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Abstract

Data augmentation is commonly applied to improve performance of deep learning
by enforcing the knowledge that certain transformations on the input preserve
the output. Currently, the data augmentation parameters are chosen by human
effort and costly cross-validation, which makes it cumbersome to apply to new
datasets. We develop a convenient gradient-based method for selecting the data
augmentation without validation data during training of a deep neural network.
Our approach relies on phrasing data augmentation as an invariance in the prior
distribution on the functions of a neural network, which allows us to learn it using
Bayesian model selection. This has been shown to work in Gaussian processes, but
not yet for deep neural networks. We propose a differentiable Kronecker-factored
Laplace approximation to the marginal likelihood as our objective, which can be
optimised without human supervision or validation data. We show that our method
can successfully recover invariances present in the data, and that this improves
generalisation and data efficiency on image datasets.

1 Introduction

Data augmentation is a commonly used machine learning technique that is essential to high-
performing deep learning and computer vision systems. It aims to obtain a model that is invariant
to a set or distribution of transformations, by fitting a model with inputs that are transformed in a
way that is known to leave the output class unchanged. This procedure can be regarded as artificially
creating more data and is well known to increase generalisation performance and data efficiency. Yet,
choosing the right transformations is an expensive and task-specific process that relies on domain
knowledge and human effort, as well as trial-and-error through cross-validation. This can quickly
become intractable when many parameters are considered, particularly if they are continuous, because
each setting requires training a model to convergence.

We aim to make selecting suitable transformations easier, by learning them via gradient descent.
Our approach is inspired by the procedure of van der Wilk et al. (2018), which casts learning
invariances and data augmentations as a Bayesian model selection problem. This view suggests
selecting invariances by maximising the marginal likelihood with gradient-based optimisation. While
this approach was successful in Gaussian process models, it has not yet been demonstrated in deep
neural networks, where the marginal likelihood is harder to approximate.

∗Equal contribution, order decided by coin flip. Correspondence to: alexander.immer@inf.ethz.ch,
tycho.vanderouderaa@imperial.ac.uk

The code is available at https://github.com/tychovdo/lila

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://github.com/tychovdo/lila


-20°

-60°

DNN

Step A: sample S augmented 
data points/sets dependent on 
invariance parameter                
(here controls max rotation)

Step B: obtain invariant deep 
neural network by averaging 
over augmentation samples  
from  

Step C: Approximate and 
differentiate marginal 
likelihood wrt.    to optimize 
invariance during training

<latexit sha1_base64="Ag+APHyUvxqMD/tPhU8Du9Db+XU=">AAACAXicbVDLSgMxFL3js9ZX1aWbYBFclRkRdVlw47KCfUBbSiaTaWMzmSG5I5ahK3/Arf6BO3Hrl/gDfodpOwvbeiBwOOde7snxEykMuu63s7K6tr6xWdgqbu/s7u2XDg4bJk4143UWy1i3fGq4FIrXUaDkrURzGvmSN/3hzcRvPnJtRKzucZTwbkT7SoSCUbRSoyODGE2vVHYr7hRkmXg5KUOOWq/00wlilkZcIZPUmLbnJtjNqEbBJB8XO6nhCWVD2udtSxWNuOlm07RjcmqVgISxtk8hmap/NzIaGTOKfDsZURyYRW8i/ue1Uwyvu5lQSYpcsdmhMJUEYzL5OgmE5gzlyBLKtLBZCRtQTRnaguauPM2iFm0x3mINy6RxXvEuK97dRblK8ooKcAwncAYeXEEVbqEGdWDwAC/wCm/Os/PufDifs9EVJ985gjk4X78Da5ei</latexit>

...

