
A Supplementary Materials

A.1 Related Work

Randomized Smoothing for Certified Robustness. Trustworthy machine learning has attracted
active research in recent years [99, 158, 150, 135, 159, 151, 101, 151, 149, 146, 80, 160, 61, 60, 117,
153, 118, 3, 155, 152, 157, 156, 154]. Certificate robustness techniques provide guarantees that an
object with certifiable robustness is robust against any admissible attacks [130, 41, 19, 139, 57, 106,
103, 59, 93, 109, 73, 89, 36]. Existing certificate robustness approaches include satisfiability modulo
theories-based methods [63, 55, 29, 11] and mixed integer-linear programming-based models [18, 84,
25, 34, 9]. The common characteristics of these methods is that the ever-increasing complexity of deep
neural networks has made it difficult to scale these methods meaningfully to high-dimensional datasets
like ImageNet. In addition, they are often applicable to certain specific neural networks. Convex
relaxation-based algorithms [131, 132, 100, 105, 114, 115, 19, 116, 148], linear relaxation-based
models [129, 127], abstract interpretation-based methods [40, 90, 113], interval-bound propagation-
based algorithms [26, 47, 54], and Lipschitz constant-constrained approaches [21, 129, 27, 147, 128,
123, 24, 2, 22, 30, 77, 65] rely on over approximation loose too much precision and provide loose
guarantees on the worst-case margin, even for networks trained to be amenable to certification. The
robust training built upon the loose guarantees limits the improvement of model robustness.

In order to deal with the scalability and loose guarantee issues in certified robustness, a line of work
has been introduced based on randomized smoothing [69, 23, 70, 76, 104, 72, 144, 58, 6, 38, 141,
92, 88, 33, 13, 142, 119, 1, 16, 53, 86]. Randomized smoothing-based methods have demonstrated
exceptional scalability and applicability when defending against adversarial examples by relaxing
exact certificates to high-confidence probabilistic ones [31, 58, 28, 51, 102, 72, 91, 32, 145]. We
have witnessed many promising randomized smoothing-based methods for certifying l0 [70, 72],
l1 [69, 76, 120], and l2 robustness [75, 23, 104, 144, 74]. Several recent research efforts have studied
and identified the inapplicability of randomized smoothing to high-dimensional problems for lp
robustness against high-norm attacks when p > 2, especially l∞ robustness [68, 140, 67, 5, 137].

Machine Unlearning. Machine unlearning, also known as selective forgetting [10, 43, 111] or data
removal/deletion [42, 49] in machine learning, aims to eliminate the effect of a subset of training data
on the already trained model [39, 50, 134, 97]. Existing techniques on machine unlearning can be
broadly classified into two categories below.

(1) Exact machine unlearning algorithms aim to learn an unlearning model with the same performance
as the ones obtained with retraining from scratch by completely excluding the forgotten data from
the training data. Many of existing methods mainly focus on producing the exact unlearning for
simple models or under some specific conditions [107], like leave-one-out cross-validation for SVMs
(Support Vector Machines) [12, 62, 17], efficient machine unlearning for linear models [78, 85], data
removal-enabled random forests [8, 108], provably efficient data deletion in K-means clustering [42],
and fast data deletion for Naïve Bayes based on statistical query learning which assumes the training
data is in a decided order [10]. These unlearning models often fail to work on large-scale datasets with
complex models. Several research efforts have tried to improve the efficiency of machine unlearning.
Linear filtration is a novel algorithm for the sanitization of deep classification models that predict
logits, after class-wide deletion requests [4]. SISA is a practical approach for unlearning that relies
on data sharding and slicing to reduce the computational overhead of unlearning [7]. It is designed to
achieve the largest improvements for stateful algorithms like stochastic gradient descent for deep
neural networks. Ullah et al. proposed an efficient unlearning algorithm based on constructing a
maximal coupling of Markov chains for the noisy SGD procedure [124]. GraphEraser is a machine
unlearning method tailored to graph data with two novel graph partition algorithms and a learning-
based aggregation method [15]. RecEraser is a general and efficient machine unlearning framework
tailored to recommendation tasks with new data partition methods and an adaptive aggregation
method to improve the global model utility. These designs make our RecEraser more suitable for
recommendation tasks [14].

(2) Approximate machine unlearning methods try to bring the parameters of the trained model closer
to naive ones retrained from scratch through the relaxation of the exact unlearning definitions and
requirements [4, 48, 45, 122, 79, 87]. Most of these approaches make use of or reconstruct historical
gradients and model weights to quickly eliminate the influence of samples that are requested to
be deleted, such that the unlearned model cannot be distinguished from the model that was never

24

trained on the removed data [136, 56, 94, 64]. O-k-means and DC-k-means first introduced the
definition of approximate unlearning based on the distance (or divergence) between distributions of the
retrained model and the unlearnt one [42]. Subsequent works follow similar approximate definitions
to provide certified unlearning guarantees for strongly-convex learning problems [49, 94, 110].
Several approaches proposed different Newton’s methods to approximate retraining for convex
models, e.g., linear regression, logistic regression, and the last fully connected layer of a neural
network [43, 44, 49]. Some recent works have also studied machine unlearning in optimization-based
Bayesian inference [96, 46] and sampling-based Bayesian inference [37]. Recent methods designed
effective machine unlearning strategies in the setting of federated learning [79, 81, 83, 126, 133].
Four recent efforts have studied the problem of joint optimization of security or privacy and machine
unlearning [45, 15, 143, 82].

certified removal is a certified-removal mechanism that applies a Newton step on the model parameters
that largely remove the influence of the deleted data points [49]. GKT is a zero-shot machine
unlearning algorithm that imposes the constraint that zero training data is available to the unlearning
algorithms [20]. Two recent studies propose online machine unlearning methods for linear regression
models [78] and linear support vector machine models [17], for further improving the efficiency of
machine unlearning. The former adapts users’ requests to delete their data before a specific time bar.
The latter conducts only the task of variable support vector machine.

To our best knowledge, the common characteristics of the above machine unlearning methods is
that they consist of two sequential operations: (1) Training: train a model on the complete training
data and (2) Unlearning: generate an unlearning model from the former. The combination of two
operations is computationally expensive when training complex models over large datasets. In
addition, they often sequentially redo the unlearning operations one by one, when addressing a series
of machine unlearning requests. This work is the first to execute one-time operation of simultaneous
training and unlearning in advance for a series of machine unlearning requests, as long as the actual
data removals are below the certified budget of data removals, by leveraging the theory of randomized
smoothing and gradient quantization.

A.2 Selection of Quantization Threshold

In Section 3, we have introduced the gradient quantization for the randomized smoothing for the
certified data removals. Let λ ≥ 0 be the quantization threshold.

Q(t) = Softmax([−|t− λ|,−|t|,−|t+ λ|]) (30)

whereQ(t) maps a gradient dimension t to a three-dimensional vector [−|t−λ|,−|t|,−|t+λ|], where
each component denotes the similarity score between t and −λ, 0, or λ. Therefore, all T gradient
dimensions are partitioned into three intervals: (−∞,−λ/2] that comes near to −λ, [−λ/2, λ/2]
that is closer to 0, and [λ/2,∞) that approaches λ. Each component in Q(t) with the Softmax
function also represents the probability of the gradient dimension t belonging to classes -1, 0, or 1.
Namely, the gradient quantization function Q(t) will assign any gradient dimensions t below −λ/2
to class -1, those above λ/2 to class 1, and the remaining dimensions to 0. The most probable class
cA ∈ {−1, 0, 1} in Q(t) is assigned to dimension t as a final quantized gradient dimension.

