
Appendices
A Proofs of Theoretical Results

In this section, we will provide proofs of the various theoretical results from Section 3.3. We will
first discuss the assumptions and technical conditions we use, then prove the lower bound result from
Proposition 3.2 and finally utilize it to prove the performance guarantee for invariant representation
learning (Proposition 3.3). Before diving into the proofs, we first recall the set of assumptions and
technical conditions below:

A.1 Assumptions, Technical Conditions and Lemmas

Recall that our proofs operate under the following assumptions:

• "-realizability: For any distribution ⇡ over designs, there exists a representation � 2 � and
a g 2 F such that min�,g max⇡2⇧ Ex⇠⇡ [|f(x)� g(�(x))|]  "F,�.

• 8f 2 F , ||f ||1 < 1.

• 8f 2 F , ||f ||L  C.

Additionally, we will also define statistical error that will appear in the bounds:
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We will use some helpful Lemmas that we list below, which can be proven using standard results
from empirical risk minimization and concentration inequalities [45].
Lemma A.1 (Concentration of expected function values). For any given f 2 F satisfying the

assumptions above, and any given distribution ⇡ over designs X , let Jf (⇡) := Ex⇠⇡[f(x)]. Then,

given a set of N samples, x1,x2, · · · ,xN ⇠ ⇡, the empirical mean bJf (⇡) = 1
N

PN
i=1 f(xi)

converges to Jf (⇡) such that, with high probability � 1� � (c0 is a universal constant),
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Building on Lemma A.1, we now bound the empirical risk and the population risk of a given loss
function L(f) at the empirical risk minimizer using a standard uniform concentration argument:
Lemma A.2 (Concentration of empirical risk minimizer). Given any bounded, Lipschitz loss function,

L and for a given f 2 F , let, L(f) := Ex⇠µdata
[L(f,x)], and let the corresponding empirical loss

function be denoted by: bL(f) := 1
|D|

P
i L(f,xi). Then, with high probability � 1� �,
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Finally, we discuss a technical condition that will be required to prove Proposition 3.2. We consider
the following “continuity” property of the function class F with respect to a loss function that is a
mixture of two loss functions:
Definition A.3 (Continuity of F with respect to L�.). We say that a function class F is continuous
with respect to a given loss function L�(f) := L1(f) + �L2(f), where � 2 R+ is a hyperparameter,
when the following holds: denoting f�

✓ := inff2F L�(f), the lim�!0 f�
✓ exists, and corresponds to

a minimizer of L1(f):

lim
�!0

f�
✓ 2 arg inf

f2F

L1(f). (10)
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Definition A.3 formalizes the intuition that an addition of the loss L2 affects the optimal solution in a
continuous manner, and does not abruptly change the solution. We would expect such a criterion to
be satisfied when optimizing smooth loss functions (e.g., squared error) over parameters dictated by
a neural network, with appropriate explicit regularization (e.g., `2 regularization on parameters) or
when the training procedure smoothens the solution using some form of implicit regularization.

We will assume that the function class obtained by composing F and �, F � �, obeys the continuity
assumption with respect to the training objective in Equation 3. Concretely, in this case L1 and L2

are given by: L1(f,�) = Ex,y[(f(�(x))� y)2] and L2(f,�) = discH(P⇡(�(x)),Pµdata(�(x))), and
both of the loss functions are smooth with respect to the functions � and f . In our experiments, we
utilized a square loss for the discrepancy discH, and therefore, it is smooth. Definition A.3 in this
case would reduce to the following condition:
Assumption A.4 (Definition A.3 applied to F � �.). For any given threshold � 2 R such that
|�|  �, there exists a non-decreasing function ⇣ : R+ ! R+ of � such that, ⇣(0) = 0 and
||f�

✓ � ��
✓ � f⇤ � �⇤||1  ⇣(�) for some (f⇤,�⇤) 2 arg inff2F,�2� L1(f,�).

Essentially, Assumption A.4 suggests that if we can utilize an appropriately chosen value of �, then
we can roughly match the solution obtained by just minimizing L1, which is the prediction error in
our case. This would allow us to control the discrepancy of a solution obtained by only optimizing
the prediction error.

