
Overparameterization from
Computational Constraints

Sanjam Garg∗ Somesh Jha† Saeed Mahloujifar‡

Mohammad Mahmoody§ Mingyuan Wang¶

Abstract

Overparameterized models with millions of parameters have been hugely successful.
In this work, we ask: can the need for large models be, at least in part, due
to the computational limitations of the learner? Additionally, we ask, is this
situation exacerbated for robust learning? We show that this indeed could be the
case. We show learning tasks for which computationally bounded learners need
significantly more model parameters than what information-theoretic learners need.
Furthermore, we show that even more model parameters could be necessary for
robust learning. In particular, for computationally bounded learners, we extend
the recent result of Bubeck and Sellke [NeurIPS’2021] which shows that robust
models might need more parameters, to the computational regime and show that
bounded learners could provably need an even larger number of parameters. Then,
we address the following related question: can we hope to remedy the situation
for robust computationally bounded learning by restricting adversaries to also be
computationally bounded for sake of obtaining models with fewer parameters?
Here again, we show that this could be possible. Specifically, building on the work
of Garg, Jha, Mahloujifar, and Mahmoody [ALT’2020], we demonstrate a learning
task that can be learned efficiently and robustly against a computationally bounded
attacker, while to be robust against an information-theoretic attacker requires the
learner to utilize significantly more parameters.

1 Introduction

In recent years, deep neural nets with millions or even billions of parameters6 [Wortsman et al., 2022,
Dai et al., 2021, Yu et al., 2022] have emerged as one of the most powerful models for very basic
tasks such as image classification. A magic of DNNs is that they generalize without falling into the
classical theories mentioned above, and hence they are the subject of an active line of work aiming
to understand how DNNs generalize Arora et al. [2019], Allen-Zhu et al. [2019b,a], Novak et al.
[2018], Neyshabur et al. [2014], Kawaguchi et al. [2017], Zhang et al. [2021], Arora et al. [2018b]
and the various benefits of overparametrized regimes Xu et al. [2018], Chang et al. [2020], Arora
et al. [2018a], Du et al. [2018], Lee et al. [2019]. In fact, the number of parameters in such models
is so large that it is enough to memorize (and fit) to a large number of random labels [Zhang et al.,

∗UC Berkeley and NTT Research sanjamg@berkeley.edu
†University of Wisconsin, Madison jha@cs.wisc.edu
‡Princeton University sfar@princeton.edu
§University of Virginia mohammad@virginia.edu
¶UC Berkeley mingyuan@berkeley.edu
6See https://paperswithcode.com/sota/image-classification-on-imagenet for the size of the

most successful models for image classification of Imagenet.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

2021]. This leads us to our first main question, in which we investigate the potential cause for having
large models:

Are there any learning tasks for which computationally bounded learners need to
utilize significantly more model parameters than needed information-theoretically?

One should be cautious in how to formulate the question above. That is because, many simple
(information-theoretically learnable) tasks are believed to be computationally hard to learn (e.g.,
learning parity with noise [Pietrzak, 2012]). In that case, one can interpret this as saying that the
efficient learner requires infinite number of parameters, as a way of saying that the learning is not
possible at all! However, as explained above, we are interested in understanding the reason behind
needing a large number of model parameters when learning is possible.

Could robustness also be a cause for overparameterization? A highly sought-after property of
machine learning models is their robustness to the so-called adversarial examples [Goodfellow et al.,
2014]. Here we would like to find a model f such that f(x) = f(x′) holds with high probability
when x← D is an honestly sampled instance and x′ ≈ x is a close instance that is perhaps minimally
(yet adversarially) perturbed.7 A recent work of Bubeck and Sellke [2021] showed that having large
model parameters could be due to the robustness of the model. Here, we are asking whether such
phenomenon can have a computational variant that perhaps leads to needing even more parameters
when the robust learner is running in polynomial time.

Are there any learning tasks for which computationally bounded robust learning
comes at the cost of having even more model parameters than non-robust learning?

In fact, it was shown by Bubeck et al. [2019] and Degwaker et al. [Degwekar et al., 2019] that
computational limitations of the learner could be the reason behind the vulnerability of models to
adversarial examples. In this work, we ask whether the phenomenon investigated by the prior works
is also crucial when the model size is considered.

Can computational intractability of adversary help? We ask whether natural restrictions on the
adversary can help reduce model sizes. In particular, we consider the restriction to the class of
polynomially bounded adversaries. In fact, when it comes to robust learning, the computationally
bounded aspect could be imposed both on the learner as well as the adversary.

Are there any learning tasks for which robust learning can be done with fewer
model parameters when dealing with polynomial-time adversaries?

Previously, it was shown that indeed working with computationally bounded adversaries can help
achieving robust models [Mahloujifar and Mahmoody, 2019, Bubeck et al., 2019, Garg et al., 2020b].
Hence, we are asking a similar question in the context of model parameters.

1.1 Our results

In summary, we prove that under the computational assumption that one-way functions exist, the
answer to all three of our main questions above is positive. Indeed, we show that the computational
efficiency of the learner could be the cause of having overparametarized models. Furthermore, the
computational efficiency of the adversary could reduce the size of the models. In particular, we prove
the following theorem, in which a learning task is parameterized by λ, a hypothesis class H and a
class of input distributions D (see Section 2.1 for formal definitions).
Theorem 1 (Main results, informal). If one-way functions exist, then for arbitrary polynomials
n < α < β (e.g., n = λ0.1, α = λ5, β = λ10) over λ the following hold.

