
A Supplementary material

A.1 Learning

Our proof also relies on the following theorem from Bubeck et al. [2019].
Theorem 19 (Implied by Theorem 3.1 of Bubeck et al. [2019]). Let {Cλ}λ be a finite family of
classifiers. Suppose the learning problem F = {Fλ}λ and a learner L satisfy the following. For all
Dλ ∈ Dλ and h ∈ Hλ, and sample S ← Dn

λ , L(Sh) always outputs a classifier f ∈ Cλ such that
Riskd,r(h,Dλ, f) = 0 (i.e., f robustly fits h perfectly). Then, L will δ-robust learn F with sample
complexity log |Cλ| /δ.

We emphasize that in the theorem above, one might pick a different set of classifiers merely for sake
of computational efficiency of the learner L. Namely, it might be possible to information-theoretically
learn a hypothesis class robustly (e.g., by a robust variant of empirical risk minimization when), but
an efficient learner might choose to output its classifiers from a larger set such that it can efficiently
find a member of that class.

A.2 Cryptographic primitives

Definition 20 (Computational indistinguishability). We say two ensembles of distributions X =
{Xλ}λ∈N and Y = {Yλ}λ∈N are computationally indistinguishable if for any probabilistic
polynomial-time (PPT) algorithm A, it holds that∣∣∣∣ Pr

x←Xλ

[A(x) = 1]− Pr
y←Yλ

[A(y) = 1]

∣∣∣∣ = negl(λ).

Definition 21 (One-way function). An ensemble of functions {fλ : {0, 1}λ → {0, 1}λ}λ is called a
one-way function if for all polynomial-time probabilistic algorithm A, it holds that

Pr

[
x← {0, 1}λ, y = fλ(x)

x′ ← A(1λ, y)
: fλ(x

′) = y

]
= negl(λ).

A.3 Coding theory

Fact 22. The following facts hold about the Reed-Solomon code.

• The distance of the Reed-Solomon code is d = n−k+1. Moreover, the decoding is possible
efficiently: there is a PPT algorithm that maps any erroneous codeword that contains up
to ⩽ (n− k)/2 errors to the nearest correct (unique) codeword. In other words, one can
efficiently correct up to 1−R

2 fraction of errors, where R is the code’s rate.

• The encoding of a random message is k-wise independent. That is, for all subset S ⊆
{1, 2, . . . , n} such that |S| ⩽ k, the following distribution{

m← Fk, c = m ·G
Output cS

}
is uniform over F|S|. This follows from the fact that any ⩽ k columns of the generator
matrix of the RS code is full-rank.

A.4 Randomness Extraction

In certain cases, some information regarding X is learned (e.g., through training). Let us denote
this learned information as a random variable Z. Note that X and Z are two correlated distributions.
In order to denote the min-entropy of X conditioned on the learned information Z, we need the
following notion (and lemma) introduced by Dodis et. al. Dodis et al. [2008].
Definition 23 (Average-case min-entropy Dodis et al. [2008]). For two correlated distributions X
and Z, the average-case min-entropy is defined as

H̃∞(X|Z) = − log
(

E
z←Z

[
max

x
Pr [X = x|Z = z]

])
.
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Lemma 24 (Dodis et al. [2008]). We have the following two lemmas regarding the average-case
min-entropy.

• If the support set of Z has size at most 2m, we have

H̃∞(X|Z) ⩾ H∞(X)−m.

• It holds that

Pr
z←Z

[
H∞(X|Z = z) ⩾ H̃∞(X|Z)− log(1/ε)

]
⩾ 1− ε.

Intuitively, the above lemma states that: if a model denoted by the random variable Z is not too
large, and that model captures the information revealed about a variable X , since the support set of Z
has small size, then the average-case min-entropy H̃∞(X|Z) is large. Furthermore, for most z, the
min-entropy of H∞(X|Z = z) is almost as large as H̃∞(X|Z).

We now recall a tool that, roughly speaking, states that if X is a distribution over {0, 1}n that contains
some min-entropy, then the inner product (over F2) between X and a random vector Y is a uniformly
random bit, even conditioned on most of Y . This is a special case of the celebrated leftover hash
lemma Håstad et al. [1999]. We summarize this result as the following theorem. For completeness, a
proof can be found in Appendix D.1.
Theorem 25 (Inner product is a good randomness extractor). For all distribution X over {0, 1}n
such that H∞(X) ⩾ 2 · log(1/ε), it holds that

(Un, ⟨X,Un⟩) ≈ε Un+1,

where the two Un refer to the same sample.