In fact, the quantization threshold λ ≥ 0 serves as a tradeoff hyperparameter to well balance the
training performance and the certifiable radius regarding the data removals in our PCMU methods.
On one hand, a large λ, say∞, will cause most of the gradient dimensions to be assigned to class 0
and to be updated with zero. This may result in the failure of gradient and parameter updates and fail
to train the model until convergence.

∫ ∞
λ
2

1

σ
√

2π
e−

z2

2σ2 dz =

∫ −λ2
−∞

1

σ
√

2π
e−

z2

2σ2 dz <<

∫ λ
2

−λ2

1

σ
√

2π
e−

z2

2σ2 dz (31)

25

On the other hand, a small λ, say 0, will make pA = pB , which bring small certified radius R and
thus result in the collapse of certified machine unlearning.

∫ ∞
λ
2

1

σ
√

2π
e−

z2

2σ2 dz =

∫ −λ2
−∞

1

σ
√

2π
e−

z2

2σ2 dz >>

∫ λ
2

−λ2

1

σ
√

2π
e−

z2

2σ2 dz (32)

R =
σ

2

(
Φ−1

(
pA
)
− Φ−1 (pB)

)
≈ 0 (33)

Therefore, we choose λ = σ2 as the quantization threshold in this work, for ensuring the region
[−λ/2, λ/2] owns the largest area but does not dominate other two (−∞,−λ/2] and [λ/2,∞) in the
PDF of Gaussian kernel.

A.3 Algorithm

The following are the detailed descriptions of our PCMU method step by step: (1) Train the model
in a usual manner with loss function L, e.g., cross-entropy for image classification, and model
parameter w; (2) Calculate the gradient G(x, y) = ∂L(x,y;w)

∂w in Eq.(5) in the submission; (3) Com-
pute the gradient average Ḡ in terms of the gradient G(xi, yi) of each sample (xi, yi) in Eq.(20)
in the submission; (4) quantize each dimension t (t = 1, · · · , T) of the continuous gradient plus
Gaussian noise Qt(Ḡ + ε) in Eq.(21) over a discrete three-class space {−1, 0, 1}, for mimick-
ing the classification in the randomized smoothing for certified robustness based on Eq.(6) in
the submission; (5) Perform the randomized gradient smoothing for certified machine unlearning
St′(Ḡ) = arg max

c∈{−1,0,1}
P
ε∼D

(Qt(Ḡ + ε) = c) in Eq.(21) in the submission; (6) Derive the certified

radius R′ in Eq.(24) and the certified budget B′ of data removals in Eq.(26) in the submission;
(7) Integrate the model training for a specific learning task (e.g., image classification), randomized
gradient smoothing, and gradient quantization into a unified framework for directly training a machine
unlearning model with the data removal certificates as a guidance, for guaranteeing that the model
parameters and gradients keep unchanged against the data removals within the certified budget, in
terms of w = w − η[S1′(Ḡ), · · · , ST ′(Ḡ)] with smoothed and quantized gradients in Eq.(29) in the
submission; and (8) Enter the next training round until convergence.

A.4 Proof of Theorems

Lemma 1. [Neyman-Pearson] Let X and Y be random variables in Rd with densities µx and µY .
Let h : Rd → {0, 1} be a random or deterministic function. Then:

1. If S = {z ∈ Rd : µY (z)
µX(z) ≤ t} for some t > 0 and P(h(X) = 1) ≥ P(X ∈ S), then

P(h(Y) = 1) ≥ P(Y = S).

2. If S = {z ∈ Rd : µY (z)
µX(z) ≥ t} for some t > 0 and P(h(X) = 1) ≤ P(X ∈ S), then

P(h(Y) = 1) ≤ P(Y = S).

Proof. Please refer to the book [23] for detailed proof.

Lemma 2. [Neyman-Pearson for Gaussians with different means] Let X ∼ N (x, σ2I) and Y ∼
N (x+ δ, σ2I). Let h : Rd → {0, 1} be any random or deterministic function. Then:

1. If S = {z ∈ Rd : δT z ≤ β} for some β and P(h(X) = 1) ≥ P(X ∈ S), then P(h(Y) =
1) ≥ P(Y = S).

2. If S = {z ∈ Rd : δT z ≥ β} for some β > 0 and P(h(X) = 1) ≤ P(X ∈ S), then
P(h(Y) = 1) ≤ P(Y = S).

Proof. Please refer to the paper [23] for detailed proof.

26

Theorem 2. The error introduced by the Taylor expansion of F tc (ˆ̄x, ˆ̄y) at (x̄, ȳ) is

ε ≤
∞∑
j=0

|| Lj+1

(j + 1)!
|| · ||σM ||j+1 (34)

where Lj = maxk=1,··· ,j
∂jhi

∂xk∂yj−k
and M is the number of sampled points.

Proof. When we have the Taylor expansion of F tc (ˆ̄x, ˆ̄y) at (x̄, ȳ)

F tc (ˆ̄x, ˆ̄y) =F tc (x̄, ȳ) +
∂F tc
∂x

(x̄, ȳ)(ˆ̄x− x̄) +
∂F tc
∂y

(x̄, ȳ)(ˆ̄y − ȳ)+

+
1

2
{∂

2F tc (x̄, ȳ)

∂x2
(ˆ̄x− x̄)2 + 2

∂2F tc (x̄, ȳ)

∂x∂y
(ˆ̄x− x̄)(ˆ̄y − ȳ) +

∂2F tc (x̄, ȳ)

∂y2
(ˆ̄y − ȳ)2}

+ · · ·+Oj(ˆ̄x, ˆ̄y)
(35)

where Oj(ˆ̄x, ˆ̄y) = 1
(j+1)!{

∑
· · ·
∑ ∂kF tc (ξ)

∂xk∂yj+1−k (ˆ̄x − x̄)k(ˆ̄y − ȳ)j+1−k}, ξ ∈ ((ˆ̄x, x̄), (ˆ̄y, ȳ)), j =

3, · · · ,∞, and k = 1, 2, 3.