• Part 1: There is a learning task parameterized by λ and a robustness bound (to limit how
much an adversary can perturb the inputs) such that:

– The instance size is Θ(n). (That is, the length of the input is Θ(n).)
– There is a robust learner that uses Θ(λ) parameters.
– Any polynomial-time learner needs Θ(α) parameters to learn the task.

7The closeness here could mean that a human cannot tell the difference between the two images x, x′.

2

– Any polynomial-time learner needs Θ(β) parameters to robustly learn the task.

• Part 2: There is a learning task parameterized by λ and a robustness bound (to limit how
much an adversary can perturb the inputs) such that:

– The instance size is Θ(n).
– When the adversary that generates the adversarial examples runs in polynomial time,

there is an (efficient) learner that outputs a model with O(1) parameters that robustly
predicts the output labels with small error.

– Against information-theoretic (computationally unbounded) adversaries, no learner
can produce a model with < Θ(α) parameters that later robustly make the predictions.

In Sections 3 and 4, we explain the high-level ideas behind the proofs of the two parts of Theorem 1
and formalize these statements. The full proofs can be found in the supplemental material.

Takeaway. Here we put our work in perspective. As discussed above, prior works have considered
the effect of computational efficiency (for both the learner and the attacker) on the robustness of the
model. Informally, these works have shown that requiring a learner to be efficient hinders robustness,
while requiring an attacker to be efficient helps achieve robustness. Our work studies the effect of
computational efficiency as well but focuses on the number of parameters of the model. In spirit, we
have shown a similar phenomenon. Namely, requiring a learner to be efficient increases the size of
the model, while requiring an attacker to be efficient helps reduce the size of the model. Our results
can be summarized as follows. In the non-robust case, requiring the learner to be efficient increases
the size of the model. In the robust case: (1) Requiring the learner to be efficient increases the size of
the model. This holds for robustness against both efficient and inefficient attackers. (2) Restricting to
only computational efficient attackers reduces the size of the model. This holds for both efficient and
inefficient learners.

Limitations, Implications, and Open Question. Our work shows that the phenomenon of having
larger models due to computational efficiency could provably happen in certain scenarios. It does not
imply, however, that this holds for all learning problems. It is a fascinating open question whether
similar phenomena also happen to real-world problems. We note that this is not particular to our
work, but common to most prior works in the theory of learning showing “separation” results [Bubeck
et al., 2019, Degwekar et al., 2019, Mahloujifar and Mahmoody, 2019, Garg et al., 2020b].

Our results provides an explanation on why small but representative classes (e.g. 2 layers neural
networks) of functions do not obtain same (robust) accuracy as larger models. This phenomenon
that cannot be solely explained based on representation power of the function class might be due to
computational limitations of the learning algorithm.

Finally, we note that our theorem demonstrates the separation by using the simplest setting of binary
output. One can extend it to more sophisticated settings of any finite output, particularly real numbers
with bounded precision. However, our work does not consider real numbers with infinite precision.
In such cases, one needs to revisit computational efficiency, as the inputs are infinitely long.

2 Preliminaries

For a distribution D, x← D denotes that x is sampled according to D. We use US for the uniform
distribution over S , and we use Un to represent U{0,1}n . For a set S , s← S means s← US . For any
two distributions X and Y over a finite universe Ω, their statistical distance is defined as

SD (X,Y) :=
1

2
·
∑
ω∈Ω
|Pr [X = ω]− Pr [Y = ω]| .

We sometimes write X ≈ε Y to denote SD (X,Y) ⩽ ε. For a vector x = (x1, . . . , xn) ∈ Fn

and a subset S = {i1, . . . , iℓ} ⊆ {1, 2, . . . , n}, xS denotes (xi1 , . . . , xiℓ). For any two vec-
tors x = (x1, . . . , xn) and y = (y1, . . . , yn), their Hamming distance is defined as HD(x, y) =

|{i ∈ {1, 2, . . . , n} : xi ̸= yi}|. For a set S and an integer 0 ⩽ t ⩽ |S|,
(S
t

)
represents the set of

subsets of S of size t. I stands for the indicator function. The base for all logarithms in this paper is 2.

3

2.1 Definitions related to learning and attacks

In this subsection, we present notions and definitions that are related to learning.

We use X to denote the inputs and Y = {0, 1} to denote the outputs or the labels. ByH we denote a
hypothesis class of functions from X to Y . We use D to denote a distribution over X ×Y . A learning
algorithm, takes a set S ∈ (X × Y)∗ and a parameter λ and outputs a function f that is supposed
to predict a fresh sample from the same distribution that has generated the set S. The parameter λ
is supposed to capture the complexity of the problem, e.g., by allowing the inputs (and the running
times) to grow. (E.g., this could be the VC dimension, but not necessarily so.) In particular, we
assume that the members of the sets Xλ,Yλ can be represented with poly(λ) bits. A proper learning
for a hypothesis class H outputs f ∈ H, while an improper learner is allowed to output arbitrary
functions. By default, we work with improper learning as we do not particularly focus on whether
the learning algorithms output a function from the hypothesis class. For a set S ⊆ X and a function
h : X → Y , by Sh we denote the labeled set {(x, h(x)) | x ∈ S}. For a distribution D and an
oracle-aided algorithm A, by AD we denote giving A access to a D sampler.
Definition 2 (Learning problems and learners). We use F = {Fλ = (Xλ,Yλ,Dλ,Hλ)}λ∈N to
denote a family of learning problems where eachHλ is a set of hypothesis functions mapping Xλ to
Yλ and Dλ is a set of distributions supported on Xλ.