Next, we need the following notion and results from Fourier analysis.
Definition 26 (Small-bias distribution Naor and Naor [1993]). Let F2ℓ be the finite field of order 2ℓ.
For a distribution X over Fn

2ℓ , the bias of X with respect to a vector y ∈ Fn
2ℓ is defined as

bias(X,α) :=
∣∣∣ E
x←X

[
(−1)Tr(⟨x,α⟩)

]∣∣∣ ,
where Tr : F2ℓ → F2 denote the trace map defined as Tr (y) = y + y2

1

+ y2
2

+ · · · + y2
ℓ−1

. The
distribution X is said to be ε-small-biased if for all non-zero vector α ∈ {0, 1}n, it holds that

bias(X,α) ⩽ ε.

Note that the trace map maps elements from F2ℓ to F2, where exactly half of the field elements
maps to 1 and the other half to 0. Consequently, if ⟨X,α⟩ is a uniform distribution over F2ℓ , then
bias(X,α) = 0. In Appendix D.2, prove the theorem below.
Theorem 27 (Small-biased Masking Lemma Dodis and Smith [2005]). Let X and Y be distributions
over Fn

2ℓ . If H∞(X) ⩾ k and Y is ε-small-biased, it holds that

SD
(
X + Y , U{0,1}nℓ

)
⩽ 2

nℓ−k
2 −1 · ε.

Finally, we observe the following property about the noisy RS code. A proof can be found in
Appendix D.3.
Theorem 28 (Noisy RS code is small-biased). LetH be a RS code over F2ℓ with block length n and
rate R. For all integer s ⩽ n, consider the following distribution

D =


c← H

Sample a random S ⊆ {1, 2, . . . , n} such that |S| = s

∀i ∈ S, replace ci with a random field element
Output c

 .

It holds that D is (1−R)s-small-biased.
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B Efficient learning could need more model parameters

In this section, we formally prove the first part of Theorem 1, which is the separation result between
the number of parameters needed by unbounded v.s. bounded learners.

Our construction of the learning problem in presented in Construction 12.

First, observe that instance size is approximately Θ((k + n) · ℓ) = Θ(n · log λ) as the size of
the sampler inputs u1 and u2 are sufficiently small. Our theorems prove the following. First, in
Theorem 13 we establish the efficient (robust) learnability of the task of Construction 12, where the
efficient-learner variant requires more parameters. Then, in Theorem 14 we establish the lower bound
on the number of parameters needed by an efficient learner. Finally, in Theorem 15 we establish the
lower bound on the number of parameters needed by efficient robust learners.

In the rest of this section, we prove these theorems.

Theorem (Restatement of Theorem 13). An information-theoretic learner can (robustly) ε-learn the
task of Construction 12 with parameter size 2λ and sample complexity Θ(λε ). Moreover, an efficient
learner can (robustly) ε-learn this task with parameter size α+ β and sample complexity Θ(α+β

ε ).

Since the learning task of Theorem 13 has a finite hypothesis class, its learnability follows from the
classical result of learning finite classes [Shalev-Shwartz and Ben-David, 2014]. Moreover, this can
be done efficiently as this is a linear task. When it comes to learning robust functions, one can also
use the result of Bubeck et al. [2019] for robustly learning finite classes.17 The learner of Bubeck et al.
[2019] simply uses the empirical-risk minimization, however this is done with respect to the robust
empirical risk. This learner is not always polynomial-time, even if the (regular) risk minimization
can be done efficiently. However, we would like to find robust learners also efficiently. The formal
proof follows.

Proof of Theorem 13. Consider the set of functions fs,s′ : Xλ → Yλ for all s, s′ ∈ {0, 1}λ as
follows.

1. On input x = ([̃u1], [̃u2], m̃, d̃), it invokes the error-correcting decoding algorithm on [̃u1]

and [̃u2] to find u1 and u2.