A.2 Proof of Proposition 3.2

Proposition A.5 (Lower bounding the value under ⇡.). Under the assumptions and criteria listed

above, the ground truth objective for any given ⇡ 2 ⇧ can be lower bounded in terms of the learned

objective model f✓ 2 F and representation � 2 �, with high probability � 1� � as:

J(⇡)�J✓(⇡) � J(µdata)� J✓(µdata)| {z }
(⌅)

�CF · discH(Pµdata
(�(x)),P⇡(�(x)))| {z }
(⇤)

�2"0
F,� � "stat,

where CF and "0
F,� are universal constants that only depend on the function class F ,� and other

universal constants associated with the loss functions, and "stat is a statistical error term that

decreases as the dataset size |D| increases.

Proof. Our high-level strategy would be to first decompose the terms into different components, and
bound these components separately. We begin with the following decomposition:
J(⇡)� J✓(⇡) (11)
= Ex⇠⇡(x) [f(x))]� Ex⇠⇡(x) [f✓(�(x)))] (12)
= Ex⇠µdata(x) [f(x)]� Ex⇠µdata(x) [f✓(�(x))]| {z }

(a)

(13)

+ Ex⇠⇡(x) [f(x))]� Ex⇠⇡(x) [f✓(�(x)))]�
�
Ex⇠µdata(x) [f(x)]� Ex⇠µdata(x) [f✓(�(x))]

�
| {z }

:=�(⇡,µdata)

.

Note that term (a) exactly corresponds to the first term ⌅ = J(µdata)� J✓(µdata) in the expression in
the proposition. To obtain the rest of the terms, we will now lower bound the remainder �(⇡, µdata).
First note that we can rearrange this term into a more convenient form:
�(⇡, µdata) : = �

�
Ex⇠⇡(x) [f✓(�(x))]� Ex⇠µdata(x) [[f✓(�(x))]

�
| {z }

(i)

+
�
Ex⇠⇡(x) [f(x)]� Ex⇠µdata(x) [f(x)]

�
| {z }

(ii)

.

(14)
Term (i) in the above equation can directly be bounded to give rise to one of the terms that contributes
to the discrepancy term the bound as shown below:

(i) : = �
Z

x
(⇡(x)� µdata(x)) · f✓(�(x)) dx (15)

= �
Z

z
(⇡(z)� µdata(z)) · f✓(z) dz (16)

=) (i)  || bf ||L · discH(P⇡(�(x)),Pµdata(�(x))), (17)
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where the second step (Equation 16) follows by reparameterizing the first step (Equation 15) in terms
of the representation z := �(x) and applying probability density change of variables simultaneously
with the change of variables for integration, which leads to a cancellation of the Jacobian terms.
Pµdata(�(x)) denotes the probability distribution of the representations �(x) when x ⇠ µdata(x), and
P⇡(�(x)) denotes the probability distribution of the representation �(x) when x ⇠ ⇡(x). The last
step follows from the fact that the discrepancy measure, discH(p, q), which is an integral probability
metric (IPM) [42], upper bounds the total-variation divergence between p and q.

Now we tackle term (ii). First note that under the "-realizability assumption, we note that there exists
a g 2 F ,�⇤ 2 � such that f(x) ⇡ g(�⇤(x)) in expectation under µdata and ⇡ (Assumption 3.1 holds
for any distribution ⇧). That is,

(ii) 
��Ex⇠⇡(x) [g(�

⇤(x))]� Ex⇠µdata(x) [g(�
⇤(x))]

��+ 2"F,� (18)

 ||g||L
����Ex⇠⇡(x) [�

⇤(x)]� Ex⇠µdata(x) [�
⇤(x)]

����+ 2"F,� (19)
 ||g||L · discH(P⇡(�

⇤(x)),Pµdata(�
⇤(x))) + 2"F,�, (20)

where the second step follows from the Lipschitzness of F and the third step follows similar to
Equation 17.

Finally, we will show that for an appropriately chosen � > 0, discH(P⇡(�⇤(x)),Pµdata(�
⇤(x))) is

close to discH(P⇡(�(x)),Pµdata(�(x))). Applying Assumption A.4, we get that, for any given �,
there exists a ⇣ such that:

||f�
✓ · �� � f⇤ · �⇤||1  ⇣(�) (21)

=) ||L2(f
�
✓ ,�

�)� L2(f
⇤,�⇤)||1  CL2 · ⇣(�), (22)

where the second step follows from the fact that the loss functions, L1 and L2 (in this case, discH
and (·)2) are smooth functions of their arguments, and CL2 := CH is the coefficient of smoothness
when L2 = discH. Thus, we get that:

��discH(P⇡(�
�(x)),Pµdata(�

�(x)))� discH(P⇡(�
⇤(x)),Pµdata(�

⇤(x)))
��  CH · ⇣(�). (23)

Finally, we need to bound discH(P⇡(��(x)),Pµdata(�
�(x))) in terms of the discrepancy value for the

� learned during training. Note that � is obtained by minimizing the objective in Equation 3, which
is the sample-based version of the objective used for obtaining f�. Using the uniform concentration
argument from Lemma A.2, we can upper bound L(f�,��) in terms of L(f✓,�):

Ex,y[f
�(��(x))� y)]2 + �discH(P⇡(�

�(x)),Pµdata(�
�(x))) .