• For function ε(·, ·), we say L ε-learns F if

∀λ ∈ N, Dλ ∈ Dλ, h ∈ Hλ, n ∈ N; E
S←Dn

λ ;f←L(Sh,λ)
[Risk(h,Dλ, f)] ⩽ ε(λ, n).

where Risk(h,Dλ, f) = Prx←Dλ
[h(x) ̸= f(x)].

• L outputs models with at most p(·) bits of parameters if ∀λ ∈ N;
∣∣Supp(L(·, λ))∣∣ ⩽ 2p(λ).

• L is an ε-robust learner against (all) adversaries of budget r w.r.t. distance metric d if

∀λ ∈ N, Dλ ∈ Dλ, h ∈ Hλ, n ∈ N; E
S←Dn

λ ;f←L(Sh,λ)
[Riskd,r(h,Dλ, f)] ⩽ ε(λ, n),

where Risk(d,r)(h,Dλ, f) = Pr
x←Dλ

[max
x′

I
(
f(x′) ̸= h(x)

)
∧ I
(
d(x, x′) ⩽ r

)
].

• L runs in polynomial time if there is a polynomial poly(·) such that for all λ ∈ N and
S ∈ (Xλ,Yλ)∗, the running time of L(S, λ) is bounded by poly(|S| · λ).

• L is an ε-robust learner against polynomial-time adversaries of budget r w.r.t distance d, if
for any family of poly(λ)-time (oracle aided) adversaries A = {A(·)

λ }λ∈N we have

∀λ ∈ N, Dλ ∈ Dλ, h ∈ Hλ, n ∈ N; E
S←Dn

λ ;f←L(Sh,λ)
[Riskd,r,Aλ

(h,Dλ, f)] ⩽ ε(λ, n),

where Risk(d,r,Aλ)(h,Dλ, f) = Pr
x←Dλ,x′←ADλ (x,h(x),f)

[I
(
h(x′) ̸= f(x)

)
∧I
(
d(x, x′) ⩽ r

)
].

2.2 Cryptographic primitives

Definition 3 (Negligible function). A function ε(λ) is said to be negligible, denoted by ε(λ) =
negl(λ), if for all polynomial poly(λ), it holds that ε(λ) < 1/poly(λ) for all sufficiently large λ.

Definition 4 (Pseudorandom generator). Suppose α > λ. A function f : {0, 1}λ → {0, 1}α is called
a pseudorandom generator (PRG) if for all polynomial-time probabilistic algorithm A, it holds that∣∣∣∣ Pr

x←{0,1}λ
[A(f(x)) = 1]− Pr

y←{0,1}α
[A(y) = 1]

∣∣∣∣ = negl(λ).

The ratio α/λ is refer to as the (multiplicative) stretch of the PRG.

Lemma 5 (Håstad et al. [1999]). Pseudorandom generators (with arbitrary polynomial stretch) can
be constructed from any one-way functions.8

8A one-way function is a function that is easy to compute, but hard to invert (see Definition 21).

4

Definition 6 (Signature scheme). A signature scheme consists of three algorithms (Gen,Sign,Verify).

• (vk, sk) ← Gen(1λ): on input the security parameter 1λ, the randomized algorithm Gen
outputs a (public) verification key vk and a (private) signing key sk.

• σ = Sign(sk,m): on input the signing key sk and a message m, Sign outputs a signature σ.

• b = Verify(vk,m, σ): on input a verification key vk, a message m, and a signature σ, Verify
outputs a bit b, and b = 1 indicates tha the signature is accepted.

We require a (secure) signature scheme to satisfy the following properties.

• Correctness. For every message m, it holds that

Pr

[
Verify(vk,m, σ) = 1 :

(vk, sk)← Gen(1λ)

σ = Sign(sk,m)

]
= 1.

• Weak unforgeability.9 For any PPT algorithm A and message m, it holds that

Pr

 m′ ̸= m and

Verify(vk,m′, σ′) = 1
:

(vk, sk)← Gen(1λ)

σ = Sign(sk,m)

(m′, σ′)← A(vk,m, σ)

 = negl(λ).

Lemma 7 (Naor and Yung [1989], Rompel [1990]). Signature schemes can be constructed from any
one-way function.

2.3 Coding theory

Let F be a finite field. A linear code H with block length n and dimension k is a k-dimensional
subspace of the vector space Fn. The generator matrix G ∈ Fk×n maps every message m ∈ Fk

to its encoding, namely, the message m is encoded as m · G. The distance d of the code H is the
minimum distance between any two codewords. That is, d = min

(x,y∈H)∧(x̸=y)
HD(x, y). The rate of

the codeword is defined as R = k/n.

Reed-Solomon code. In this work, we will mainly use the Reed-Solomon (RS) code. For the RS
code, every message m = (m1, . . . ,mk) ∈ Fk is parsed as a degree k − 1 polynomial

f(x) = m1 +m2 · x+ · · ·+mk · xk−1

and the encoding is simply (f(1), f(2), . . . , f(n)) ∈ Fn.
Definition 8 (List-decodable code). A code H ⊆ Fn is said to be (p, L)-list-decodable if for any
string x ∈ Fn, there are ⩽ L messages whose encoding c satisfies HD(x, c) ⩽ p · n. We say the code
H is efficiently (p, L)-list-decodable if there is an efficient algorithm that finds all such messages.
Lemma 9 (Guruswami and Sudan [1998]). For any constant R > 0, the Reed-Solomon code with
constant rate R and block length n is efficiently (1−

√
R, poly(n))-list-decodable.