2. It uses d̃+ f2(s
′)|samp(u2) to get an encoding c̃ of m.

3. It invokes the error-correcting decoding on c̃ to get m.

4. It outputs
〈
m, f1(s)|samp(u1)

〉
.

One of the function fs,s′ will (perfectly) robustly fit the distribution since all the encodings
[u1], [u2],Enc(m) tolerates (1−R)n/2 perturbation. Since, there are 22λ such functions, by Theo-
rem 19, we conclude that an information-theoretic learner can ε-learn this task with 2λ parameters
and sample complexity Θ(λ/ε).

Note that an efficient learner might not be able to find such a function fs,s′ as it requires inverting
a pseudorandom generator. However, an efficient learner can still learn using more samples and
parameters as follows. Consider the set of functions fP,Q : Xλ → Yλ for all P ∈ {0, 1}α and
Q ∈ {0, 1}β as follows.

1. On input x = ([̃u1], [̃u2], m̃, d̃), it invokes the error-correcting decoding algorithm on [̃u1]

and [̃u2] to find u1 and u2.

2. It uses d̃+Q|samp(u2) to get an encoding c̃ of m.

3. It invokes the error-correcting decoding on c̃ to get m.

4. It outputs
〈
m,P |samp(u1)

〉
.

17Results for infinite classes could be found in subsequent works Montasser et al. [2019].
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Similarly, one of the function fP,Q will (perfectly) robustly fit the distribution since all the encodings
[u1], [u2],Enc(m) tolerates (1 − R)n/2 perturbation. Finding fP,Q that fits all the samples only
requires linear operations and, hence, is efficiently learnable. As there are 2α+β such functions, again
by Theorem 19, we conclude that an efficient learner can ε-learn this task with α+ β parameters and
sample complexity Θ((α+ β)/ε). To apply Theorem 19, we simply pretend that the hypothesis set
is the larger set of 2α+β such functions, in which case our learner finds one of these 2α+β functions
that perfectly matches with the training set with zero robust empirical risk.

Theorem (Restatement of Theorem 14). Any efficient learner that outputs models with ⩽ α/2
parameters cannot ε-learn Fλ of Construction 12 for ε < 1/3.

Proof. We start by defining another learning problem F ′λ. This learning problem is identical to Fλ

for Xλ, Yλ, and Dλ. However,H′λ consists of all functions hP for all P ∈ {0, 1}α, such that

hP (x) =
〈
m,
(
P
∣∣
samp1(u1)

)〉
.

On a high level, our proof consists of two claims.

Claim 29. Fix any distribution Ds′ ∈ Dλ. We consider a random hypothesis function hs and hP ,
where s← {0, 1}λ and P ← {0, 1}α. It holds that

E
S←Dn

λ ;f←L(Shs ,λ)
[Risk(hs, Dλ, f)] ≈negl(λ) E

S←Dn
λ ;f←L(ShP ,λ)

[Risk(hP , Dλ, f)].

Claim 30. For any learner L (with an arbitrary sample complexity) with ⩽ α/2 parameters, we have

E
S←Dn

λ ;f←L(ShP ,λ)
[Risk(hP , Dλ, f)] > 3/8.

Note that, if both claims are correct, the theorem statement is true.

We first show Claim 29. Observe that, given the string P , one can compute the function hP (x)
efficiently. Now, given a string P , which is either a pseudorandom string (i.e., P ← f1(Uλ)) or a
truly random string (i.e., P ← {0, 1}α). Consider the following distinguisher{

S ← Dn
s′ , f ← L(ShP , λ), x← Ds′

Output I(hP (x) = f(x))

}
.

If P is pseudorandom, the probability that the distinguisher outputing 1 is

E
S←Dn

λ ;f←L(Shs ,λ)
[Risk(hs, Dλ, f)];

if P is truly random, the probability that the distinguisher outputs 1 is

E
S←Dn

λ ;f←L(ShP ,λ)
[Risk(hP , Dλ, f)].

Therefore, if Claim 29 does not hold, we break the pseudorandom property of the PRG.

It remains to prove Claim 30.

Since P is sampled uniformly at random, we have H∞(P ) = α. Let Z denote the random variable
L(·, λ), i.e., the model learned by the learner. Since the learner’s output model employs ⩽ α/2
parameters, we have Supp(Z) ⩽ 2α/2. And by Lemma 24, we must have

H̃∞(P |Z) ⩾ α/2.