Ex,y[f✓(�(x))� y)]]2 + �discH(P⇡(�(x)),Pµdata(�(x))) + "stat.

Now, we can use the above relationship, alongside bounding (f✓(x)� y)2  B0 (which holds since
the function is bounded):

discH(P⇡(�
�(x)),Pµdata(�

�(x)))  discH(P⇡(�(x)),Pµdata(�(x))) + CH · ⇣ + 2B0

�
, (24)

where ⇣ ! 0 as � ! 0. Now, we can minimize the right hand side w.r.t. � and obtain the desired
result:
J(⇡)� J✓(⇡) � J(µdata)� J✓(µdata)� (2C + 1) · discH(Pµdata(�(x)),P⇡(�(x)))� 2"0

F,� � "stat,

where "0
F,� = "F,� + h(B0, CH), where h(·) is a bias that is a property of the loss functions, the

function classes F and �, and the discrepancy metric. It does not depend on the learned functions f✓,
� learned or the distribution ⇡. This completes the proof.

Remark A.6 (The interplay between �0, F and �.). In the proof above, we appeal to the continuity
assumption (Assumption A.4) to enable us to bound the discrepancy measured in terms of the
representation �⇤ with respect to �, and this requires adjusting �. This is unavoidable in the worst
case if the function classes F and � are arbitrary and do not contain any solution �⇤ that attains
a small training error, while being somewhat invariant. In such cases, the only way to attain a
lower-bound is to not be invariant, and this is what our bound would suggest by setting � to be on the
smaller end of the spectrum. On the other hand, if the function class is more expressive, such that
there exists a tuple (f⇤,�⇤) that minimizes L1(f,�)) while being invariant, i.e., L2(f⇤,�⇤) is small,
then we can loosen this restriction over �.
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A.3 Proof of Proposition 3.3

Proposition A.7 (Performance guarantee for IOM). Under Assumption 3.1, the expected value of the

ground truth objective under µOPT, J(µOPT) is lower bounded by:

J(µOPT) & J(µdata)�O

0

@

s
log |F||�||⇧|

�

|D| +
log |F||�||⇧|

�

|D|

1

A+ J✓(µOPT)� J✓(µdata)| {z }
(�)

�(⇤)� "0
F,�.

We restate the proposition above. There is a typo in the main paper, where the term "0
F,� got deleted

from the bound when moving from Proposition 3.2 to 3.3. The above restatement of Proposition 3.3
provides the complete statement.

Proof. To prove this proposition, we can utilize the result from Proposition A.5, but now we need to
reason about a specific ⇡ = µOPT, where µOPT depends on the learned f✓ and �. To account for such
a ⇡, we can instead bound the improvement J(⇡)� J✓(⇡) for the worst possible ⇡ 2 ⇧. While this
does not change any term from the bound in Proposition A.5 that depends on the properties of the
function class F or the representation class �, this would still affect the statistical error, which would
now require a uniform concentration argument over the policy class ⇧. Therefore, the bound from
Proposition A.5 becomes:
J(µOPT)� J✓(µOPT) � J(µdata)� J✓(µdata)� C 0 · discH(Pµdata(�(x)),PµOPT(�(x)))� 2"0

F,� � "stat,
(25)

where "stat is given by:

"stat = O

0

B@

vuut log
⇣

|F||�||⇧|c0
�

⌘

|D|

1

CA . (26)

The term "2stat in the statement is a higher order term and is always dominated by "stat. Rearranging
the terms completes the proof.