<latexit sha1_base64="jJdVG6ehVf9rupgDcB5Iw2zYI5g=">AAACB3icbVDLSsNAFL1TX7W+qi7dDBbBVUlE1GXBjcuKthWaUCbTSTt0MgkzE7GEfoA/4Fb/wJ249TP8Ab/DSZuFbT1w4XDOvdzDCRLBtXGcb1RaWV1b3yhvVra2d3b3qvsHbR2nirIWjUWsHgKimeCStQw3gj0kipEoEKwTjK5zv/PIlOaxvDfjhPkRGUgeckqMlTwvImYYhFk46d31qjWn7kyBl4lbkBoUaPaqP14/pmnEpKGCaN11ncT4GVGGU8EmFS/VLCF0RAasa6kkEdN+Ns08wSdW6eMwVnakwVP170VGIq3HUWA384x60cvF/7xuasIrP+MySQ2TdPYoTAU2Mc4LwH2uGDVibAmhitusmA6JItTYmua+PM2iVmwx7mINy6R9Vncv6u7tea2Bi4rKcATHcAouXEIDbqAJLaCQwAu8wht6Ru/oA33OVkuouDmEOaCvX7lPmjo=</latexit>

fS

<latexit sha1_base64="qh59FvXfAbjuu1dCX5vIZe8KIuc=">AAACB3icbVDLSsNAFL2pr1pfVZduBovgqiQi6rLgxmUF+4AmlMl00g6dzISZiVhCP8AfcKt/4E7c+hn+gN/hpM3Cth64cDjnXu7hhAln2rjut1NaW9/Y3CpvV3Z29/YPqodHbS1TRWiLSC5VN8SaciZoyzDDaTdRFMchp51wfJv7nUeqNJPiwUwSGsR4KFjECDZW8v0Ym1EYZdG07/WrNbfuzoBWiVeQGhRo9qs//kCSNKbCEI617nluYoIMK8MIp9OKn2qaYDLGQ9qzVOCY6iCbZZ6iM6sMUCSVHWHQTP17keFY60kc2s08o172cvE/r5ea6CbImEhSQwWZP4pSjoxEeQFowBQlhk8swUQxmxWREVaYGFvTwpenedSKLcZbrmGVtC/q3lXdu7+sNVBRURlO4BTOwYNraMAdNKEFBBJ4gVd4c56dd+fD+Zyvlpzi5hgW4Hz9AoMfmhg=</latexit>

f1 Avg. ±60° learned
<latexit sha1_base64="nU6N8jOjwpoTaMKLO67Bx8U26b0=">AAACBXicbVDLSgMxFL1TX7W+qi7dBKvgqsyIqMuCG5cV7APboWTSTBuaSYYkI5aha3/Arf6BO3Hrd/gDfoeZdha29UDgcM693JMTxJxp47rfTmFldW19o7hZ2tre2d0r7x80tUwUoQ0iuVTtAGvKmaANwwyn7VhRHAWctoLRTea3HqnSTIp7M46pH+GBYCEj2FjpoRthMwzCNJz0yhW36k6BlomXkwrkqPfKP92+JElEhSEca93x3Nj4KVaGEU4npW6iaYzJCA9ox1KBI6r9dJp4gk6t0kehVPYJg6bq340UR1qPo8BOZgn1opeJ/3mdxITXfspEnBgqyOxQmHBkJMq+j/pMUWL42BJMFLNZERlihYmxJc1deZpFLdlivMUalknzvOpdVr27i0rtJK+oCEdwDGfgwRXU4Bbq0AACAl7gFd6cZ+fd+XA+Z6MFJ985hDk4X79L95l4</latexit>

f

<latexit sha1_base64="yC1E0Kvy+Fd8laU3awTMKI0O5Ao=">AAAB/nicbVDLSgMxFL2pr1pfVZe6CBbBVZkpoi4LblxWtA9oh5JJM21oJjMkGWkZCv6AW/0Dd+LWX/EH/A7Tdha29UDgcM693JPjx4Jr4zjfKLe2vrG5ld8u7Ozu7R8UD48aOkoUZXUaiUi1fKKZ4JLVDTeCtWLFSOgL1vSHt1O/+cSU5pF8NOOYeSHpSx5wSoyVHkbdSrdYcsrODHiVuBkpQYZat/jT6UU0CZk0VBCt264TGy8lynAq2KTQSTSLCR2SPmtbKknItJfOok7wuVV6OIiUfdLgmfp3IyWh1uPQt5MhMQO97E3F/7x2YoIbL+UyTgyTdH4oSAQ2EZ7+G/e4YtSIsSWEKm6zYjogilBj21m4MppHLdhi3OUaVkmjUnavyu79Zal6mlWUhxM4gwtw4RqqcAc1qAOFPrzAK7yhZ/SOPtDnfDSHsp1jWAD6+gU1jZYH</latexit>