Now, let us define the set18

Good = {z ∈ Supp(Z) : H∞(P |Z = z) ⩽ α/4}.

Lemma 24 implies that
Pr [Z ∈ Good] ⩽ 2−α/4 = negl(λ).

18This set is called “good” as it is good for the learner.
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In the rest of the analysis, we conditioned on the event that Z /∈ Good, which means H∞(P |Z =
z) > α/4. Now, let x = ([u1], [u2],m,Enc(m) + (f2(s

′)
∣∣
samp2(u2)

)) be the test sample. Since P

has min-entropy rate > 1/4, the property of the sampler (Lemma 11) guarantees that there exists a
distribution D such that

H∞(D) ⩾

(
1

4
− κ1

)
· kℓ > 1

5
· kℓ

and
SD
(
(u1, D) , (u1, P |samp1(u1))

)
⩽ exp(−Θ(ακ1)) + exp (−nκ2) = negl(λ).

Recall that x = ([u1], [u2],m,Enc(m) + (f2(s
′)
∣∣
samp2(u2)

)) and y = hP (x) = ⟨m, (P
∣∣
samp1(u1)

)⟩.
Consequently,

SD
(
((x, z), y) , ((x, z), U{0,1})

)
= SD

(
((u1,m, z), y) , ((u1,m, z), U{0,1}

)
(as u2 is independent of y)

⩽ SD
((

(u1,m, z), ⟨m,D⟩
)
, ((u1,m, z), U{0,1})

)
+ negl(λ)

(as SD
(
Psamp1(u1)|Z = z , D

)
⩽ negl(λ))

⩽ 2−kℓ/10 + negl(λ) = negl(λ). (Theorem 25 and H∞(D) > 1
5 · kℓ)

Therefore, in the learner’s view (x, z), y is statistically negl(λ)-close to uniform. Therefore,

E
S←Dn

λ ;f←L(ShP ,λ)
[Risk(hP , Dλ, f)]

⩾ Pr
S←Dn

λ ;f←L(ShP ,λ)
[z ∈ Good]

+ Pr
S←Dn

λ ;f←L(ShP ,λ)
[z /∈ Good] · E

S←Dn
λ ;f←L(ShP ,λ)

[Risk(hP , Dλ, f)|z /∈ Good]

⩾ negl(λ) + (1− negl(λ)) ·
(
1

2
− negl(λ)

)
> 3/8.

This shows Claim 30 and completes the proof of the theorem.

Theorem (Restatement of Theorem 15). There exists some constant c such that the following holds.
In the presence of an adversary that may perturb (1−R)n/2 symbols, any efficient learner for the
task of Construction 12 that outputs a model with c · β/ log λ parameters cannot ε-robustly learn Fλ

for ε < 1/3.

Proof. The high-level structure of the proof is similar to the proof of Theorem 14. We consider a new
learning problem F ′λ that has the same Xλ, Yλ, andHλ. However, Dλ consists of all distribution DQ

for all Q ∈ {0, 1}β , where the distribution DQ is

DQ =
(
[u1], [u2], m, Enc(m) +

(
Q
∣∣
samp2(u2)

))
.

The proof consists of two claims.

Claim 31. Fix a hypothesis hs′ ∈ Hλ. We consider a random distribution over Dλ and D′λ. That is,
Ds and DQ are sampled with s← {0, 1}λ and Q← {0, 1}β . It holds that

E
S←Dn

s ;f←L(Sh
s′ ,λ)

[Risk(hs′ , Ds, f)] ≈negl(λ) E
S←Dn

Q;f←L(Sh
s′ ,λ)

[Risk(hs′ , DQ, f)].

Claim 32. For any learner L (with an arbitrary sample complexity) with ⩽ c · β/ log λ parameters,
it holds that

E
S←Dn

Q;f←L(Sh
s′ ,λ)

[Risk(hs′ , DQ, f)] > 3/8.

Note that these two claims prove the theorem. To see Claim 31, observe that given a string Q, we can
sample efficiently from DQ. Analogous to the proof of Claim 29, if Claim 31 does not hold, we may
break the pseudorandom property of the PRG using this (efficient) learner L.