A.4 Extension to any re-weighting of the dataset

In this section, we will extend the theoretical result to compare the performace of the optimized
design to the average objective value of any re-weighting of the dataset, and this by definition covers
the comparison against the best design in the dataset. To do so, note that Proposition A.5 can be
restated when comparing to µr, a distribution induced by any specific re-weighting of the training
dataset. This reformulation would give the following bound on the error:

J(⇡)�J✓(⇡) � J(µr)� J✓(µr)| {z }
(⌅)

�CF · discH(Pµr(�(x)),P⇡(�(x)))| {z }
(⇤)

�2"0
F,� � "stat. (27)

Since, the choice of µr is arbitrary (i.e., it can be any arbitrary weighting of the dataset distribution
µdata), we can now basically compute the tighest lower bound by maximizing the RHS with respect
to the choice of µr. This would amount to:

J(⇡)�J✓(⇡) � max
µr2T

2

64J(µr)� J✓(µr)| {z }
(⌅)

�CF · discH(Pµr(�(x)),P⇡(�(x)))| {z }
(⇤)

3

75� 2"0
F,� � "stat,

(28)

where T denotes the set of distributions that arising from all possible re-weightings of the training
data. For the special case when µr simply corresponds to a Dirac-delta distribution centered at the
best point in the training dataset, which we will denote as xbest, and µr = �x=xbest , we can write down
the bound as:

J(µOPT) & f(xbest) + J✓(⇡)� bf✓(xbest)| {z }
improvement

�CF · discH(Pµr(�(x)),P⇡(�(x)))| {z }
(⇤)

�2"0
F,� � "stat.

(29)
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When converting Equation 29 to a performance guarantee, note that "stat, which is used to bound
the discrepancy discH in Equation 29 would not decay as the size of the dataset |D| increases, as
our reference point is just one single point xbest in the dataset. That said, note that as the dataset
size increases, the groundtruth value of xbest shall also increase which would tighten the RHS of
Equation 29 as the dataset size increases.

Therefore, our bound presents a tradeoff: when comparing J(µOPT) to the average value of the dataset
J(µdata), we can attain favorable guarantees that guarantee improvement as the dataset size increases
because the statistical error reduces, and on the other hand, when we compare J(µOPT) to f(xbest), the
statistical error may not decay as the dataset size increases, however, the function value f(xbest) will
increase. In summary, our bound in either case is expected to improve as the dataset size increases.

Remark: Proposition 3.3 is inspired from theoretical results in offline reinforcement learning, where
it is common to lower bound the improvement of the learned policy over the behavior policy (see
for example, works on “safe policy improvment” [28, 39, 25, 51, 8]). When comparing to the best
point in the dataset, or equivalently, the best in-support policy in the case of reinforcement learning,
the bounds would inevitably become weaker, since it is not clear if any offline MBO or offline RL
algorithm would improve over the best point in the dataset, in the worst-case problem instance. We
have added this as a limitation of the theoretical results, but would remark that this limitation is also
existent in other areas where one must learn to optimize decisions from offline data. Nevertheless,
our empirical results do show that IOM does improve over the best point in the dataset, as shown in
Table 3.

B Related Work

Model-based optimization (MBO) or black-box optimization [6, 3, 41, 40, 33, 49] has been studied
widely in prior works. Among these works, the central challenge is in handling the distributional
shift that arises between the distribution of designs seen in the dataset and those taken by the
optimizer [6, 9, 23]. For methods that learn a model, this typically manifests itself as model

exploitation, where the optimizer can find out-of-distribution designs for which the model erroneously
predicts good values, analogously to adversarial examples. This distributional shift is distinct from
what is studied in prior works that tackle misspecification in GPs and bandits [34, 35, 21] or methods
that tackle robustness across contexts [22] in the online setting.

To address distribution shift, several recent works have proposed to be conservative. This is majorly
the case in other decision-making problems such as offline reinforcement learning (RL) [30] and
contextual bandits [36], where instead of optimizing for a design, we must find the optimal action at
each state. In offline MBO, prior works have tried to be conservative in two different ways: either by
constraining the optimized designs to lie close to the training designs [6, 9, 23, 37, 24] using generative
models [20, 12], or by learning a conservative [44, 26, 25] or calibrated [10, 49] learned model.
While the latter class of methods has worked well in practice [43, 26], these methods can sometimes
be overly conservative and are quite sensitive to hyperparameters. Sensitivity to hyperparameters
is acceptable as long as one can attain good performance using reasonable offline tuning strategies,
without accessing the groundtruth function, but we find in our experiments (Section 5.2) this is
not easy for conservative methods. On the contrary, IOM not only does not require a generative
model over the design space, which can be intractable with high-dimensions (e.g., 5000-d designs in
HopperController), but also attains better performance and provides a convenient tuning rule.