x
2

<latexit sha1_base64="v8MK7ibvP3JVojDG8HVh2yn0+yE=">AAACX3icbZDLSgNBEEU74zu+El1JXDQGwYWEmRCSbATBjQsFhUSFTAg9PTXa2POgu0YShln4NW71c1z6J3YegjEWNFxu3eoqjpdIodG2PwvW0vLK6tr6RnFza3tnt1Teu9Nxqjh0eSxj9eAxDVJE0EWBEh4SBSz0JNx7zxfj/v0LKC3iqIOjBPohe4xEIDhDYw1KFXfyR4bMkynkdOQiDBExO8vtQalq1+xJ0UXhzESVzOpmUC6cun7M0xAi5JJp3XPsBPsZUyi4hLzophoSxp/ZI/SMjFgIup9NLsjpsXF8GsTKvAjpxP09kbFQ61HomWTI8En/7Y3N/3q9FIN2PxNRkiJEfLooSCXFmI6RUF8o4ChHRjCuhLmV8iemGEcDbm7LcHpq0fUhMMDn0GWXneurPHOCVstrLEYU+D8Rv1lv1dt50fB1/tJcFHf1mtOsNW4b1fPDGel1UiFH5IQ4pEXOySW5IV3CySt5I+/ko/BlrVk7VmkatQqzmX0yV9bBN/4xt9k=</latexit>

y=0

<latexit sha1_base64="ag7G/APk5+wAKCuMpOnM1Ae4JxQ="></latexit>

y=1

<latexit sha1_base64="yC1E0Kvy+Fd8laU3awTMKI0O5Ao=">AAAB/nicbVDLSgMxFL2pr1pfVZe6CBbBVZkpoi4LblxWtA9oh5JJM21oJjMkGWkZCv6AW/0Dd+LWX/EH/A7Tdha29UDgcM693JPjx4Jr4zjfKLe2vrG5ld8u7Ozu7R8UD48aOkoUZXUaiUi1fKKZ4JLVDTeCtWLFSOgL1vSHt1O/+cSU5pF8NOOYeSHpSx5wSoyVHkbdSrdYcsrODHiVuBkpQYZat/jT6UU0CZk0VBCt264TGy8lynAq2KTQSTSLCR2SPmtbKknItJfOok7wuVV6OIiUfdLgmfp3IyWh1uPQt5MhMQO97E3F/7x2YoIbL+UyTgyTdH4oSAQ2EZ7+G/e4YtSIsSWEKm6zYjogilBj21m4MppHLdhi3OUaVkmjUnavyu79Zal6mlWUhxM4gwtw4RqqcAc1qAOFPrzAK7yhZ/SOPtDnfDSHsp1jWAD6+gU1jZYH</latexit>

x
2

<latexit sha1_base64="CJbLDSwpXnAXHeHD404379/PHmE=">AAAB/nicbVDLSgMxFL3js9ZX1aUugkVwVWZE1GXBjcuK9gHtUDLpbRuayQxJRlqGgj/gVv/Anbj1V/wBv8O0nYVtPRA4nHMv9+QEseDauO63s7K6tr6xmdvKb+/s7u0XDg5rOkoUwyqLRKQaAdUouMSq4UZgI1ZIw0BgPRjcTvz6EyrNI/loRjH6Ie1J3uWMGis9DNteu1B0S+4UZJl4GSlChkq78NPqRCwJURomqNZNz42Nn1JlOBM4zrcSjTFlA9rDpqWShqj9dBp1TM6s0iHdSNknDZmqfzdSGmo9CgM7GVLT14veRPzPayame+OnXMaJQclmh7qJICYik3+TDlfIjBhZQpniNithfaooM7aduSvDWdS8LcZbrGGZ1C5K3lXJu78slk+yinJwDKdwDh5cQxnuoAJVYNCDF3iFN+fZeXc+nM/Z6IqT7RzBHJyvXzP1lgY=</latexit>x1

invariance

0

100

200

300

0°

20°

40°

60°

Steps 5000

<latexit sha1_base64="mpOqzdyy8OoJfxtOKjNbjLE6oPY="></latexit>

⌘
<latexit sha1_base64="JDltMycjqGneVRcSGK3NZS2W1j8="></latexit>

p(x0|x, ⌘)