It remains to prove Claim 32.
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Let Z denote the random variable L(·, λ), i.e., the parameter of the learner. Since Q is uniformly
random, we have

H∞(Q|Z) ⩾ (1− c/ log λ)β.

Let us define the set

Good = {z ∈ Supp(Z) : H∞(Q|Z = z) ⩽ (1− 2c/ log λ)β}.

Lemma 24 implies that
Pr [Z ∈ Good] ⩽ 2−cβ/ log λ = negl(λ).

In the rest of the analysis, we conditioned on the event that Z /∈ Good, which means H∞(Q|Z =
z) > (1− 2c/ log λ)β.

Now, we consider the following adversary A that perturbs (1−R)n/2 symbols. Given a test instance
(x, y), where

x =
(
[u1], [u2], m, Enc(m) +

(
Q
∣∣
samp2(u2)

))
,

the adversary will do the following.

• Replace m with a uniformly random string. This costs a budget of Rn.

• Samples a random subset T ⊆ {1, 2, . . . , n} of size (1−3R)n/2. It adds noises to Enc(x)+(
Q
∣∣
samp2(u2)

)
at precisely those indices from S. This costs a budget of (1− 3R)n/2.

For simplicity, let us denote the distribution of this noise by ρ. That is, ρ is a distribution
over Fn

2ℓ such that it is 0 everywhere except for a random subset T and for those i ∈ T , ρi
is uniformly random.

We now argue that the perturbed instance is statistically negl(λ)-close to the distribution(
[u1], [u2], Uk·ℓ, Un·ℓ

)
.

It suffices to prove that Enc(m) +
(
Q
∣∣
samp2(u2)

)
+ ρ is close to the uniform distribution. By

Theorem 28, Enc(m) + ρ is (1−R)
(1−3R)n

2 -small-biased.

Furthermore, since Q has min-entropy rate > (1−2c/ log λ), the property of the sampler (Lemma 11)
guarantees that there exists a distribution D such that

H∞(D) ⩾ (1− 2c/ log λ− κ1) · nℓ > (1− 3c/ log λ) · nℓ.

and
SD
(
(u2, D) , (u2, Q|samp2(u2))

)
⩽ exp(−Θ(βκ1)) + exp (−nκ2) = negl(λ). (1)

Finally, by Theorem 27, we have (Enc(m) + ρ) +D is

2
3cnℓ
2 log λ−1 · (1−R)

(1−3R)n
2

close to the uniform distribution. Observe that as long as

c <
log λ

3ℓ
· (1− 3R) log(1/(1−R)) = Θ(1),

the closeness is negligible in λ. Overall,

SD
(
Enc(m) +Q|samp2(u2) + ρ , Un

)
⩽ SD

(
Enc(m) +Q|samp2(u2) + ρ , Enc(m) +D + ρ

)
+ SD (Enc(m) +D + ρ , Un)

(Triangle inequality)
⩽ negl(λ) + negl(λ) = negl(λ). (Equation 1 and Theorem 28)
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Therefore, given a test instance x and the perturbed input x′, we have

SD
(
((x′, z), y) , ((x′, z), U{0,1})

)
⩽ SD

(
((u1, u2, Ukℓ, Unℓ), y) , ((u1, u2, Ukℓ, Unℓ), U{0,1})

)
+ negl(λ)

= SD
((
u1,
〈
m, f1(s

′)|samp1(u1)

〉)
, (u1, U{0,1})

)
+ negl(λ)

= negl(λ).

Hence, when z /∈ Good, given a perturbed test input x′, the correct label y is information-theoretically
unpredicatable from the learner with negl(λ) advantage.

Putting everything together, we have

E
S←Dn

Q;f←L(Sh
s′ ,λ)

[Risk(hs′ , DQ, f)]

⩾ Pr
S←Dn

Q;f←L(Sh
s′ ,λ)

[z ∈ Good]

+ Pr
S←Dn

Q;f←L(Sh
s′ ,λ)

[z /∈ Good] · E
S←Dn

Q;f←L(Sh
s′ ,λ)

[Risk(hs′ , DQ, f)|z /∈ Good]

⩾ negl(λ) + (1− negl(λ)) ·
(
1

2
− negl(λ)

)
> 3/8.

This completes the proof of the claim and the entire theorem.

