in (7)) here since we
found that the performances of the first-order ASEM and the second-order ASEM do not differ
much for these problems. Numerical results are reported in Table 1, where xout, krf(xout)k,
�1(r2f(xout)), iter and time represent the output of the ARC algorithm, the suboptimality (gradient
norm), the minimal eigenvalue of the Hessian matrix, number of iterations for the ARC and CPU
time, respectively. Here are several observations. Firstly, the proposed ASEM algorithm outperforms
others in most cases and is comparable to the Krylov subspace method sometimes, where the ASEM
achieves a worse suboptimality (gradient norms) or CPU time. Furthermore, only one eigenvalue is
enough for the ASEM to perform well (i.e., ARC-ASEM(m) with m = 1), which is surprising. For
more experimental details, please refer to Appendix E.

Table 1: Results on CUTEst problems in Experiment 5.
Problem Method f(xout) krf(xout)k �1(r2f(xout)) iter time(s)

ARC-CP 3.60E+14 4.12E-05 1.40E-16 1000 6.08
ARC-GD 3.60E+14 1.42E-06 3.89E-16 100 6.98

TOINTGSS ARC-Krylov(1) 3.60E+14 4.12E-05 1.20E-15 300 6.75
(n = 1000) ARC-Krylov(10) 3.60E+14 2.20E-08 1.29E-15 19 1.87

ARC-ASEM(1) 3.60E+14 8.01E-10 -1.63E-15 19 2.17
ARC-ASEM(10) 3.60E+14 8.17E-10 -7.67E-16 19 2.74
ARC-CP 7.49E+14 1.10E-03 5.40E+00 1000 8.27
ARC-GD 1.25E+05 4.93E+03 4.40E+02 100 11.05

BRYBAND ARC-Krylov(10) 7.49E+14 6.60E-06 5.40E+00 100 9.85
(n = 2000) ARC-Krylov(30) 7.49E+14 1.14E-07 5.40E+00 14 2.37

ARC-ASEM(1) 7.49E+14 1.02E-07 5.40E+00 14 2.24
ARC-ASEM(10) 7.49E+14 1.01E-07 5.40E+00 14 3.83
ARC-CP 1.00E+00 3.13E-04 6.67E-04 2000 35.16
ARC-GD 1.00E+00 9.24E-05 6.67E-04 200 33.83

DIXMAANG ARC-Krylov(10) 1.00E+00 3.44E-05 6.67E-04 500 32.18
(n = 3000) ARC-Krylov(30) 1.00E+00 9.06E-09 6.67E-04 46 6.65

ARC-ASEM(1) 1.00E+00 5.53E-09 6.67E-04 30 7.51
ARC-ASEM(10) 1.00E+00 4.85E-09 6.67E-04 42 18.74
ARC-CP 8.04E-01 6.10E-02 -5.41E-05 500 71.92
ARC-GD 8.05E-01 2.77E-02 -4.80E-05 100 98.14

TQUARTIC ARC-Krylov(1) 8.05E-01 2.76E-02 -4.71E-05 100 29.43
(n = 5000) ARC-Krylov(10) 5.05E-14 8.48E-09 4.00E-04 46 16.09

ARC-ASEM(1) 7.43E-14 9.62E-09 4.00E-04 46 15.47
ARC-ASEM(10) 7.43E-14 9.62E-09 4.00E-04 46 16.18

6 Conclusion

We develop the first-order and the second-order truncated secular equations as surrogates to the
secular equation with full eigendecomposition in solving the CRS (1). The proposed ASEM is an
efficient alternative to existing methods for solving CRS since it reduces the computational cost from
O(n3) to O(mn2). Our CRS solvers feature rigorous theoretical error bound, which is related to the
amount of eigen information used. We also discuss in detail the implementation of our proposed
algorithm ASEM. In particular, we show how only Hessian-vector products are needed, but not matrix
inversion. Numerical experiments are conducted to further investigate the properties and performance
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of the proposed ASEM and corroborate with the theoretical results. From our experiments, we find
that the proposed ASEM is more efficient than the state-of-the-art methods on synthetic and CUTEst
problems.
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paragraph of section 4, the proposed ASEM algorithm involves the selection of m,
which balances the accuracy and computational cost of ASEM. We left the (adaptive
and heuristic) methods for the selection of m as future work.

(c) Did you discuss any potential negative social impacts of your work? [Yes] The proposed
ASEM is for general optimization problems, and it belongs to the foundational research.
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them? [Yes]
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(b) Did you include complete proofs of all theoretical results? [Yes] We provide a sketch
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(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] Our results are
reproducible and we will share our code on github later.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] Details of experiments are specified in the paper, see section 5.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [No] Our experiments do not involve random seeds.
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(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [Yes] We mention that we test the proposed algorithm
on synthetic problems and open datasets.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [No] Our paper does not involve research with human subjects.
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [No] Our paper does not involve research with
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spent on participant compensation? [No] Our paper does not involve research with
human subjects.

11


	Introduction
	The First-Order Truncated Secular Equation
	Existence and Uniqueness for the Root
	Error Analysis

	The Second-Order Truncated Secular Equation
	Existence and Uniqueness for the Root
	Error Analysis

	Implementation Details
	Experimental Results
	Conclusion
	Proof of Theorem 1
	Proof of Theorem 2
	Random Gaussian Matrix
	Reduction to Diagonal Hessian Matrix
	Further Details of Experiments
	The Cauchy Point
	The ARC Algorithm
	Hyperparameters
	Additional Experiments