In this work we formulate data-driven model-based optimization as domain adaptation [4, 11], and
derive algorithms for model-based optimization from this perspective. This perspective has been
used to devise decision-making methods for treatment effect estimation [18, 19, 48] and off-policy
evaluation in RL [31, 29]. While these prior works do use an invariance regularizer, they primarily
focus on obtaining more accurate estimations, whereas our goal is to utilize invariance to combat
distributional shift during optimization. Thus, our usage of invariant representations is tailored
towards the optimizer, instead of aiming for accurate predictions everywhere like these prior works,
which is impossible in general. Furthermore, our analysis uses invariant representations to derive
procedures for tuning and early stopping, while these prior works do not explore these perspectives.
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C Experiment Details

C.1 Tasks and Datasets

Tasks. We provide brief description of the tasks we use for our empirical evaluation and the
corresponding evaluation protocol below. More details can be found be found at Trabucco et al. [43].

• The Superconductor task aims at optimizing the superconducting materials which achieves
high-critical temperatures. The original features are vectors containing specific physical
properties, such as the mean atomic mass of the elements. Following prior work [43], we
utilize the invertible input specification by representing different superconductors via a
serialization of the chemical formula. The objective y is the critical temperature the resulting
material could achieve. Here, we have x 2 R86 and y 2 R+. The original dataset in
Design-Bench has 21263 samples in total. However, following prior work [44, 43, 49], we
remove the top 20% from the dataset to increase the difficulty and ensure the top-performing
points are not visible during learning stage. Evaluation: To evaluate the performance of any
given design, we use the oracle function provided in design-bench, which trains a random
forest model (with the default hyper-parameters provided in [14]) on the whole original
dataset.

• The Ant and D’Kitty Morphology task aim at designing the morphology of a quadrupedal
robot such that the robot could be crawl quickly in certain direction. The Ant/D’Kitty task
corresponds to the Ant/D’Kitty robot that used as the agent. Specifically, the input is the
morphology of the agent with the objective value is the average return of the agent that uses
the optimal control tailored for the morphology. More details about the controller design
could be found at Trabucco et al. [43]. For the dimension of the design/feature space, we
have x 2 R60 and x 2 R56 for D’Kitty. The original dataset contains 25009 samples for
both Ant and D’Kitty. Following prior work [44, 49], we remove the 40% of top-performing
samples and use the rest as the new dataset. Evaluation: To evaluate any given morphology,
it is passed into the MuJoCo Ant or D’Kitty environment, and a pre-trained policy is used
(trained using Soft Actor-Critic for 10 million steps), the sum of rewards in a trajectory is
used as the final score.

• The Hopper-Controller task aims at designing a set of weights of a particular neural network
policy that achieves high return for the MuJoCo Hopper-v2 environment. Basically, the
policy architecture is a three-layer neural network with 64 hidden units and 5126 weights in
total with the algorithm is trained using Proximal Policy Optimization [38] (with default
parameters provided in Hill et al. [16]). Specifically, the input is a vector of flattened weight
tensors, with x 2 R5126, the objective is the expected return from a single roll-out using this
specific policy, with y 2 R. In the original dataset from Design-Bench, we have 3200 data
points, and we do not discard any of them due to limited size of the dataset. Evaluation:
To evaluate the design of a specific set of weight, which deploy PPO policy with this set of
weight, and the sum of rewards of 1000 steps are collected using the agent, as the final score.

Dataset. For each task, we take the training dataset from design-bench, and in addition, randomly
split it into training and validation with the ratio 7:3. The information of the original dataset is given
in Table 2.

Table 2: Overview of the dataset information
Dataset Sample Size Dimensions Type of design space
Superconductor 17010 86 Continuous
Ant Morphology 10004 60 Continuous
D’Kitty Morphology 10004 56 Continuous
Hopper Controller 3200 5126 Continuous
ChEMBL 1093 31 Discrete

C.2 Baseline Descriptions

In this section, we briefly introduce the baseline methods for model-based optimization in an
algorithmic level, all the implementation details for the baselines are referred to Trabucco et al. [43].
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• CbAS [6] trains a density model via variational auto-encoder (VAE). Basically at each step,
it updates the density model via a weighted ELBO objective which move towards better
designs, which estimated by a pre-trained proxy model f̂(x); then generating new samples
from the updated distributions to serve the new dataset, and repeated this process.