C Computationally robust learning could need fewer parameters

In this section, we formally prove Part 2 of Theorem 1. Our construction of the learning problem is
formally presented in Construction 16.

We note that the instance size is (approximately) Θ(n · ℓ) = Θ(n · log λ). We shall prove two
properties of this construction. In Theorem 17, we establish the upper bound of learnability with few
parameters under efficient (polynomial-time) attacks. Later, in Theorem 18, we establish the lower
bound of the number of parameters when the attacker is unbounded.

In the rest of this section, we formally prove these theorems.
Theorem (Restatement of Theorem 17). For the learning task of Construction 16, there is an efficient
learner (with 0 sample complexity) that outputs a model with no parameter and negl(λ)-robustly
learns Fλ against efficient adversaries of budget (1−

√
R)n.

Proof. The learner is defined as follows. On input a perturbed instance x′ = ([̃u], [̃v], [̃vk], c̃, d̃), it
does the following:

1. Invoke the error-correction algorithm to recover vk.

2. Invoke the list-decoding algorithm on c̃ to find a list of message/signature (bi, σi) pairs.

3. Run the verifier to find any valid message/signature pair (b∗, σ∗) and output b∗. If no such
pair exists, output a random bit, and if there are more than one such pair, pick one arbitrarily.

Observe that the learner can always recover the correct vk since the encoding [vk] tolerates (1−
√
R)n

errors.

Next, suppose the original instance is ([u], [v], [vk], LEnc(b,Sign(sk, b)). Then, (b,Sign(sk, b)) is
always in the list of message/signature pairs output by the list-decoding algorithm. This is due to that
LEnc(b,Sign(sk, b)) is (1−

√
R)n-close to the perturbed encoding c̃ and the list decoding algorithm

outputs all such messages whose encoding is (1−
√
R)n-close to the perturbed one.

Finally, fix any distribution Ds. It must hold that, with 1 − negl(λ) probability, there does not
exist a valid message/signature pair where the message is 1 − b. If this does not hold, one may
utilize this learning adversary A to break the unforgeability of the signature scheme as follows: on
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input the verification key vk and a valid message/signature (b,Sign(sk, b)), the signature adversary
samples the test instance and feed it to the adversary A, obtaining a perturbed instance x′ =

([̃u], [̃v], [̃vk], c̃, d̃).19 The signature adversary uses the same procedure as the efficient learner to
recover a list of message/signature pairs. If there is a valid message/signature pair with message
1− b, clearly, the signature adversary breaks the unforgeability of the signature scheme. Since the
signature scheme is negl(λ)-secure, it must hold that, with 1− negl(λ) probability, there does not
exist a valid message/signature pair where the message is 1− b.

Consequently, this efficient learner outputs the correct label b with 1− negl(λ) probability. Thus, for
all efficient adversary A,

E
f←L(∅,λ)

[Riskd,r(h,Ds, f)] = negl(λ),

and this finishes the proof.

Theorem (Restatement of Theorem 18). Consider the learning task of Construction 16. Then, for
computationally unbounded adversaries, any information-theoretic learner with ⩽ α/2 parameters
cannot ε-robustly learn Fλ for ε < 1/3.

Proof. We sample s uniformly at random from {0, 1}α and prove that

E
S←Dn

s ;f←L(Sh,λ)
[Riskd,r(h,Ds, f)] > 1/3.

The proof is similar to the proof of Theorem 14.

Let Z denote L(·, λ), i.e., the parameters of the model output by the learner. Given a test instance
x = ([u], [v], [vk], LEnc(b,Sign(sk, b)), [b+

〈
v, s|samp(u)

〉
]), we first prove the following claim.

Claim 33. With overwhelming probability over Z,(
Z, ([u], [v], [vk], LEnc(b,Sign(sk, b)), [b+

〈
v, s|samp(u)

〉
])

)
≈negl(λ)

(
Z, ([u], [v], [vk], LEnc(b,Sign(sk, b)), [U{0,1}])

)
.

That is, the learner cannot distinguish the two distributions given Z.

First, we have H̃∞(s|Z) ⩾ α/2. Define the set

Good = {z : H∞(s|Z = z) ⩽ α/4}.