<latexit sha1_base64="nF1snShRdq+h1hbLw6ZX4EEzuJA="></latexit>

x0<latexit sha1_base64="mpOqzdyy8OoJfxtOKjNbjLE6oPY="></latexit>

⌘

<latexit sha1_base64="Hx73yy/4XQv1d9jcVv92SHTWW0Y="></latexit>

-
lo

g
p
(D

|⌘
)

<latexit sha1_base64="3pcmBS99dNLCOz7XcCUZhL1Dc7g="></latexit> ⌘

<latexit sha1_base64="CJbLDSwpXnAXHeHD404379/PHmE=">AAAB/nicbVDLSgMxFL3js9ZX1aUugkVwVWZE1GXBjcuK9gHtUDLpbRuayQxJRlqGgj/gVv/Anbj1V/wBv8O0nYVtPRA4nHMv9+QEseDauO63s7K6tr6xmdvKb+/s7u0XDg5rOkoUwyqLRKQaAdUouMSq4UZgI1ZIw0BgPRjcTvz6EyrNI/loRjH6Ie1J3uWMGis9DNteu1B0S+4UZJl4GSlChkq78NPqRCwJURomqNZNz42Nn1JlOBM4zrcSjTFlA9rDpqWShqj9dBp1TM6s0iHdSNknDZmqfzdSGmo9CgM7GVLT14veRPzPayame+OnXMaJQclmh7qJICYik3+TDlfIjBhZQpniNithfaooM7aduSvDWdS8LcZbrGGZ1C5K3lXJu78slk+yinJwDKdwDh5cQxnuoAJVYNCDF3iFN+fZeXc+nM/Z6IqT7RzBHJyvXzP1lgY=</latexit>x1

<latexit sha1_base64="bXJ9i3fMzs6Kfk0cTb3S9qowQoo="></latexit>

D=(x,y)

+80°

<latexit sha1_base64="kS4QIN2YcJ5TveOQ/6J3AYkLevg="></latexit>

x0
1

<latexit sha1_base64="oHKXftbh8LFNlx5n5NkE02Fzemc="></latexit>

x0
S

<latexit sha1_base64="kBT36um24uTJML3fLqVLD1E0aS4="></latexit>. . .

<latexit sha1_base64="TFuNYt166DZ+kurDinMqqtZPQ+8="></latexit>

p(x0|x, ⌘)

<latexit sha1_base64="YrhiL75AHAKTY7yshyVUdSJR70E=">AAAD4HiclVJLa9tAEF5LfaTqI0l7bA9LjakDrpGMiXMJBNpCDi2kNE4CljGr1coWWT3QjorFeu+9lV7bX9Z/05Ut169Q6MCKb2a++WYYjZfyUIBt/64Z5r37Dx7uPbIeP3n6bP/g8PmVSPKMsj5NeJLdeEQwHsasDyFwdpNmjEQeZ9fe7bsyf/2VZSJM4ksoUjaMyDgOg5AS0KHRYe1Xw52rSCBexnyFCxfYFADkqXKshsuA6G9EYOIFcqreWI20uebiGV55LVzSjzS/knirXJ6McVVBCZfv1WzJWSkvEnjVeK1DawkLdbQxyOiLdrmfgNgaabZeXPWaEJDLcKDu1HdhoslVyeki6skPaiT/ra4GK+F14rbw0PrvKUYHdbttzw3vAqcCdVTZhf6dLddPaB6xGCgnQgwcO4WhJBmElDNlublgKaG3ZMwGGsYkYmIo5wegcENHfBwkmX4x4Hl0vUKSSIgi8jSznFZs58rgXblBDsHJUIZxmgOL6aJRkHMMCS5vEvthxijwQgNCs1DPiumEZISCvtyNLtPFqJbrs0Bf/N/L5TlT8vzy00clnaDX87q7lPK4K4p/3Ol1TpSl9+tsb3MXXHXaznG7+7lbP3tVbXoPvUSvURM5qIfO0Dm6QH1EDcNoGo7RMT3zm/nd/LGgGrWq5gXaMPPnHzeyR7s=</latexit>

f̂(x, ✓, ⌘)
<latexit sha1_base64="zsNswbD+sTZjT3HM6krnYOlgacQ="></latexit>

f̂(x, ✓, ⌘) = Ep(x0|x,⌘)[f(x
0, ✓)]

Figure 1: Illustration of our approach on a dataset with rotational invariance. Steps A and B allow to
define a Bayesian neural network with a likelihood dependant on invariance parameter η (van der Wilk
et al., 2018). Our contributions enable tractable marginal likelihood estimation and differentiation
during training, as illustrated in Step C. The right-most figure shows the posterior predictive of our
Bayesian neural network after learning the invariance present in the data.