• Anto.CbAS [9] is an improved version of the CbAS. For CbAS, it uses the fixed pre-trained
proxy model f̂(x) all the time, to guide the distribution towards the optimal one. However,
the proxy model will suffer from distributional shift as the density model changes. Hence,
Auto.CbAS corrects the distributional shift by re-training the proxy model under the new
optimized density model, via importance sample weights.

• MINs [23] learns an inverse mapping f�1 from the objective value y to the corresponding
design x. The inverse map is trained using the conditional GAN. Then it tries to search for
the optimal y value during the optimization, and the optimized design is found by sampling
from this inverse map.

• COMs [44] learns a conservative proxy model f̂(x). Compared with the vanilla gradient
ascent, COMs augments the regression objective with an additional regularization term
which aims to penalize the over-estimation error of the out-of-distribution points. The final
optimal designed point is found by performing gradient ascent on this learned proxy model.

• RoMA [49] tries to overcome the brittleness of the deep neural networks that used in the
proxy model. Basically, the method is a two-stage process, with the first stage is to train a
proxy model f̂ with Gaussian smoothing of the inputs, and the second stage is to update the
solution while simultaneously adapt the model to achieve the smoothness in the input level
for the current optimized point.

• BO-qEI [47] refers the Bayesian Optimization with quasi-Expected Improvement acquisi-
tion function. The method tries to fit the proxy model f̂ , and maximizing it via Gaussian
process.

• CMA-ES [15] refers the covariance matrix adaptation. The idea is to maintain a Gaussian
distribution of the optimized design. At each step, samples of designs are drawing from the
Gaussian distribution, and the covariance matrix is re-fitted by the top-performing designs
estimated by a pre-trained proxy model f̂(x).

• Grad./Grad.Min/Grad.Mean [44] are a family of methods that use gradient ascent to find
the optimal design. All of them require a pre-trained proxy model. For Grad., the proxy
model is trained by minimizing the L2 norm of f̂(x) and the ground-truth value y. For
Grad.Min, it learns 5 different proxy models, and use the minimum of it as the predicted
value. For Grad.Mean, it uses the mean of the 5 models. In the optimization stage, gradient
ascent on the proxy model is used to find the optimized point.

• REINFORCE [46] pre-trains a proxy model f̂(x) and use the policy gradient method to
find the optimal design distributions that maximizes the f̂(x).

C.3 Implementation Details

For all the baseline methods, we directly report performance numbers associated with Design-
Bench [43]. Below, we now discuss implementation details for the method developed in this paper,
IOM. Our implementation builds off of the official implementation of COMs, provided by the
authors Trabucco et al. [44]

Data preprocessing. Following prior work [44], we perform standardization for both the input x and
objective value y before training the objective model bf . Essentially, we standardize x to x̃ := x�µx

�x
,

with µx and �x stands for the empirical mean and variance for x, similarly for ỹ with ỹ := y�µy

�y
.

Neural networks representing bf and �. We parameterize the learned model bf and the representation
�(·) 2 R64 using three hidden layer neural networks, that assume identical architectures for all the
tasks. The representation network, �⌘(x) is a neural network with two hidden layers of size 2048,
followed by Leaky ReLU (using default leak value of 0.3). The representation is of size 128. In some
preliminary experiments, we observed that our method, IOM was pretty robust to the dimension of
the representation, so we simply chose to utilize 128-dimensional representations for all the task,

19



with no tuning. For the network representing bf , we utilize a neural network with two hidden layers of
size 1024, followed by Leaky ReLU (using default leak 0.3), the output is a 1-dimensional scalar
used to predict the value y.

We utilize the �2-discrepancy, discH in our experiments: disc�(p, q) := �2([�(x)]x⇠p, [�(x)]x⇠q).
This divergence can be instantiated in its variational form via a least-squares generative adversarial
network (LS-GAN) [32] on the representations �(x). Concretely, we train an LS-GAN discrimina-
tor to discriminate between the representations �(x) under the training distribution µ(x) and the
optimized distribution µOPT(x), whereas the feature representations under these distributions are
optimized to be as invariant to each other as possible. We also evaluated a variety of discrepancy
measures, including the maximum mean discrepancy (MMD) [13], but found the �2-divergence to be
the best performing version across the board.