2.4 Randomness extraction

Definition 10 (Min-entropy). The min-entropy of a distribution X over a finite set Ω is defined as

H∞(X) := − log

(
max
ω∈Ω

Pr [X = ω]

)
.

We need the following result about the sampler. A sampler (for a target set of coordinates
{1, 2, . . . , n}) is a deterministic mapping that only takes randomness as input and outputs a subset of
{1, 2, . . . , n}. Below, we let

(
[n]
t

)
= {S | |S| = t,S ⊆ [n]}.

9We consider a rather weak notion of unforgability. Here, we require that the adversary cannot forge a
signature when he is given only one valid pair of message and signature. This weaker security notion already
suffices for our purposes. In the stronger notion, the adversary is allowed to pick m based on the given vk.

5

Lemma 11 (Lemma 6.2 and Lemma 8.4 of Vadhan [2004]). For any 0 < κ1, κ2 < 1 and any
n, t ∈ N, there exists a deterministic sampler samp : {0, 1}r →

(
[n]
t

)
such that the following hold.

• If X is a random variable over {0, 1}n with min-entropy ⩾ µ · n, there exists a random
variable Y over {0, 1}t with min-entropy ⩾ (µ− κ1) · t and

SD
((

Ur, Xsamp(Ur)

)
,
(
Ur, Y

))
⩽ exp(−Θ(nκ1)) + exp (−nκ2) ,

where the two Ur in the first joint distribution refer to the same sample.

• Furthermore, r = Θ(nκ2).

This lemma by Vadhan Vadhan [2004] states that one could use a small amount of randomness to
sub-sample from a distribution X with the guarantee that Xsamp(Ur) is close to another distribution
Y that preserves the same min-entropy rate as X .

Due to space limitations, additional preliminaries are included in Appendix A.

3 Efficient learner vs. information-theoretic learner

In this section, we explain the ideas behind the proof of Part 1 of Theorem 1. We start with the
high-level ideas behind our construction. Then, we formally state the construction of the learning task
and its properties through formal statements. The proofs can be found in the supplemental material.

Consider the problem of learning an inner product function IPP defined as IPP (x) = ⟨x, P ⟩, where
the inner product is done in GF2. Our first observation is that to learn IPP with a small error where
P is uniformly random, the number of model parameters that the learner employs must be as (almost)
as large as the length of P . Intuitively, one can argue it as follows. Let Z denote the parameters in the
model that the learner outputs. Suppose that Z is shorter than P . Then P must still be unpredictable
given Z.10 By a standard result in randomness extraction, one can argue that, for a uniform x,

(Z, x, ⟨x, P ⟩) ≈ (Z, x, U{0,1}).

That is, the label ⟨x, P ⟩ looks information-theoretically uniform to the classifier who holds Z and x.
Therefore, the classifier can only output the correct label with (the trivial) probability ≈ 1/2.

The conclusion is that learning all linear functions need a learner that outputs as many parameters as
the function’s description is. However, even an efficient learner can perform the learning just as well
as an information-theoretic one (e.g., using the Gaussian elimination). We now show how to modify
this task to make a big difference between an efficient learner and an information-theoretic learner in
terms of the number of parameters that they output.

Computational perspective. Now, suppose P is computationally pseudorandom [Goldwasser and
Micali, 1984] rather than being truly random.11 That is, let f : {0, 1}λ → {0, 1}α be a pseudorandom
generator (Definition 4) and P is distributed as f(Uλ), where Uλ denotes the uniform distribution
over λ bits. Since (1) an efficient learner cannot distinguish P ← f(Uλ) from P ← Uα and (2)
any learner who tries to learn IPP with P ← Uα needs α parameters, it can be proved that an
efficient learner who tries to learn IPP with P ← f(Uλ) must also uses α parameters. However,
an information-theoretic learner needs only λ parameters to learn IPP with P ← f(Uλ) as it can
essentially find the seed s such that P = f(s) and output the seed s. To conclude, to learn IPP for
P ← f(Uλ), an information-theoretic learner only needs a few (i.e., λ) parameters and an efficient
learner needs a lot of (i.e., α) parameters. We emphasize that for a pseudorandom generator, its
output length α could have an arbitrarily large polynomial dependence on its input length λ. For
instance, it could be α = λ10.

Robustness. We now explain the ideas behind Theorem 15 in which we study the role of model
robustness in the size of the model parameters. We now suppose the instance is sampled according to
the distribution DQ (parametrized by a string Q), which is defined by

Enc(U) +Q.

10That is, with high probability over the choice of Z = z, the conditional distribution P |(Z = z) has high
min-entropy. More formally, this unpredictability is measured by the average-case min-entropy (Definition 23).

11A pseudorandom string is indistinguishable from random ones for computationally bounded distinguishers.

6

Here, U is the uniform distribution (over the right number of bits), Enc(U) is an error-correcting
encoding of U , and the addition is coordinate-wise field addition. Moreover, the label for this instance
is the inner product ⟨U,P ⟩ for some vector P . Observe that if the learner learns Q, it can always find
the correct label on a perturbed instance due to the error-correcting property of Enc(U). We argue
that, in order to robustly learn this task for a uniformly random Q, the number of parameters in the
model that the learner outputs must be almost as large as the length of Q. Intuitively, the argument
is as follows. Let Z be the model that the learner outputs. Since |Z| < |Q|, then Q must still be
unpredictable given Z. In this case, we prove that

(Z,Enc(U) +Q+ ρ) ≈ (Z,U ′).