Then

ε = ||F tc (ˆ̄x, ˆ̄y)− F tc (x̄, ȳ)||

= ||
∞∑
j=0

1

(j + 1)!
{
∑
· · ·
∑ ∂kF tc (ξ)

∂xk∂yj+1−k (ˆ̄x− x̄)k(ˆ̄y − ȳ)j+1−k}|| (36)

Suppose that F tc is at least second-order differentiable, and there exists Lipschitz constants Lj =

maxk=1,··· ,j
∂jhi

∂xk∂yj−k
in each function, then

ε2 ≤
∞∑
j=0

|| Lj+1

(j + 1)!
|| · ||εx||k · ||εy||j+1−k ≤

∞∑
j=0

|| Lj+1

(j + 1)!
|| · ||σM ||j+1 (37)

Theorem 3. Let ε ∼ D = N
(
0, σ2I

)
and S̃t(x̄) = argmax

c∈{−1,0,1}
P
ε∼D

(F̃ t(x̄ + ε) = c). Suppose that

for a specific x̄ ∈ Rd, there exist cA ∈ {−1, 0, 1} and pA, pB ∈ [0, 1] such that:

P
(
F̃ t(x̄+ ε) = cA

)
≥ pA ≥ pB ≥ max

c 6=cA
P(F̃ t(x̄+ ε) = c) (38)

Then S̃t(x̄+ δ) = cA for all ‖δ‖2 < R, where

R =
σ

2

(
Φ−1

(
pA
)
− Φ−1 (pB)

)
(39)

where Φ−1 is the inverse of the standard Gaussian CDF.

Proof. Notice that the correlation between the data x̄ and its classes ȳ is fixed for a given dataset.
We denote this correlation as ȳ = H(x̄) where H : Rd 7→ C. Thus, the original F t(x̄, ȳ) can be
rewritten as an equivalent one F̃ t(x̄).

F̃ t(x̄) = F t(x̄, H(x̄)) = F t(x̄, ȳ) (40)

27

Based on the definition of S̃t(x̄), to prove S̃t(x̄ + δ) = cA for all ‖δ‖2 < R, we first need to
demonstrate

P(F̃ t(x̄+ δ + ε) = cA) > max
cB 6=cA

P(F̃ t(x̄+ δ + ε) = cB) (41)

For ease of presentation, two random variables are defined as follows.

u = x̄+ ε = N (x̄, σ2I) (42)

v = x̄+ δ + ε = N (x̄+ δ, σ2I) (43)

Based on the given condition in Eq.(38), we know

P(F̃ t(u)) = cA) ≥ pA (44)

P(F̃ t(v) = cB) ≤ pB (45)

We define two half-spaces as follows.

X = {U : δT (U − x̄) ≤ σ||δ||Φ−1(pA)} (46)

Y = {U : δT (U − x̄) ≥ σ||δ||Φ−1(1− pB)} (47)

Now, we have

P(u ∈ X) = P
(
δT (u− x̄) ≤ σ‖δ‖Φ−1

(
pA
))

= P
(
δTN

(
0, σ2I

)
≤ σ‖δ‖Φ−1

(
pA
))

= P
(
σ‖δ‖z ≤ σ‖δ‖Φ−1

(
pA
))

= P
(
z ≤ Φ−1

(
pA
))

= Φ
(
Φ−1

(
pA
))

= pA

(48)

where z ∼ N (0, 1).

By combining Eq.(44) and Eq.(48), we have

P(F̃ t(u)) = cA) ≥ P(u ∈ X) (49)

By applying Lemma 2 with h(u) = 1[F̃ t(u) = cA], we obtain

P(F̃ t(v)) = cA) ≥ P(v ∈ X) (50)

Similarly, we have

P(u ∈ Y) = P
(
δT (u− x̄) ≥ σ‖δ‖Φ−1 (1− pB)

)
= P

(
δTN

(
0, σ2I

)
≥ σ‖δ‖Φ−1 (1− pB)

)
= P

(
σ‖δ‖z ≥ σ‖δ‖Φ−1 (1− pB)

)
= P

(
z ≥ Φ−1 (1− pB)

)
= 1− Φ

(
Φ−1 (1− pB)

)
= pB

(51)

Again, we get

P(F̃ t(u)) = cB) ≤ P(u ∈ Y) (52)

28

and

P(F̃ t(v)) = cB) ≤ P(v ∈ Y) (53)

Notice that our proof objective S̃t(x̄+ δ) = cA is equivalent to the following inequality.

P(F̃ t(v)) = cA) > P(F̃ t(v)) = cB) (54)

If we can prove P(v ∈ X) > P(v ∈ Y), then we can obtain

P(F̃ t(v)) = cA) ≥ P(v ∈ X) > P(v ∈ Y) ≥ P(F̃ t(v)) = cB) (55)

Now, we calculate the condition satisfying P(v ∈ X) > P(v ∈ Y).

P(v ∈ X) = Φ(Φ−1(pA)− ||δ||
σ

) (56)

and

P(v ∈ Y) = Φ(Φ−1(pB) +
||δ||
σ

) (57)

P(v ∈ X) > P(v ∈ Y) is satisfied if and only if

||δ|| < σ

2
(Φ−1(pA)− Φ−1(pB)) (58)

Therefore, the proof is concluded.

Theorem 4. LetR be the certified radius of x̄ ∈ Rd based on S̃t(x̄) = argmax
c∈{−1,0,1}

P
ε∼D

(F̃ t(x̄+ε) = c),

then the certified budget of data removal is

B ≤ N − 9dσ2

R2
(59)

where N is the number of data samples on the entire training data and B is the maximally allowed
number of data samples escaped from the training data.

Proof. Without loss of generality, suppose that x ∼ N (x̄, σ2I). The complete training data D
is partitioned into two subsets: the forgotten data Df ⊆ D and the remembered data Dr ⊆ D
(D = Df ∪Dr, Df ∩Dr = ∅). Let {x1, · · · , xB} be the data in Df , {xB+1, · · · , xN} be the data
in Dr, and x̄r be the average of all data samples in Dr.

x̄r =
1

N −B

∑
xi∈Dr

xi (60)

We calculate the expectation and variance of x̄r about possible escape situations.

E(x̄r) =
1

N −B

N∑
i=B+1

xi = x̄r (61)

Var(x̄r) = Var(

∑N
i=B+1 xi

N −B
) =

1

(N −B)2
Var(

N∑
i=B+1

xi) =
σ2I

N −B
(62)

Thus, the data samples xB+1, · · · , xN in Dr follow N (x̄r,
σ2I
N−B).

29

If we want to guarantee the forgotten data (i.e., the data removals) within the certified radius R, then
we need to ensure

P{||x̄− x̄r|| ≤ R} = 99.73% ≈ 1, (63)

in terms of the three-sigma rule. x̄ is the average of all data samples in the entire training data.

Thus, we have

R ≥ 3|| σI√
N −B

|| (64)

Therefore, we obtain

B ≤ N − 9dσ2

R2
(65)

By combining Eq.(39) and Eq.(65) together, we further get

B ≤ N − 36d

(Φ−1(pA)− Φ−1(pB))2
(66)

Theorem 5. Let R and R′ be the certified radii of the above two algorithms respectively and L be
the Lipschitz constant of gradient G(x, y) ∈ RT , then

R ≥
√
T

L
R′ (67)

By combining Theorems 4 and 5 together, we derive the certified budget B′ of data removal from R′.

B′ ≤ N − 36dL2

T (Φ−1(pA′)− Φ−1(pB
′))2

(68)

Proof. Let G(x, y) ∈ RT be the gradient of a machine learning model.

G(x, y) =
∂L(x, y;w)

∂w
(69)

Let Gt(x, y) be the tth (t = 1, · · · , T) dimension of the gradient G(x, y), G̃t(x̄) = Gt(x̄, H(x̄)) =

Gt(x̄, ȳ), and Q̃t(G̃t(x̄)) = Qt(Gt(x̄, ȳ)). We use Q̃tc(G̃
t(x̄)) to represent the cth (c ∈ {−1, 0, 1})

component of Q̃t(G̃t(x̄)).