By Lemma 24, Pr [Z ∈ Good] ⩽ 2−α/4 = negl(λ). For the rest of the analysis, we conditioned on
Z /∈ Good. Since H∞(s|Z = z) > α/4, by the property of the sampler (Lemma 11), there exists a
distribution D such that

H∞(D) ⩾

(
1

4
− κ1

)
α >

1

5
α

and
SD
(
(u, s|samp(u)) , (u,D)

)
⩽ exp(−Θ(βκ1)) + exp (−nκ2) = negl(λ). (2)

Finally, by Theorem 25, we have

SD
((
v,
〈
v, s|samp(u)

〉)
,
(
v, U{0,1}

))
⩽ SD

((
v,
〈
v, s|samp(u)

〉)
, (v, ⟨v,D⟩)

)
+ SD

(
(v, ⟨v,D⟩) ,

(
v, U{0,1}

))
(Triangle inequality)

⩽ negl(λ) + negl(λ). (Equation 2 and Theorem 25)

This completes the proof of Claim 33.

Now, consider the following adversary A that perturbs n/2 symbols and does the following. (Observe
that n/2 < (1−

√
R)n for R < 1/4 and, hence, the adversary is within budget.)

19Note that the adversary can efficiently sample from Ds as the (vk, sk) pairs for every instance are indepen-
dent.
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1. A decodes LEnc(b,Sign(sk, b)) to find b. Let b̄ = 1 − b. It forges a valid signature
σ = Sign(sk, b̄) and encode it LEnc(b̄, σ).

2. Now, for a random subset T ⊆ {1, 2, . . . , n} of size |T | = n/2, A replaces
LEnc(b,Sign(sk, b)) with LEnc(b̄, σ) on those i ∈ T . Then, after perturbation, the string
LEnc(b,Sign(sk, b)) becomes a random string that has Hamming distance exactly n/2 from
both (0,Sign(sk, 0)) and (1,Sign(sk, 1)). Let us call this distribution X . Note that X is
independent of b.

Therefore, after the perturbation, the perturbed instance is statistically close to
([u], [v], [vk], X, [U{0,1}]),

which is independent of b. Hence, the learner’s output will not agree with b with probability
⩾ 1/2− negl(λ). Putting everything together, we have

E
S←Dn

s ;f←L(Sh,λ)
[Riskd,r(h,Ds, f)]

⩾ Pr
S←Dn

s ;f←L(Sh,λ)
[z ∈ Good]

+ Pr
S←Dn

s ;f←L(Sh,λ)
[z /∈ Good] · E

S←Dn
s ;f←L(Sh,λ)

[Riskd,r(h,Ds, f)|z /∈ Good]

⩾ negl(λ) + (1− negl(λ)) ·
(
1

2
− negl(λ)

)
> 1/3.

D Missing Proofs

D.1 Proof of Theorem 25

The theorem follows from the following derivation.

SD
( (

Y, ⟨X,Y ⟩
)
,
(
Y, U{0,1}

))
= E

y←Y

[
SD
(
⟨X, y⟩ , U{0,1}

) ]
=

1

2
· E
y←Y

[|Pr [⟨X, y⟩ = 0]− Pr [⟨X, y⟩ = 1]|]

⩽
1

2
·
√

E
y←Y

[
(Pr [⟨X, y⟩ = 0]− Pr [⟨X, y⟩ = 1])

2
]

(Jensen’s inequality)

=
1

2
·

√
E

y←Y

[
Pr

x,x′←X
[⟨x, y⟩ = ⟨x′, y⟩]− Pr

x,x′←X
[⟨x, y⟩ ≠ ⟨x′, y⟩]

]

=
1

2
·

√
Pr

x,x′←X

[
Pr

y←Y
[⟨x− x′, y⟩ = 0]− Pr

y←Y
[⟨x− x′, y⟩ = 1]

]
=

1

2
·
√

Pr
x,x′←X

[x = x′] · 1
2

(when x ̸= x′, the inner term is always 0)

=
1

2
·
√

1

2
·
∑
ω

(Pr [X = ω])2

⩽
1

2
·
√

1

2
·
∑
ω

Pr [X = ω] · 2−H∞(X) (By definition of min-entropy)

=
1

2
·
√
2−H∞(X)−1 ⩽ ε

D.2 Proof of Theorem 27

Dodis and Smith Dodis and Smith [2005] proved this theorem for F2. We are simply revising their
proof for the field F2ℓ . Within this proof, we shall use F for F2ℓ . We need the following claims.
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Claim 34 (Parseval’s identity).
∑

α bias(X,α)2 = |F|n ·
∑

ω(Pr [X = ω])2.