Here, ρ stands for the noise that the adversary adds to the instance. In words, the classifier holding
the parameter Z cannot distinguish the perturbed instance Enc(U) +Q+ ρ from a uniformly random
string U ′. Since U is information-theoretically hidden to the classifier, it can only output the correct
label ⟨U,P ⟩ with probability ≈ 1/2.

Next, to explore the difference between an efficient and information-theoretic learner, we consider
the case where Q is pseudorandomly distributed, i.e. Q← f(Uλ) for some f : {0, 1}λ → {0, 1}β .
Again, since (1) an efficient learner cannot distinguish Q ← Uβ from Q ← f(Uλ) and (2) any
learner needs at least ≈ |Q| parameters to learn the task with Q← Uβ , an efficient learner must also
need at least ≈ |Q| parameters to learn the task. On the other hand, an information-theoretic learner
could again find the seed s such that Q = f(s) and output the seed s as the parameter. To conclude,
an information-theoretic learner requires few (i.e., λ) parameters to robustly learn the task and an
efficient learner needs a lot of (i.e., ≈ β) parameters to robustly learn the task. (Again, β could have
an arbitrary polynomial dependence on λ.)

Making instances small. The learning tasks we considered above suffer from one drawback: the size
of the instance is very large, or at least is related to the number of parameters of the model. Here we
ask: is it possible to have a small instance size while an efficient learner still needs to output a very
large model? We answer this question positively. In particular, for any n = poly(λ) (e.g., n = λ0.1),
we construct a learning problem where the instance size is Θ(n) and the efficient learner still needs
α (resp. β) parameters to learn (resp. robustly learn) the task. Our construction uses the “sampler”
by Vadhan [2003]. Informally, a sampler samp (see Lemma 11) needs a small seed u and outputs a
subset of {1, 2, . . . , α} of size n. The sampler comes with the guarantee that if P is a source with
high entropy, P |samp(u) also has high enough entropy. To illustrate the usage of the sampler, consider
learning this new inner product function IPP defined as

IPP (u, x) =
〈
x, P |samp(u)

〉
.

For uniformly random P , one can similarly argue that a model must output at least |P | parameters
to learn the task. Let Z denote the parameters in the model that the learner outputs. If |Z| < |P |,
then P contains high entropy conditioned on Z. By the property of the sampler, it must hold that
P |samp(u) contains high entropy conditioned on Z and u. Consequently,

(Z, u, x, IPP (u, x)) ≈ (Z, u, x, U{0,1}).

Namely, the classifier who sees the parameter Z and the instance (u, x) can only predict the label
with probability ≈ 1/2. Observe that the size of the instance (u, x) is roughly n,12 while P could
have length α≫ n. The use of the sampler in the robust learning case is similar to the non-robust
case above. We refer the readers to Appendix B for more details.

To sum up, we present our formal construction and formal theorem statement below. The formal
proof is presented in the supplemental material.
Construction 12 (Parameter-heavy models under efficient learning). Given the parameter n < λ <
α < β, we construct the following learning problem.13 We rely on the following building blocks.

• Let f1 : {0, 1}λ → {0, 1}α and f2 : {0, 1}λ → {0, 1}β be PRGs (Definition 4).

• Let Enc be a RS encoding with dimension k, block length n, and rate R = k/n. The rate is
chosen to be any constant < 1/3 and k is defined by R and n. This RS code is over the field
F2ℓ for some ℓ = Θ(log λ).

12As the seed u is very small.
13All the other parameters are implicitly defined by these parameters.

7

• Let samp1 : {0, 1}r1 →
({1,...,α}

k·ℓ
)

and samp2 : {0, 1}r2 →
({1,...,β}

n·ℓ
)

be samplers. We
obtain these samplers by invoking Lemma 11 with sufficiently small κ1 and κ2 (e.g., κ1 =
Θ(1/ log λ) and sufficiently small constant κ2). Note that κ1, κ2 define r1, r2.

• For any binary string v, we use [v] for an arbitrary error-correcting encoding of v (over
the field F2ℓ) such that [v] can correct > (1−R)n/2 errors. This can always be done by
encoding v using RS code with a suitable (depending on the dimension of v) rate. Looking
forward, we shall consider an adversary that may perturb ⩽ (1−R)n/2 symbols. Therefore,
when a string v is encoded as [v] and the adversary perturb it to be [̃v], it will always be
error-corrected and decoded back to v.

We now construct the following learning task Fλ = (Xλ,Yλ,Dλ,Hλ).

• Xλ implicitly defined by the distribution Dλ, and Yλ = {0, 1}.

• Dλ consists of distributions Ds for s ∈ {0, 1}λ, where Ds is

Ds =
(
[u1], [u2], m, Enc(m) +

(
f2(s)

∣∣
samp2(u2)

))
, where

– u1 and u2 are sampled uniformly at random from {0, 1}r1 and {0, 1}r2 , respectively.
– m is sampled uniformly at random from Fk

2ℓ .

– f2(s)
∣∣
samp2(u2)

is interpet as a vector over F2ℓ and Enc(m) +
(
f2(s)

∣∣
samp2(u2)

)
is

coordinate-wise addition over F2ℓ .

• Hλ consists of all functions hs : X → Y = {0, 1} for all s ∈ {0, 1}λ, where hs is:

hs(x) =
〈
m,
(
f1(s)

∣∣
samp1(u1)

)〉
,

and the inner product is over F2 and m is interpreted as a string ∈ Fk·ℓ
2 in the natural way.