To circumvent this problem, we built upon the scalable Laplace approximation to the marginal
likelihood developed by Immer et al. (2021a), who recently showed that maximising it can successfully
select neural network hyperparameters, such as architectures. We extend their method to enable
gradient-based optimisation of complex hyperparameters that control invariances in deep neural
networks. To that end, we propose an efficient and differentiable Kronecker-factored Laplace
approximation for invariant neural networks and a novel method to obtain stochastic gradients with
respect to invariance parameters, which is also useful for optimising other hyperparameters. Our
method is the first to enable differentiable Bayesian model selection to learn complex hyperparameters,
in particular invariances, in deep neural networks.

Our approach is illustrated in Fig. 1. We specify invariances as a parameterised distribution over
perturbations of the network’s input, like in data augmentation (Step A). The model output is averaged
over samples from the distribution (Step B), which yields a Bayesian neural network with likelihood
dependent on the perturbations (Nabarro et al., 2021). We derive a marginal likelihood approximation
for such neural networks and show how to efficiently compute its gradients with respect to the
invariance parameters (Step C). By approximating the marginal likelihood, we can differentiably
learn invariances during training, jointly with neural network parameters, and without validation data.

We demonstrate experimentally that our method can differentiably learn useful distributions over affine
invariances, which are common data augmentations, on various versions of the image classification
datasets MNIST, FashionMNIST, and CIFAR-10, without validation data. Our learned invariances
improve the generalisation and data efficiency of neural networks, without the effort required for
choosing data augmentations or custom architectures. On original datasets, our method can increase
test performance by up to 8-10 percentage points. On random subsets of image classification datasets,
we show that our method can achieve up to 10× better data efficiency. Our work strengthens how
Bayesian methods can be useful for deep learning beyond predictive uncertainty estimation.

2 Related Work

Invariances in deep learning. Since the inception of the convolutional neural network (CNN)
(Fukushima and Miyake, 1982; LeCun et al., 1998), building invariances and equivariances into
deep learning models has drastically increased data efficiency and generalisation (Cohen et al., 2018;
Brandstetter et al., 2021), for instance, on image classification (Cohen and Welling, 2016), molecular
dynamics (Batzner et al., 2021), and reinforcement learning (van der Pol et al., 2020). However,
these approaches require knowing the invariances a priori. In this work, on the other hand, we aim to
automatically learn the correct type and amount of invariance from data without supervision.

Learning invariances. Learning invariances from data is hard, because symmetries define con-
straints on the functions a network can represent, and therefore do not improve data fit according
to the training loss, even if they would lead to better generalisation on test data. Some methods
have therefore proposed to learn invariances or data augmentation by estimating gradients on the
validation loss. For example, AutoAugment (Cubuk et al., 2018) learns data augmentation using
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policy gradients, Lorraine et al. (2020) use the implicit function theorem, and Zhou et al. (2020)
phrase the problem as meta-learning. Such approaches require validation sets of sufficient size to
prevent high variance and overfitting (Lorraine et al., 2020). Here, we tackle the problem of learning
invariances when validation data is not available.
Validation-free invariance learning. When casting invariance learning as a Bayesian model
selection problem, we can select helpful invariances using the marginal likelihood of the model
with training data alone. This has been successfully demonstrated in Gaussian processes (van der
Wilk et al., 2018) and in the weight space of single-layer neural networks (van der Ouderaa and
van der Wilk, 2021). To scale this approach to deep networks, Schwöbel et al. (2022) attempt to
use a marginal likelihood that is only computed in the last layer. While the latter was successful
for small neural networks, it failed to learn invariances on more complex datasets that require deep
neural networks, likely due to known limitations of last-layer approaches (Ober et al., 2021; van
Amersfoort et al., 2021). Augerino (Benton et al., 2020) is an alternative to Bayesian model selection
that works for deep learning by regularising invariances to increase during training. However, this
approach depends on the chosen parameterisation of the invariance and may still require a validation
set to tune the regularisation strength. In App. C, we show that these issues can be detrimental to
Augerino’s performance. In contrast, our proposed method uses the Bayesian marginal likelihood
estimate in deep neural networks that is parameterisation-invariant and improves performance. The
main differences between our proposed method and the alternatives are summarised in App. A.