For the randomized data smoothing and gradient quantization method, we have

pA =

∫
x̄

P(F̃ tc (x̄))dx̄ =

∫
xi

P(F̃ tc (E(xi)))dxi =

∫
xi

P(Q̃tc(G̃
t(E(xi))))dxi, c = cA (70)

pB =

∫
x̄

P(F̃ tc (x̄))dx̄ =

∫
xi

P(F̃ tc (E(xi)))dxi =

∫
xi

P(Q̃tc(G̃
t(E(xi))))dxi, c 6= cA (71)

R =
σ

2

(
Φ−1

(
pA
)
− Φ−1 (pB)

)
(72)

30

For the randomized gradient smoothing and quantization approach, we have

p′A =

∫
Ḡt

P(Qtc(Ḡ
t))dḠt =

∫
xi

∫
yi

P(Qtc(E(Gt(xi, yi))))dxidyi

=

∫
xi

P(Q̃tc(E(G̃t(xi))))dxi, c = cA

(73)

p′B =

∫
Ḡt

P(Qtc(Ḡ
t))dḠt =

∫
xi

∫
yi

P(Qtc(E(Gt(xi, yi))))dxidyi

=

∫
xi

P(Q̃tc(E(G̃t(xi))))dxi, c 6= cA

(74)

R′ =
σ

2

(
Φ−1

(
p′A

)
− Φ−1

(
p′B

))
(75)

Let L be the Lipschitz constant of gradient G(x, y), for any δ > 0, we have

L · ||δ|| ≥ ||E(G̃t(xi + δ))−E(G̃t(xi))|| =
√
TR′ (76)

Then the minimum change in x̄ is

min ||δ|| =
√
T

L
R′ (77)

This implies

R ≥
√
T

L
R′ (78)

By combining Eq.(65) and Eq.(78), we obtain the certified budget B′ of data removals in the
randomized gradient smoothing and quantization approach.

B′ ≤ N − 9dσ2

(
√
T
L R′)2

≤ N − 36dL2

T (Φ−1(pA′)− Φ−1(pB
′))2

(79)

Theorem 6. Let St′(Ḡ) be the randomized gradient smoothing for certified machine unlearning on
gradient quantization, L, L1, and L2 be the Lipschitz constants of G, Qt, and St′ respectively, i.e.,

||∇St′(a)−∇St′(b)||2 ≤ L2L1L||a− b||2 for any a, b (80)

If we run gradient descent for k iterations with a fixed step size s ≤ 1
L2L1L

, it will yield a solution
St′(k) which satisfies

St′(q(k))− St′(q∗) ≤ ||q
(0) − q∗||22

2sk
(81)

where St′(q(0)) is the initial solution and St′(q∗) is the local optimal solution.

This means that gradient descent is guaranteed to converge and that it converges with rate O(1/k).

31

Proof. Suppose that St′ is local convex and differentiable. Let q(s) be the gradient St′(Ḡ) with the
randomized gradient smoothing and gradient quantization at the sth training iteration and q∗ be the
local optimal solution of q(s).

For any a, b in the local convex domain of St′, we have

St′(b) ≤ St′(a) +∇St′(a)T (b− a) +
1

2
St′(a)||b− a||22

≤ St′(a) +∇St′(a)T (b− a) +
1

2
L2L1L||b− a||22

(82)

We plug in the gradient descent update by letting b = a(+) = a− t∇F (a).

St′(a(+)) ≤ St′(a) +∇St′(a)T (a(+) − a) +
1

2
L2L1L||a(+) − a||22

= St′(a) +∇St′(a)T (a− s∇St′(a)− a) +
1

2
L2L1L||a− s∇St′(a)− a||22

= St′(a)−∇St′(a)T s∇St′(a) +
1

2
L2L1L||s∇St′(a)||22

= St′(a)− s||∇St′(a)||22 +
1

2
L2L1Ls

2||∇St′(a)||22

= St′(a)− (1− 1

2
L2L1Ls)s||∇St′(a)||22.

(83)

Based on s ≤ 1
L2L1L

, we have

−(1− 1

2
L2L1Ls) =

1

2
L2L1Ls− 1 ≤ −1

2
(84)

By plugging Eq.(84) into Eq.(83), we obtain

St′(a(+)) ≤ St′(a)− 1

2
s||∇St′(a)||22 (85)

Since 1
2s||∇S

t′(a)||22 is always non-negative, the inequality in Eq.(85) implies that the objective
function value strictly decreases with the iteration of gradient descent until it reaches the local
optimal value St′(a) = St′(a∗).

Now we need to bound the objective value at the next iteration, St′(a(+)), in terms of the local
optimal objective value St′(a∗).

Since St′ is local convex, we have

St′(a∗) ≥ St′(a) +∇St′(a)T (a∗ − a) (86)

St′(a) ≥ St′(a∗) +∇St′(a)T (a− a∗) (87)

According to (84), we obtain

St′(a(+)) ≤ St′(a∗) +∇St′(a)T (a− a∗)− s

2
||∇St′(a)||22 (88)

Notice that

||a− s∇St′(a)− a∗||22 = ||a− a∗||22 − 2s∇St′(a)T (a− a∗) + s2||∇St′(a)||22 (89)

32

Thus, we have

St′(a(+))− St′(a∗) ≤ 1

2s
(||a− a∗||22 − ||a− s∇St′(a)− a∗||22) (90)

Notice that a(+) = a− s∇St′(a), by plugging this into (90), we get

St′(a(+))− St′(a∗) ≤ 1

2s
(||a− a∗||22 − ||a(+) − a∗||22) (91)

By aggregating the terms at all iterations, we have

k∑
i=1

St′(a(k) − St′(a∗)) ≤
k∑
i=1

1

2s
(||a(i−1) − a∗||22 − ||a(i) − a∗||22)

=
1

2s
(||a(0) − a∗||22 − ||a(k) − a∗||22)

≤ 1

2s
(||a(0) − a∗||22)

(92)

Finally, since the function St′ keeps decreasing at each iteration, we can conclude

St′(a(k))− St′(a∗) ≤ 1

k

k∑
i=1

St′(a(i))− St′(a∗) ≤ ||a
(0) − a∗||22

2sk
(93)

By replacing a with q, the proof is concluded.