• Adversary. The entire input x = ([u1], [u2],m,Enc(m) +
(
f2(s)|samp1(u1)

)
) is interpreted

as a vector over F2ℓ and we consider an adversary that may perturb ⩽ (1−R)n/2 symbols.
That is, the adversary has a budget of (1−R)n/2 in Hamming distance over F2ℓ .

Theorem 13. An information-theoretic learner can (robustly) ε-learn the task of Construction 12
with parameter size 2λ and sample complexity Θ(λε). Moreover, an efficient learner can (robustly)
ε-learn this task with parameter size α+ β and sample complexity Θ(α+β

ε).
Theorem 14. Any efficient learner that outputs models with ⩽ α/2 parameters cannot ε-learn Fλ of
Construction 12 for ε < 1/3.
Theorem 15. There exists some constant c such that the following holds. In the presence of an
adversary that may perturb (1−R)n/2 symbols, any efficient learner for the task of Construction 12
that outputs a model with c · β/ log λ parameters cannot ε-robustly learn Fλ for ε < 1/3.

4 Efficient adversary vs. information-theoretic adversary

In this section, we explain the ideas behind the proof of Part 2 of Theorem 1. At the end of this
section, we formally state the construction of the learning task and state its properties through formal
statements. The proofs can be found in the supplemental material.

We now explore whether the computational efficiency of the adversary could affect the number of
parameters required to robustly learn a task. Garg et al. [2020a] considered the difference between an
efficient adversary and an information-theoretic one in terms of their running time. We first recall
their construction. The learning instance is sampled from the distribution

[vk], b,Sign(sk, b).

Here, (vk, sk) is the verification key and signing key pair of a signature scheme (Definition 6);14

[vk] is an error-correcting encoding of vk, which ensures that [vk] can always be recovered after
perturbation by the adversary; b is a uniform random bit and the label of the instance is simply b.

14Every instance samples a fresh pair of verification key and signing key (vk, sk).

8

The signature scheme ensures that an efficient adversary cannot forge a valid signature and, hence,
any efficient adversary that perturbs (b,Sign(sk, b)) will result in an invalid message/signature pair.
A classifier could then detect such perturbations and output a special symbol ⊥ indicating that
perturbation is detected. On the other hand, an information-theoretic adversary could launch a
successful attack by forging a valid signature (1− b,Sign(sk, 1− b)).Therefore, it could perturb the
instance to be [vk], 1− b,Sign(sk, 1− b) and, hence, flipping the label of the output.

First idea. We want to construct a learning problem such that the learner needs few parameters
against an efficient adversary, but a lot of parameters against an information-theoretic adversary. Our
first idea is to add another way of recovering b in the above learning problem. Consider the learning
problem where the instance is sampled from distribution DP defined as

[vk], b,Sign(sk, b), [b+ ⟨u, P ⟩], [u].

Here, u is uniformly distributed. Observe that if the learner learns P , it can recover b correctly from
[b+ ⟨u, P ⟩] and [u] by error-correction decoding. However, if the number of parameters in the model
that the learner outputs have < |P | parameters, then [b+ ⟨u, P ⟩] and [u] information-theoretically
hides b. Again, this is because P is unpredictable given the parameter Z15 and, hence,

Z, u, ⟨u, P ⟩ ≈ Z, u, U{0,1}.

Consequently, an information-theoretic adversary could again launch the attack that replace
b,Sign(sk, b) with 1− b,Sign(sk, 1− b) and successfully flipping the label. Therefore, a learner must
employ |P | parameters to robustly learn the task against information-theoretic adversaries.

Second idea. In the above learning task, a learner employing |P | parameters can always recover
the correct label against information-theoretic adversaries. However, against efficient adversaries, a
learner with fewer parameters may not always recover the correct label but will sometimes output
the special symbol ⊥ indicating that tampering is detected. Could we twist it to ensure that a learner
with fewer parameters can also always recover the correct label against efficient adversaries? We
positively answer this question by using list-decodable code (Definition 8). Intuitively, list-decoding
ensures that given an erroneous codeword, the decoding algorithm will find the list of all messages
whose encoding is close enough to the erroneous codeword.

Our new learning task has instances drawing from the distribution DP defined as

[vk], LEnc(b,Sign(sk, b)), [b+ ⟨u, P ⟩], [u].

Here, LEnc is the encoding algorithm of the list-decoding code. The main idea is that: after the
perturbation on LEnc(b,Sign(sk, b)), the original message/signature pair b,Sign(sk, b) will always
appear in the list output by the decoding algorithm. Now, against an efficient adversary, b,Sign(sk, b)
must be the only valid message/signature pair in the list. Otherwise, this adversary breaks the
unforgeability of the signature scheme. Against an information-theoretic adversary, however, it could
introduce (1− b,Sign(sk, 1− b)) into the list recovered by the list-decoding algorithm. Consequently,
the learner cannot tell if the correct label is b or 1− b. Consequently, for this learning task, against
information-theoretic adversaries, one still needs |P | parameters. Against efficient adversaries, one
needs only a few parameters and can always recover the correct label.

Making instances small. Again, we have this unsatisfying feature that the instance has the same
size as the model. We resolve this issue using the sampler in a similar way. We refer the readers to
Appendix C for more details.

We present our formal construction and theorem statement below. The formal proof is in Appendix C.
Construction 16 (Learning task for bounded/unbounded attackers). Given the parameters n < λ <
α, we construct the following learning problem.16 We use the following tools.

• (Gen,Sign,Verify) be a signature scheme (see Definition 6).