Proof. Observe that∑
α

bias(X,α)2

=
∑
α

(
E

x←X

[
(−1)Tr(⟨x,α⟩)

])2
=
∑
α

E
x,x′←X

[
(−1)Tr(⟨x,α⟩) · (−1)Tr(⟨x

′,α⟩)
]

=
∑
α

E
x,x′←X

[
(−1)Tr(⟨x+x′,α⟩)

]
(Since the trace map is additive)

= E
x,x′←X

[∑
α

(−1)Tr(⟨x+x′,α⟩)
]

= |F|n Pr
x,x′←X

[x = x′] .

Here, we use the fact that, when x ̸= x′, the inner term is 0 as the trace map maps half of the field to
0 and the other half to 1.

Note that the last line is exactly equal to

|F|n ·
∑
ω

(Pr [X = ω])2.

Claim 35 (Bias of Convolusion is product of bias). bias(X + Y, α) = bias(X,α) · bias(Y, α).

Proof. Observe that

bias(X + Y, α)

=
∑
ω

Pr [X + Y = ω] · (−1)Tr(⟨ω,α⟩)

=
∑
ω

∑
ω′

Pr [X = ω′] Pr [Y = ω − ω′] · (−1)Tr(⟨ω,α⟩)

=
∑
ω′′

∑
ω′

Pr [X = ω′] Pr [Y = ω′′] · (−1)Tr(⟨ω
′+ω′′,α⟩)

=

(∑
ω′

Pr [X = ω′] · (−1)Tr(⟨ω
′,α⟩)

)
·

(∑
ω′′

Pr [Y = ω′′] · (−1)Tr(⟨ω
′′,α⟩)

)
= bias(X,α) · bias(Y, α).

Given these two claims, we prove the theorem as follows.

SD (X + Y,UFn)

=
1

2
·
∑
ω

|Pr [X + Y = ω]− Pr [UFn = ω]|

⩽
1

2
·
√
|F|n ·

∑
ω

(Pr [X + Y = ω]− Pr [UFn = ω])
2 (Cauchy-Schwartz)

=
1

2
·
√∑

α

(bias(X + Y, α)− bias(UFn , α))
2 (Parseval)

=
1

2
·
√∑

α̸=0n

bias(X + Y, α)2 (Since bias(UFn , α) = 0 for all α ̸= 0n.)
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=
1

2
·
√∑

α̸=0n

bias(X,α)2 · bias(Y, α)2 (By Claim 35)

⩽
ε

2
·
√∑

α̸=0n

bias(X,α)2 (Since Y is small-biased)

⩽
ε

2
·
√
|F|n

∑
ω

(Pr [X = ω])2 (Parseval)

=
ε

2
·
√
|F|n

∑
ω

Pr [X = ω] · 2−H∞(X) (Definition of min-entropy)

=
ε

2
·
√
|F|n · 2−H∞(X)

= 2
nℓ−k

2 −1 · ε

D.3 Proof of Theorem 28

We divide all possible linear tests α into two cases.

• Small linear tests are fooled by RS code. We say that α is a small linear test if
|{i : αi ̸= 0}| ⩽ Rn. By Fact 22, a random codeword projects onto any ⩽ Rn coordi-
nates is always a uniform distribution. Hence, ⟨D,α⟩ is always uniform. Consequently,
bias(D,α) = 0 for all small linear test.

• Large linear tests are fooled by the noise. Suppose α is such that |T | > Rn, where
T = {i : αi ̸= 0}. Observe that S is a random subset of size s and T is a fixed set of size
> Rn. Clearly, S ∩ T = ∅ happens with probability ⩽ (1 − R)s. Now, conditioned on
the event that S ∩ T ̸= ∅, we again have ⟨D,α⟩ is a uniform distribution (because of the
random noise). Consequently, for large α, we have bias(D,α) ⩽ (1−R)s.

Therefore, for all possible α, bias(D,α) is small. Hence, the theorem follows.
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