A.5 Additional Experiments

Machine unlearning performance and running time with varying ratios of data removal. Ta-
bles 5-15 exhibit the classification accuracy, errors, training time, and unlearning time obtained by
eleven machine unlearning approaches by varying the ratio of unlearning request / data removal
between 2% and 20% on three datasets of Fashion-MNIST, CIFAR-10, and SVHN respectively.
Similar trends are observed for the comparison of machine unlearning effectiveness and efficiency
in these figures: our PCMU method achieves the smallest absolute performance difference with
the Retrain model, regarding Accuracy (<1%), Errort (<1%), Errorr (<4%), and Errorf (<1%)
on three datasets respectively. Our PCMU method achieves better efficiency than most baseline
methods, except DeltaGrad and Unrolling SGD. Our PCMU method performs one-time operation of
simultaneous training and unlearning when addressing a series of machine unlearning requests. Thus,
our PCMU method has only one running time for multiple unlearning requests, e.g., 2,566 seconds on
SVHN for all five unlearning results (2%, 3%, 5%, 10%, and 20%). However, other baselines need to
sequentially handle these machine unlearning requests one by one. Therefore, they have multiple
running time for varying ratios of data removals, e.g., 1,176, 1,195, 1,231, 1,280, and 1,371 seconds
achieved by Unrolling SGD on SVHN for five unlearning requests (2%, 3%, 5%, 10%, and 20%)
respectively. The above experiment results demonstrate that PCMU is effective as well as efficient
for addressing the machine unlearning problem. This advantage is very important for entitling data
owners to the right to have their private data removed from trained complex models at their requests
in a timely and cost-efficient manner in privacy-critical applications that usually require near-zero
tolerance of data leaking.

33

Table 5: Performance with 5% data removal and CNN on Fashion-MNIST

Performance Runtime (s)
Metric Accuracy Errort Errorr Errorf Training Unlearning Total
Retrain 88.18 11.82 10.12 11.53 687 646 1,333
Fisher 86.02 13.98 13.04 13.57 672 550 1,222
certified removal 77.01 22.99 90.06 90.83 720 81 801
DeltaGrad 83.33 16.67 15.52 15.83 563 148 711
NTK 85.95 14.05 13.05 13.53 672 416 1,088
Unrolling SGD 84.74 15.26 39.64 38.34 362 63 425
SISA 84.79 15.21 13.82 13.73 1,419 1,397 2,816
Adaptive Unlearning 79.93 30.07 18.83 19.43 1,537 1,505 3,042
FedEraser 70.32 29.68 27.73 27.66 669 575 1,244
MCMC unlearning 83.04 16.96 15.22 28.93 965 419 1,384
PCMU 88.34 11.66 11.09 11.08 802 0 802

Table 6: Performance with 8% data removal and CNN on Fashion-MNIST

Performance Runtime (s)
Metric Accuracy Errort Errorr Errorf Training Unlearning Total
Retrain 88.21 11.79 9.46 11.31 687 618 1,305
Fisher 86.02 13.98 12.80 13.25 647 1,942 2,589
certified removal 77.57 22.43 89.79 89.85 730 147 877
DeltaGrad 86.07 13.93 12.89 12.60 555 137 692
NTK 86.02 13.98 12.81 13.25 647 1,810 2,457
Unrolling SGD 83.45 16.55 39.04 41.34 371 63 434
SISA 84.77 15.23 14.33 14.50 1,419 1,384 2,803
Adaptive Unlearning 76.18 23.82 24.56 24.13 1,537 1,495 3,032
FedEraser 66.75 33.25 32.97 35.06 673 593 1,266
MCMC unlearning 86.83 13.17 7.91 34.15 619 651 1,270
PCMU 88.34 11.66 10.86 10.93 802 0 802

Table 7: Performance with 15% data removal and CNN on Fashion-MNIST

Performance Runtime (s)
Metric Accuracy Errort Errorr Errorf Training Unlearning Total
Retrain 87.78 12.22 9.35 11.57 687 552 1,239
Fisher 86.21 13.79 12.49 13.04 693 2,006 2,699
certified removal 76.18 23.82 89.99 90.10 736 266 1,002
DeltaGrad 85.36 14.64 13.49 13.51 557 146 703
NTK 86.39 13.61 12.51 13.13 693 1,875 2,568
Unrolling SGD 86.18 13.82 38.52 39.00 359 64 423
SISA 84.18 15.82 14.78 14.55 1,419 1,366 2,785
Adaptive Unlearning 86.02 13.98 12.80 13.25 1,537 1,453 2,990
FedEraser 73.11 26.89 26.38 26.52 654 576 1,230
MCMC unlearning 83.22 16.78 7.95 77.03 961 803 1,764
PCMU 88.40 11.60 10.08 10.97 802 0 802

34

Table 8: Performance with 5% data removal and LeNet on CIFAR-10

Performance Runtime (s)
Metric Accuracy Errort Errorr Errorf Training Unlearning Total
Retrain 64.24 35.76 26.67 37.04 846 826 1,672
Fisher 62.37 37.63 33.78 33.53 655 1,165 1,820
certified removal 40.11 59.89 89.90 90.44 749 88 837
DeltaGrad 62.79 37.21 22.31 21.56 901 503 1,404
NTK 62.72 37.28 33.07 34.17 655 899 1,554
Unrolling SGD 58.17 41.83 43.06 40.40 511 238 749
SISA 58.23 41.77 34.65 33.46 1,594 1,585 3,179
Adaptive Unlearning 43.20 56.80 56.68 62.21 1,176 317 1,493
FedEraser 51.76 48.24 47.81 48.67 1,190 972 2,162
MCMC unlearning 61.02 38.98 5.70 10.32 1,322 405 2,330
PCMU 64.33 35.67 24.57 36.32 903 0 903

Table 9: Performance with 8% data removal and LeNet on CIFAR-10

Performance Runtime (s)
Metric Accuracy Errort Errorr Errorf Training Unlearning Total
Retrain 64.36 35.64 28.14 37.43 846 751 1,597
Fisher 62.38 37.62 33.74 33.88 655 1,478 2,133
certified removal 39.33 60.67 89.78 90.28 749 144 893
DeltaGrad 61.66 38.34 22.45 22.95 867 486 1,353
NTK 62.71 37.29 33.28 34.83 655 1,149 1,804
Unrolling SGD 56.92 43.08 44.22 45.40 511 202 713
SISA 58.21 41.79 34.63 33.37 1,594 1,591 3,185
Adaptive Unlearning 42.88 57.12 55.21 55.97 1,176 316 1,492
FedEraser 49.50 50.50 43.36 48.76 1,190 965 2,155
MCMC unlearning 62.00 38.00 5.12 15.40 1,322 1,138 2,460
PCMU 64.33 35.67 24.04 37.43 903 0 903

Table 10: Performance with 15% data removal and LeNet on CIFAR-10

Performance Runtime (s)
Metric Accuracy Errort Errorr Errorf Training Unlearning Total
Retrain 64.12 35.88 26.97 36.24 846 708 1,554
Fisher 62.40 37.60 33.72 33.88 655 5,268 5,923
certified removal 37.01 62.99 89.86 90.19 749 304 1,053
DeltaGrad 60.73 39.27 23.38 21.63 909 499 1,408
NTK 61.87 38.13 33.72 36.16 655 5,144 5,799
Unrolling SGD 58.94 41.06 41.07 44.40 511 353 864
SISA 57.73 42.27 35.30 34.08 1,594 1,499 3,093
Adaptive Unlearning 43.51 56.49 56.14 57.93 1,176 295 1,471
FedEraser 51.37 48.63 49.95 48.91 1,190 1,000 2,190
MCMC unlearning 61.99 38.01 4.64 34.42 1,322 1,515 2,837
PCMU 64.65 35.35 25.42 37.60 903 0 903