Hyperparameters. We utilize identical hyperparameters for all tasks, and these hyperparameters
are taken directly from the implementation of Trabucco et al. [44]. For training the learned model
f✓(�(·)), we use Adam optimizer with default learning rate 0.001 and (�1,�2) = (0.9, 0.999).
The batch size is 128 and the number of training epochs is 300. For training the representation
network, the optimizer is Adam with learning rate 0.0003 and default (�1,�2) = (0.9, 0.999). We
represent µOPT as a non-parameteric distribution represented by 128 particles, initialized from 128
randomly sampled inputs x in the dataset. We then alternate between performing one gradient
step on µOPT and one gradient step on f✓ and �. To select a value for the hyperparameter �
(weight for the invariance regularizer term), we run our method with a wide range of � values
⇤ = {0.1, 0.5, 1.0, 2.0, 5.0, 10.0, 100.0}. In the main experimental results we report, following the
convention in prior work [43], we choose � to be uniform across all tasks, but � is chosen via
online evaluation. For our tuning procedure, we apply our tuning procedure where we keep the top
45% models which achieve a discriminator loss closes to 0.25, and select the one with the smallest
validation prediction error among it . We perform an ablation of this strategy and the quantile of
models that are kept in Section 5.2.

For the IOM-C variant we show in our experiments, we set the initial value of the Lagrange multiplier
↵ = 0.3–and this value is taken directly from Trabucco et al. [44]–and update it using Adam optimizer
with learning rate 0.01.

Offline Hyperparameters tuning When implementing this procedure in practice, we must first
select the value of ". For obtaining perfect invariance, the value of " must be equal to 0.25 (when the
discriminator is trained using a �2-divergence least-squares GAN objective), and therefore, " must be
set close to 0.25. However, in practice, instead of selecting ", we can select a fraction of all possible
� values that pass the filter. In our experiments, we sort the runs based on the absolute difference
between the value of invariance regularizer (i.e., the discriminator training objective) and 0.5, and let
the top 15% (top 3 out of the 7 � values we tune on) of the runs be selected for the second step.

We release the code for our method along with additional details at the following anonymous website:
https://sites.google.com/view/iom-neurips.

C.4 Overall Performance Comparisons

In Table 3, we provide the comparison of IOM and IOM-C with all baselines (including RoMA). To
understand the trend in aggregated results, please check the plots in Figure 4.

D Additional results for early stopping the optimization of µOPT

We provide additional results for the effectiveness of our tuning strategy for early stopping. Results
for the additional two tasks are presented in Figure 5. The top row shows the objective value of
the optimized point as a function of the number of training epochs, and the bottom row shows the
prediction error on the validation set. We use the vertical line to denote the point with the smallest
MSE by our early stopping strategy. Among all tasks, our strategy is able to find a good checkpoint
and this verifies the efficacy of our approach on different domains.
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Figure 4: Median and IQM [1] (with 95% Stratified Bootstrap CIs) for the aggregated normalized score on
Design-bench, for all the baseline methods. As we could not find the individual runs for RoMA [49], we report
the mean and standard deviation for RoMA (copied from the results in Yu et al. [49]) in Appendix C.4.

Table 3: Comparative evaluation of IOM and IOM-C against prior methods in terms of the mean
100th-percentile score (following the protocol in Trabucco et al. [43]) and its standard deviation over
5 trials (the number for ROMA is copied from Yu et al. [49], and it is over 16 trails). We have now
additionally evaluated the LCB+GP baseline that optimizes the design against the lower-confidence
bound estimate obtained from the posterior of a GP fit to the training data. Observe that IOM
outperforms this approach as well.

Superconductor Ant Morphology D’Kitty Morphology Hopper Controller
D (best) 0.399 0.565 0.884 1.0
Auto. CbAS 0.421 ± 0.045 0.882 ± 0.045 0.906 ± 0.006 0.137 ± 0.005
CbAS 0.503 ± 0.069 0.876 ± 0.031 0.892 ± 0.008 0.141 ± 0.012
MINs 0.469 ± 0.023 0.913 ± 0.036 0.945 ± 0.012 0.424 ± 0.166
COMs 0.439 ± 0.033 0.944 ± 0.016 0.949 ± 0.015 2.056 ± 0.314
RoMA 0.562 ± 0.030 0.875 ± 0.013 1.036 ± 0.042 1.867 ± 0.282
BO-qEI 0.402 ± 0.034 0.819 ± 0.000 0.896 ± 0.000 0.550 ± 0.118
CMA-ES 0.465 ± 0.024 1.214 ± 0.732 0.724 ± 0.001 0.604 ± 0.215
Grad. 0.518 ± 0.024 0.293 ± 0.023 0.874 ± 0.022 1.035 ± 0.482
Grad. Min 0.506 ± 0.009 0.479 ± 0.064 0.889 ± 0.011 1.391 ± 0.589
Grad. Mean 0.499 ± 0.017 0.445 ± 0.080 0.892 ± 0.011 1.586 ± 0.454
REINFORCE 0.481 ± 0.013 0.266 ± 0.032 0.562 ± 0.196 -0.020 ± 0.067
LCB+GP N/A 0.765 ± 0.056 0.871 ± 0.009 1.736 ± 0.261