• Let LEnc be a RS encoding with dimension k, block length n, and rate R = k/n. We pick
the rate R to be any constant < 1/4 and k is defined by R and n. This RS code is over the
field F2ℓ for some ℓ = Θ(log λ).

15That is, with high probability over the choice of Z = z, the conditional distribution P |(Z = z) has high
min-entropy. More formally, this unpredictability is measured by the average-case min-entropy (Definition 23).

16All the other parameters are implicitly defined by these parameters.

9

• Let samp : {0, 1}r →
({1,...,α}

n

)
be samplers. (We obtain these samplers by invoking

Lemma 11 with sufficiently small κ1 and κ2. For instance, setting κ1 = Θ(1/ log λ) and κ2

to be any small constant suffices.)

• For any binary string v, we use [v] for an arbitrary error-correcting encoding of v (over
the field F2ℓ) such that [v] can correct > (1−

√
R)n errors. This can always be done by

encoding v using RS code with a suitable (depending on the dimension of v) rate. Looking
forward, we shall consider an adversary that may perturb ⩽ (1−

√
R)n symbols. Therefore,

when a string v is encoded as [v] and the adversary perturbs it to be [̃v], it will always be
error-corrected and decoded back to v.

We now construct the following learning task Fλ = (Xλ,Yλ,Dλ,Hλ).

• Xλ is {0, 1}N for some N that is implicitly defined by Dλ, and Yλ is {0, 1}.

• The distribution Dλ consists of all distribution Ds for s ∈ {0, 1}α

Ds =
(
[u], [v], [vk], LEnc(b,Sign(sk, b)),

[
b+

〈
v, s|samp(u)

〉])
, such that

– u are sampled uniformly from {0, 1}r and v is sampled uniformly from {0, 1}n.
– (vk, sk)← Gen(1λ) are sampled from the signature scheme.
– b is sampled uniformly at random from {0, 1}. (b,Sign(sk, b)) is intepreted as a vector

in Fk
2ℓ in the natural way.

• hλ consists of one single function h. On input x = ([u], [v], LEnc(b,Sign(sk, b), [b +
⟨v, s|samp(u)⟩]), h(x) simply decodes LEnc(b,Sign(sk, b)) and output b.

• Adversary. The entire input ([u], [v], [vk], LEnc(b,Sign(sk, b)), [b+ ⟨v, s|samp(u)⟩]) is inter-
preted as a vector over F2ℓ and we consider an adversary that may perturb ⩽ (1−

√
R)n

symbols. That is, the adversary has a budget of (1−
√
R)n for Hamming distance over F2ℓ .

Theorem 17. For the learning task of Construction 16, there is an efficient learner (with 0 sam-
ple complexity) that outputs a model with no parameter and negl(λ)-robustly learns Fλ against
computationally-bounded adversaries of budget (1−

√
R)n.

Theorem 18. For computationally unbounded adversaries, any information-theoretic learner with
α/2 parameters cannot ε-robustly learn Fλ for ε < 1/3 for the learning task of Construction 16.

5 Acknowledgement

Sanjam Garg and Mingyuan Wang are supported by DARPA under Agreement No. HR00112020026,
AFOSR Award FA9550-19-1-0200, NSF CNS Award 1936826, and research grants by the Sloan
Foundation, and Visa Inc. Any opinions, findings and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily reflect the views of the United States
Government or DARPA. Mohammad Mahmoody is supported by NSF grants CCF-1910681 and
CNS1936799. Somesh Jha is partially supported by Air Force Grant FA9550-18-1-0166, the National
Science Foundation (NSF) Grants CCF-FMitF-1836978, IIS-2008559, SaTC-Frontiers-1804648,
CCF-2046710 and CCF-1652140, and ARO grant number W911NF-17-1-0405. Somesh Jha is also
partially supported by the DARPA-GARD problem under agreement number 885000.

References
Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and generalization in overparameterized

neural networks, going beyond two layers. Advances in neural information processing systems, 32,
2019a.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. In International Conference on Machine Learning, pages 242–252. PMLR,
2019b.

10

Sanjeev Arora, Nadav Cohen, and Elad Hazan. On the optimization of deep networks: Implicit
acceleration by overparameterization. In International Conference on Machine Learning, pages
244–253. PMLR, 2018a.

Sanjeev Arora, Rong Ge, Behnam Neyshabur, and Yi Zhang. Stronger generalization bounds for
deep nets via a compression approach. In International Conference on Machine Learning, pages
254–263. PMLR, 2018b.

Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analysis of
optimization and generalization for overparameterized two-layer neural networks. In International
Conference on Machine Learning, pages 322–332. PMLR, 2019.

Sébastien Bubeck and Mark Sellke. A universal law of robustness via isoperimetry. Advances in
Neural Information Processing Systems, 34, 2021.

Sébastien Bubeck, Yin Tat Lee, Eric Price, and Ilya Razenshteyn. Adversarial examples from
computational constraints. In International Conference on Machine Learning, pages 831–840.
PMLR, 2019.

Xiangyu Chang, Yingcong Li, Samet Oymak, and Christos Thrampoulidis. Provable benefits of
overparameterization in model compression: From double descent to pruning neural networks.
arXiv preprint arXiv:2012.08749, 2020.

Zihang Dai, Hanxiao Liu, Quoc V Le, and Mingxing Tan. Coatnet: Marrying convolution and
attention for all data sizes. Advances in Neural Information Processing Systems, 34:3965–3977,
2021.