35

Table 11: Performance with 2% data removal and ResNet-18 on SVHN

Performance Runtime (s)
Metric Accuracy Errort Errorr Errorf Training Unlearning Total
Retrain 93.34 6.66 3.38 6.48 1,433 1,401 2,834
Fisher 83.13 16.87 87.58 87.30 1,191 2,085 3,276
certified removal 92.25 7.75 0.34 0.41 1,746 42 1,788
DeltaGrad 91.65 8.35 0.61 0.56 1,236 774 2,010
NTK 90.01 9.99 88.34 87.24 1,191 1,854 3,045
Unrolling SGD 87.69 12.31 10.30 10.85 787 389 1,176
SISA 90.65 9.35 8.05 8.23 2,021 1,983 4,004
Adaptive Unlearning 86.35 13.65 11.32 13.70 728 728 1,456
FedEraser 88.61 11.39 10.92 12.97 2,464 1,136 3,600
MCMC unlearning 91.35 8.65 0.28 7.17 1,854 2,053 3,907
PCMU 93.41 6.59 3.50 6.95 2,566 0 2,566

Table 12: Performance with 3% data removal and ResNet-18 on SVHN

Performance Runtime (s)
Metric Accuracy Errort Errorr Errorf Training Unlearning Total
Retrain 93.74 6.26 3.61 6.96 1,433 1,418 2,851
Fisher 83.82 16.18 87.77 87.03 1,022 2,298 3,320
certified removal 92.00 8.00 0.36 0.27 1,719 56 1,775
DeltaGrad 90.91 9.09 0.87 0.79 1,261 760 2,021
NTK 91.91 8.09 88.46 86.99 1,022 2,053 3,075
Unrolling SGD 85.22 14.78 10.90 10.78 776 419 1,195
SISA 90.50 9.50 8.08 7.84 2,021 1,957 3,978
Adaptive Unlearning 87.22 12.78 11.98 12.65 740 724 1,464
FedEraser 89.11 10.89 11.30 11.21 2,470 1,146 3,616
MCMC unlearning 91.31 8.69 0.45 10.69 1,855 3,123 4,978
PCMU 93.41 6.59 3.93 7.29 2,566 0 2,566

Table 13: Performance with 5% data removal and ResNet-18 on SVHN

Performance Runtime (s)
Metric Accuracy Errort Errorr Errorf Training Unlearning Total
Retrain 93.40 6.60 4.63 8.11 1,433 1,386 2,819
Fisher 83.06 16.94 88.05 89.19 1,109 3,404 4,513
certified removal 91.28 8.72 0.58 0.68 1,738 90 1,828
DeltaGrad 90.98 9.02 1.18 1.17 1,244 759 2,003
NTK 90.55 9.45 88.66 89.87 1,109 3,152 4,261
Unrolling SGD 85.93 14.07 11.64 11.30 778 453 1,231
SISA 90.53 9.47 8.09 9.20 2,021 1,922 3,943
Adaptive Unlearning 86.11 13.89 12.32 14.03 726 731 1,457
FedEraser 89.01 10.99 10.62 12.03 2,455 1,151 3,606
MCMC unlearning 90.33 9.67 0.89 20.31 2,017 5,149 7,166
PCMU 93.41 6.59 4.28 7.88 2,566 0 2,566

36

Table 14: Performance with 10% data removal and ResNet-18 on SVHN

Performance Runtime (s)
Metric Accuracy Errort Errorr Errorf Training Unlearning Total
Retrain 92.73 7.27 4.58 7.73 1,433 1,351 2,784
Fisher Failed due to out of memory Failed due to out of memory
certified removal 91.08 8.92 0.39 0.42 1,755 171 1,926
DeltaGrad 88.13 11.87 4.02 3.88 1,257 755 2,012
NTK Failed due to out of memory Failed due to out of memory
Unrolling SGD 87.04 12.96 10.43 10.41 794 486 1,280
SISA 89.98 10.02 8.26 8.35 2,021 1,811 3,832
Adaptive Unlearning 84.29 15.71 14.23 15.75 735 720 1,455
FedEraser 89.72 10.28 10.40 10.98 2,402 1,116 3,518
MCMC unlearning 88.33 11.67 1.23 32.61 1,860 10,194 12,054
PCMU 93.41 6.59 4.44 7.62 2,566 0 2,566

Table 15: Performance with 20% data removal and ResNet-18 on SVHN

Performance Runtime (s)
Metric Accuracy Errort Errorr Errorf Training Unlearning Total
Retrain 92.59 7.41 4.80 8.16 1,433 1,128 2,561
Fisher Failed due to out of memory Failed due to out of memory
certified removal 90.98 9.02 0.94 0.90 1,733 329 2,062
DeltaGrad 87.20 12.80 3.98 4.20 1,248 724 1,972
NTK Failed due to out of memory Failed due to out of memory
Unrolling SGD 84.65 15.35 11.10 11.20 779 592 1,371
SISA 90.20 9.80 8.15 9.22 2,021 1,632 3,653
Adaptive Unlearning 81.19 18.81 18.34 18.83 732 726 1,458
FedEraser 89.28 10.72 10.86 12.05 2,397 1,100 3,497
MCMC unlearning 84.55 15.45 3.24 32.71 1,857 20,331 22,188
PCMU 93.41 6.59 4.41 7.76 2,566 0 2,566

Machine unlearning performance and running time with different smoothing techniques. Ta-
bles 16 and 17 evaluate the impact of different smoothing techniques on our proposed prompt certified
machine unlearning method, PCMU, over two popular image classification datasets: Fashion-MNIST
and CIFAR-10. We replace the randomized smoothing component in the original PCMU model with
Laplacian smoothing and uniform smoothing respectively. It is observed that two PCMU variants with
Laplacian smoothing and uniform smoothing achieve the close performance to the original PCMU
model with randomized smoothing, showing the generality of PCMU to the machine unlearning.
Compared with the results achieved by the nine state-of-the-art baselines in Tables 2 and 4, two
PCMU variants still substantially outperform the performance of other baselines in most experiments.
We will include all the experiment results in this rebuttal into the submission.

Table 16: Performance with 20% data removal and CNN on Fashion-MNIST
Performance Runtime (s)

Metric Accuracy Errort Errorr Errorf Training Unlearning Total
Retrain 88.21 11.79 9.75 11.76 687 561 1,248
PCMU 88.34 11.66 10.25 11.47 802 0 802
PCMU+Laplacian Smoothing 86.16 13.84 12.29 13.20 773 0 773
PCMU+Uniform Smoothing 86.86 13.14 10.90 12.77 804 0 804

Table 17: Performance with 20% data removal and LeNet on CIFAR-10
Performance Runtime (s)

Metric Accuracy Errort Errorr Errorf Training Unlearning Total
Retrain 63.29 36.71 24.59 36.89 846 673 1,519
PCMU 64.33 35.67 25.18 35.32 903 0 903
PCMU+Laplacian Smoothing 61.77 38.23 29.41 38.30 928 0 928
PCMU+Uniform Smoothing 62.17 37.83 28.06 38.60 936 0 936