IOM (Ours) 0.504 ± 0.040 0.977 ± 0.009 0.949 ± 0.010 2.444 ± 0.080
IOM-C (Ours) 0.511 ± 0.037 0.966 ± 0.012 0.940 ± 0.007 1.482 ± 0.650

D.1 Performance of IOM and IOM-C under different invariance regularizer �

In this section, we provide the final performance of IOM and IOM-C, under different values of the
hyperparameter � used for training (Equation 4). Results for all tasks are displayed in Figure 10.
As is the case with any other prior method for data-driven decision making that adds a regularizer,
both IOM and IOM-C are also sensitive to the hyper-parameter �, which demonstrates the necessity
of our proposed tuning scheme. And fortunately, as observed in Section 5, our tuning scheme can
indeed attain good performance, for many choices of the ✏ (see Figure 3), making it easier to tune
this hyperparameter � in practice.

E Additional Results

Computational cost of tuning IOM via our offline workflow. In order to tune IOM via our offline
workflow we first run IOM with multiple different hyperparameters. Concretely, in our experiments,
we use 7 different hyperparameters, and then apply our offline tuning strategy, which only utilizes the
loss values of the various runs, without incurring any significant computational cost of its own.
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Figure 5: Visualizing our early stopping scheme on two more tasks. As per Section 4, the checkpoint
selected is the epoch that has the smallest validation prediction error, and early stopping at this point generally
performs well.

Figure 6: Suboptimality gaps of various offline tuning strategies for IOM when compared in each
individual task.

Thus, our hyperparameter tuning strategy does not incur additional computational cost. When it
comes to the cost of running IOM, we expect that beyond implementation differences, the cost of
running IOM should not be significantly worse than COMs: the only additional component trained by
IOM is the discriminator that is used to compute the �2-divergence on the representation, which in
our implementation only adds 2 more fully connected layers.

COMs lead to worse training prediction error and more non-smooth functions compared to IOM.
Next we attempt to gain insights into what might explain why IOM outperforms COMs in several
of our tasks. We suspect that this is because applying a conservatism regularizer on the learned
function value itself, like COMs [44], does in fact distort the learned objective function more than
IOM. To understand if this is the case empirically, we plot two quantities: (a) the value of the training
prediction error: Ex,y⇠D

h
( bf✓(x)� y)2

i
for the best hyperparameter for COMs and IOM in Figure 7,

and (b) the “smoothness” of the learned function w.r.t. input, measured via the norm of the gradient
of f✓ with respect to x, i.e., Ex⇠D

⇥
||rxf✓(�(x)||22

⇤
in Figure 8. Observe that in both the Ant

Morphology and Hopper Controller tasks, IOM is able to minimize the prediction error better than
COMs, and the gradient norm for COMs is strictly higher than IOM indicating that conservatism on
learned function leads to more non-smooth functions and reduces the ability of the learned function
to fit the offline dataset.
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Figure 7: Comparison of prediction error between IOM and COMs. Note that COMs attains a worse
prediction error than IOM.

Figure 8: Comparison of gradient norm between IOM and COMs during training (log scale). Note that the
gradient norm for COMs is clearly higher, indicating that COMs learn a more non-smooth function than IOM.

F Intuition Behind How IOM Works

Figure 9: Figure illustrating the intuition behind IOM. When we apply the invariance regularizer prescribed
by IOM during training, this invariance regularizer would attempt to make the distribution of the representation
of the out-of-distribution (OOD) designs found by the optimizer match the distribution of the representations in
the training dataset, which would make these points take on a function value that matches the average dataset
value. By running this training multiple times, the IOM training procedure would gradually suppress the value of
all out-of-distribution erroneous peaks in the learned function, and will enable us to find an optimal design that
lies within the training distribution (though not necessarily in the training dataset.)
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Figure 10: Score of final optimized x⇤ (with 2 standard deviations) of IOM and IOM-C under different
invariance regularizer �
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