Akshay Degwekar, Preetum Nakkiran, and Vinod Vaikuntanathan. Computational limitations in
robust classification and win-win results. In Conference on Learning Theory, pages 994–1028.
PMLR, 2019.

Yevgeniy Dodis and Adam Smith. Correcting errors without leaking partial information. In Harold N.
Gabow and Ronald Fagin, editors, 37th Annual ACM Symposium on Theory of Computing, pages
654–663, Baltimore, MA, USA, May 22–24, 2005. ACM Press. doi: 10.1145/1060590.1060688.

Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam D. Smith. Fuzzy extractors: How to
generate strong keys from biometrics and other noisy data. SIAM J. Comput., 38(1):97–139, 2008.
doi: 10.1137/060651380. URL https://doi.org/10.1137/060651380.

Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes
over-parameterized neural networks. arXiv preprint arXiv:1810.02054, 2018.

Sanjam Garg, Somesh Jha, Saeed Mahloujifar, and Mohammad Mahmoody. Adversarially robust
learning could leverage computational hardness. In Aryeh Kontorovich and Gergely Neu, editors,
Algorithmic Learning Theory, ALT 2020, 8-11 February 2020, San Diego, CA, USA, volume 117
of Proceedings of Machine Learning Research, pages 364–385. PMLR, 2020a.

Sanjam Garg, Somesh Jha, Saeed Mahloujifar, and Mahmoody Mohammad. Adversarially robust
learning could leverage computational hardness. In Algorithmic Learning Theory, pages 364–385.
PMLR, 2020b.

Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J. Comput. Syst. Sci., 28(2):270–299,
1984.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014.

Venkatesan Guruswami and Madhu Sudan. Improved decoding of Reed-Solomon and algebraic-
geometric codes. In 39th Annual Symposium on Foundations of Computer Science, pages 28–39,
Palo Alto, CA, USA, November 8–11, 1998. IEEE Computer Society Press. doi: 10.1109/SFCS.
1998.743426.

Johan Håstad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudorandom generator
from any one-way function. SIAM Journal on Computing, 28(4):1364–1396, 1999.

11

Kenji Kawaguchi, Leslie Pack Kaelbling, and Yoshua Bengio. Generalization in deep learning. arXiv
preprint arXiv:1710.05468, 2017.

Jaehoon Lee, Lechao Xiao, Samuel Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-
Dickstein, and Jeffrey Pennington. Wide neural networks of any depth evolve as linear models
under gradient descent. Advances in neural information processing systems, 32, 2019.

Saeed Mahloujifar and Mohammad Mahmoody. Can adversarially robust learning leveragecomputa-
tional hardness? In Algorithmic Learning Theory, pages 581–609. PMLR, 2019.

Omar Montasser, Steve Hanneke, and Nathan Srebro. Vc classes are adversarially robustly learnable,
but only improperly. In Conference on Learning Theory, pages 2512–2530. PMLR, 2019.

Joseph Naor and Moni Naor. Small-bias probability spaces: Efficient constructions and applications.
SIAM J. Comput., 22(4):838–856, 1993.

Moni Naor and Moti Yung. Universal one-way hash functions and their cryptographic applications.
In 21st Annual ACM Symposium on Theory of Computing, pages 33–43, Seattle, WA, USA,
May 15–17, 1989. ACM Press. doi: 10.1145/73007.73011.

Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. In search of the real inductive bias: On the
role of implicit regularization in deep learning. arXiv preprint arXiv:1412.6614, 2014.

Roman Novak, Yasaman Bahri, Daniel A Abolafia, Jeffrey Pennington, and Jascha Sohl-
Dickstein. Sensitivity and generalization in neural networks: an empirical study. arXiv preprint
arXiv:1802.08760, 2018.

Krzysztof Pietrzak. Cryptography from learning parity with noise. In International Conference on
Current Trends in Theory and Practice of Computer Science, pages 99–114. Springer, 2012.

John Rompel. One-way functions are necessary and sufficient for secure signatures. In 22nd Annual
ACM Symposium on Theory of Computing, pages 387–394, Baltimore, MD, USA, May 14–16,
1990. ACM Press. doi: 10.1145/100216.100269.

Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to
algorithms. Cambridge university press, 2014.

Salil P. Vadhan. On constructing locally computable extractors and cryptosystems in the bounded
storage model. In Dan Boneh, editor, Advances in Cryptology – CRYPTO 2003, volume 2729 of
Lecture Notes in Computer Science, pages 61–77, Santa Barbara, CA, USA, August 17–21, 2003.
Springer, Heidelberg, Germany. doi: 10.1007/978-3-540-45146-4_4.

Salil P. Vadhan. Constructing locally computable extractors and cryptosystems in the bounded-storage
model. J. Cryptol., 17(1):43–77, 2004.

Mitchell Wortsman, Gabriel Ilharco, Samir Yitzhak Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, et al. Model
soups: averaging weights of multiple fine-tuned models improves accuracy without increasing
inference time. arXiv preprint arXiv:2203.05482, 2022.

Ji Xu, Daniel J Hsu, and Arian Maleki. Benefits of over-parameterization with em. Advances in
Neural Information Processing Systems, 31, 2018.

Jiahui Yu, Zirui Wang, Vijay Vasudevan, Legg Yeung, Mojtaba Seyedhosseini, and Yonghui Wu.
Coca: Contrastive captioners are image-text foundation models. arXiv preprint arXiv:2205.01917,
2022.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding deep
learning (still) requires rethinking generalization. Communications of the ACM, 64(3):107–115,
2021.

12

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [No]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [N/A]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [N/A]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [N/A]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [N/A]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

13