37

0.025 0.05 0.1 0.2 0.3
0

5

10

15

20

25

30

35

Standard Deviation σ

E
r
r
o
r
r

Retrain on Fashion−MNIST

PCMU−N on Fashion−MNIST

PCMU on Fashion−MNIST

Retrain on CIFAR−10

PCMU−N on CIFAR−10

PCMU on CIFAR−10

Retrain on SVHN

PCMU−N on SVHN

PCMU on SVHN

(a) Errorr

0.025 0.05 0.1 0.2 0.3
0

5

10

15

20

25

30

35

Standard Deviation σ

E
r
r
o
r
r

Retrain on Fashion−MNIST

PCMU−N on Fashion−MNIST

PCMU on Fashion−MNIST

Retrain on CIFAR−10

PCMU−N on CIFAR−10

PCMU on CIFAR−10

Retrain on SVHN

PCMU−N on SVHN

PCMU on SVHN

(b) Errorf

Figure 3: Errors with varying standard deviation on three datasets
Machine unlearning performance and running time based on removals of class samples. In the
submission, all the formulae, methods, and theories do not have assumptions or restrictions regarding
the distribution of data removals. Thus, our proposed prompt certified machine unlearning method,
PCMU, is able to work on the case of removals of class samples, as long as the actual data removals
are below the certified budget of data removals. In fact, the removals of arbitrary data samples in our
experiments is more general than the removals of class samples.

In order to validate the performance of our PCMU for this special machine unlearning problem, we
randomly choose one class and remove all samples from this class over CIFAR-10. Table 18 exhibits
the corresponding experiment results, which demonstrate that PCMU is also effective as well as
efficient for addressing this special machine unlearning problem.

Table 18: Performance with data removal of samples from one class and LeNet on CIFAR-10
Performance Runtime (s)

Metric Accuracy Errort Errorr Errorf Training Unlearning Total
Retrain 58.91 41.09 28.23 100 859 738 1,597
Fisher 62.28 37.72 34.28 29.51 1,459 1,490 2,949
certified removal 38.40 61.61 61.73 60.32 886 218 1,104
NTK 62.71 37.29 32.47 42.20 1,459 1,353 2,812
MCMC unlearning 57.13 42.87 16.44 49.52 1,565 734 2,299
PCMU 60.15 39.85 26.51 72.18 926 0 926

A.6 Parameter Sensitivity

In this section, we conduct more experiments to validate the sensitivity of various parameters in our
PCMU method for the certified machine unlearning task.

Impact of standard deviation. Figure 3 (a) and (b) measure the effect of standard deviation of the
Gaussian distribution in the randomized gradient smoothing for machine unlearning on Errorr and
Errorf by varying σ from 0.025 to 0.3. The error scores achieved by the Retrain and PCMU-N
models keep unchanged with varying σ. We have observed similar results in these two figures:
The error curves by PCMU initially decrease quickly and then become stable when σ continuously
increases. A suitable σ can help utilize the randomized gradient smoothing and quantization for
directly training a certfied machine unlearning model in advance. A too large σ beyond some
thresholds does not affect the performance of machine unlearning any more.

Influence of training sample percentage. Figure 4 (a) shows the influence of training sample
percentage in our PCMU model by varying it from 20% to 100%. We make the observations on
the quality by three machine unlearning methods. (1) The accuracy by our PCMU model is very
close to that of the Retrain method in most experiments. (2) The performance curves keep increasing
when the number of training samples increases. (3) PCMU outperforms PCMU-N in most tests with
the smallest accuracy difference with the Retrain method. When there are many training samples
available (≥ 40%), the quality improvement by PCMU is obvious. A reasonable explanation is more

38

20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

Training Sample Percentage (%)

A
c
c
u
ra

c
y

Retrain on Fashion−MNIST
PCMU−N on Fashion−MNIST

PCMU on Fashion−MNIST
Retrain on CIFAR−10

PCMU−N on CIFAR−10

PCMU on CIFAR−10
Retrain on SVHN

PCMU−N on SVHN
PCMU on SVHN

(a) Training Sample Per-
centage

30 60 90 120 150
30

40

50

60

70

80

90

Training Epoch

A
c
c
u
ra

c
y

Retrain on Fashion−MNIST
PCMU−N on Fashion−MNIST

PCMU on Fashion−MNIST
Retrain on CIFAR−10

PCMU−N on CIFAR−10

PCMU on CIFAR−10
Retrain on SVHN

PCMU−N on SVHN
PCMU on SVHN

(b) Training Epoch

200 300 400 500 600
30

40

50

60

70

80

90

Batch Size

A
c
c
u
ra

c
y

Retrain on Fashion−MNIST
PCMU−N on Fashion−MNIST

PCMU on Fashion−MNIST
Retrain on CIFAR−10

PCMU−N on CIFAR−10

PCMU on CIFAR−10
Retrain on SVHN

PCMU−N on SVHN
PCMU on SVHN

(c) Batch Size

0.001 0.005 0.01 0.05 0.1
20

30

40

50

60

70

80

90

Learning Rate

A
c
c
u
ra

c
y

Retrain on Fashion−MNIST
PCMU−N on Fashion−MNIST

PCMU on Fashion−MNIST
Retrain on CIFAR−10

PCMU−N on CIFAR−10

PCMU on CIFAR−10
Retrain on SVHN

PCMU−N on SVHN
PCMU on SVHN

(d) Learning Rate

Figure 4: Performance with varying Parameters on three datasets
training data makes PCMU be more resilient to machine unlearning under suitable ratios of data
removals.

Impact of training epochs. Figure 4 (b) exhibits the sensitivity of training epochs of our PCMU
model by varying them from 30 and 150. As we can see, the performance curves continuously
increase with increasing training epochs. This is consistent with the fact that more training epochs
makes the image classification models be resilient to machine unlearning under suitable ratios of data
removals. It is observed that the accuracy scores oscillate within the range of 3.1% on three datasets.

Sensitivity of batch size. Figure 4 (c) exhibits the sensitivity of batch size of machine unlearning
models in our PCMU model by varying them from 200 and 600. It is observed that the performance
curves keep relatively stable when we continuously change the batch size. This demonstrates that
our PCMU method is insensitive to the batch size of machine unlearning. No matter what the batch
size is, our PCMU method can always achieve the superior performance in all tests, showing the
effectiveness of our PCMU method to the machine unlearning.

Influence of learning rates. Figure 4 (d) shows the influence of learning rate in our PCMU model by
varying it from 0.001 to 0.1. We have observed that the accuracy initially raises when the learning rate
increases. Intuitively, a large learning rate can help the algorithm quickly find the optimal solution
and thus help improve the quality of machine unlearning. Later on, the performance curves decrease
quickly when the learning rate continuously increases. A reasonable explanation is that a too large
learning rate may miss the optimal solution with large step size in the search process. Thus, it is
important to determine the optimal learning rate for the machine unlearning.

A.7 Experimental Details

Environment. The experiments were conducted on a compute server running on Red Hat Enterprise
Linux 7.2 with 2 CPUs of Intel Xeon E5-2650 v4 (at 2.66 GHz) and 8 GPUs of NVIDIA GeForce
GTX 2080 Ti (with 11GB of GDDR6 on a 352-bit memory bus and memory bandwidth in the
neighborhood of 620GB/s), 256GB of RAM, and 1TB of HDD. Overall, the experiments took about
3 days in a shared resource setting. We expect that a consumer-grade single-GPU machine (e.g., with
a 2080 Ti GPU) could complete the full set of experiments in around 4-5 days, if its full resources
were dedicated. The codes were implemented in Python 3.7.3 and PyTorch 1.0.14. We also employ
Numpy 1.16.4 and Scipy 1.3.0 in the implementation. Since the datasets used are all public datasets
and our methodologies and the hyperparameter settings are explicitly described in Section 3, 4, 5,
and A.7, our codes and experiments can be easily reproduced on top of a GPU server.

Training. We study image classification networks on three standard image datasets: Fashion-
MNIST 2, CIFAR-10 3, and SVHN 4. The above three image datasets are all public datasets, which
allow researchers to use for non-commercial research and educational purposes. We use 60,000
examples as training data and 10,000 examples as test data for Fashion-MNIST. We train the machine
unlearning model on the CIFAR-10 training set and test it on the CIFAR-10 test set. We use 73,257
digits as training data and 26,032 digits as test data for SVHN. We train a convolutional neural
network (CNN) on Fashion-MNIST for clothing classification. We train LeNet over CIFAR-10 for

2https://github.com/zalandoresearch/fashion-mnist
3https://www.cs.toronto.edu/∼kriz/cifar.html
4http://ufldl.stanford.edu/housenumbers/

39

image classification. We apply the ResNet-18 architecture on SVHN for street view house number
identification. The neural networks are trained with Kaiming initialization [52] using SGD for 120
epochs with an initial learning rate of 0.05 and batch size 500. The learning rate is decayed by a
factor of 0.1 at 1/2 and 3/4 of the total number of epochs. In addition, we run each experiment for 3
trials for obtaining more stable results.

Implementation. For nine state-of-the-art machine unlearning models of Fisher 5, certified removal 6,
DeltaGrad 7, NTK 8, Unrolling SGD 9, SISA 10, Adaptive Unlearning 11, FedEraser 12, and MCMC
unlearning 13, we utilized the same model architecture as the official open-source implementation
and default parameter settings provided by the original authors for machine unlearning in all experi-
ments. All hyperparameters are standard values from reference codes or prior works. We validate
the performance of different machine unlearning methods with a range of ratio of data removals
{5%, 8%, 10%, 15%, 20%}. All models were trained for 120 epochs, with a batch size of 500, and a
learning rate of 0.05. The above open-source codes from the GitHub are licensed under the MIT Li-
cense, which only requires preservation of copyright and license notices and includes the permissions
of commercial use, modification, distribution, and private use.

For our PCMU model, we performed hyperparameter selection by performing a parameter sweep
on standard deviation σ ∈ {0.025, 0.05, 0.1, 0.2, 0.3, 0.5, 1} in the Gaussian distribution, quantiza-
tion threshold λ ∈ {σ2/4, σ2/2, σ2, 2σ2, 4σ2}, ratio of data removals {5%, 8%, 10%, 15%, 20%},
training epochs of the machine unlearning model ∈ {30, 60, 90, 120, 150}, batch size for training
the model ∈ {200, 300, 400, 500, 600}, and learning rate ∈ {0.001, 0.005, 0.01, 0.05, 0.1, 0.5}. We
select the best parameters over 50 epochs of training and evaluate the model at test time.

Hyperparameter settings.

Unless otherwise explicitly stated, we used the following default parameter settings in the experiments.

Table 19: Hyperparameter Settings

Parameter Value
Training data on Fashion-MNIST 60,000
Test data ratio on Fashion-MNIST 10,000

Training data on CIFAR-10 50,000
Test data on CIFAR-10 10,000
Training data on SVHN 73,257

Test data on SVHN 26,032
Standard deviation σ in the Gaussian distribution 0.1

Quantization threshold λ σ2

Ratio of data removals 20%
Training epochs of the machine unlearning model 120

Batch size for training the model 500
Learning rate 0.05

A.8 Potential Negative Societal Impacts and Limitations

In this work, the three image datasets are all open-released datasets [138, 66, 95], which allow
researchers to use for non-commercial research and educational purposes. These three datasets are
widely used in training/evaluating the image classification. All baseline codes are open-accessed
resources that are from the GitHub and licensed under the MIT License, which only requires

5https://github.com/AdityaGolatkar/SelectiveForgetting
6https://github.com/facebookresearch/certified-removal
7https://github.com/thuwuyinjun/DeltaGrad
8https://github.com/AdityaGolatkar/SelectiveForgetting
9https://github.com/cleverhans-lab/unrolling-sgd

10https://github.com/cleverhans-lab/machine-unlearning
11https://github.com/ChrisWaites/adaptive-machine-unlearning
12https://www.dropbox.com/s/1lhx962axovbbom/FedEraser-Code.zip?dl=0
13https://github.com/fshp971/mcmc-unlearning

40

preservation of copyright and license notices and includes the permissions of commercial use,
modification, distribution, and private use.

To our best knowledge, this work is the first to execute one-time operation of simultaneous training
and unlearning in advance for a series of machine unlearning requests, as long as the actual data
removals are below the certified budget of data removals, while there is no need to know the forgotten
data, by leveraging the theory of randomized smoothing and gradient quantization. Many machine
learning applications often need to collect massive amount of data from third parties for model
training. This raises a legitimate privacy risk: training data can be practically reconstructed from
models [35, 112, 125, 7, 85, 87, 14]. In addition, modern privacy regulations, such as the European
Union’s General Data Protection Regulation (GDPR) [98] and the California Consumer Privacy Act
(CCPA) [71], enforce the right to be forgotten, i.e., entitle data owners to the right to have their private
data removed at their requests [87, 83, 20]. Our framework is able to resolve the requests of data
removal in a timely and cost-efficient manner. Our framework can play an important building block
for a wide variety of privacy-critical applications that usually require near-zero tolerance of data
leaking, such as financial and health data analyses. This paper is primarily of a theoretical nature. We
expect our findings to produce positive impact, i.e, significantly improve the efficiency of machine
unlearning models by simultaneously training and unlearning in advance. To our best knowledge, we
do not envision any immediate negative societal impacts of our results, such as security, privacy, and
fairness issues.

An important product of this paper is to explore the possibility of simultaneous training and unlearning
in advance as well as one-time unlearning. Due to high-dimensional double integrals or non-integrable
mapping between samples and labels in the randomized data smoothing and gradient quantization
method, the randomized gradient smoothing and quantization approach is designed to produce high
confidence certificates for the certified machine unlearning. Our theoretical framework can inspire
further improved development and implementations on certified machine unlearning with better
applicability and efficiency from the academic institutions and industrial research labs.

41

	Introduction
	Background
	Randomized Smoothing for Certified Robustness
	Machine Unlearning

	Randomized Data Smoothing and Gradient Quantization
	Randomized Gradient Smoothing and Quantization
	Experimental Evaluation
	Conclusions
	Supplementary Materials
	Related Work
	Selection of Quantization Threshold
	Algorithm
	Proof of Theorems
	Additional Experiments
	Parameter Sensitivity
	Experimental Details
	Potential Negative Societal Impacts and Limitations