Bayesian model selection for deep learning. Marginal likelihood approximations have recently en-
abled gradient-based hyperparameter optimisation for deep neural networks (Immer et al., 2021a; Ober
and Aitchison, 2021; Antorán et al., 2022a). Laplace approximations (MacKay, 1992) with structured
Hessian approximations, such as KFAC (Martens and Grosse, 2015; Botev et al., 2017), or linearisation
have been shown to improve generalisation, for example, by optimising weight regularisation (Immer
et al., 2021a; Daxberger et al., 2021) and learning length-scales of convolutions (Antorán et al., 2022a).
Other approximate inference methods that rely on ensembling or sampling do not directly apply to
marginal likelihood estimation while common methods like mean-field variational inference (Blundell
et al., 2015) or last-layer approaches (Ober et al., 2021; Daxberger et al., 2021; Schwöbel et al., 2022)
have been shown to fail for model selection. We therefore focus on Laplace approximations and
extend them to enable gradient-based optimisation of more complex hyperparameters like invariances.

3 Background

We consider a supervised learning task with dataset D = {(xn,yn)}Nn=1 consisting of N inputs
x ∈ RD and targets y ∈ RC . Our goal is to learn the function f : RD → RC that relates the inputs
and outputs, which we represent as a neural network f(x;θ) with parameters θ. We control which
solutions for f are preferred over others (i.e., the inductive bias) with hyperparameters H, which
parameterise the prior over θ and f . Invariance is a particularly helpful inductive bias that constrains
the output of f to remain similar for certain transformations of the input x, which can improve
generalisation by allowing a single datapoint to inform predictions for a wider range of inputs. Our
goal is to learn useful invariances together with the network weights.

3.1 Parameterising Invariance

To construct and parameterise invariant functions, we consider a local invariance that intuitively
requires the function to not change “too much” in response to transformed inputs. To obtain such
an invariant function f̂ , we average an unconstrained function f over a perturbation distribution
p(x′|x,η). In practice, we sample x′ by reparameterising ϵ ∼ p(ϵ) with a differentiable function g

and approximate the expectation with S Monte Carlo samples ϵ1, . . . , ϵS
iid∼ p(ϵ) (van der Wilk et al.,

2018; Benton et al., 2020):

f̂(x;θ,η) = Ep(x′|x,η)[f(x
′;θ)] = Ep(ϵ)[f(g(x, ϵ;η);θ)] ≈ 1

S

∑
sf(g(x, ϵs;η);θ) , (1)

where f̂ is differentiable in the parameters η that control the perturbation distribution and therefore
the invariance. When the perturbation distribution is uniform on the orbit of a group, we recover exact
invariance in f̂ (Kondor, 2008; Ginsbourger et al., 2016). The perturbation distribution resembles data
augmentation applied to f instead of the loss and is also used at test time (f̂ depends on it). Because
the unconstrained function f is a neural network, we refer to f̂ as an invariant neural network.
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Given that we can parameterise a suitable data augmentation distribution p(x′|x,η), we can learn
invariances in arbitrary domains or group structures. What parameterisation works best in practice
remains a research question. In our experiments, we consider a combination of uniform distributions
and corresponding parameters η ∈ R6 over 6 generator matrices that define a probability density
over the group of affine transformations, similar to Benton et al. (2020) and detailed in App. B.

Finding invariance parameters η is hard because f̂ is a constrained version of f and, especially for
flexible models, this cannot improve the data fit according to the standard training loss (see also
App. G.1). To overcome this, we propose to use Bayesian inference which provides a convenient
framework to optimise invariance parameters with gradients during training without validation data.

3.2 Bayesian Model Selection

Bayesian inference prescribes how unknowns, such as invariance parameters, should be determined
from data. To infer hyperparametersH from data, we are interested in the their posterior, p(H|D) ∝
p(D|H)p(H) (MacKay, 2003). Because this posterior is intractable, type II maximum likelihood
(ML-II) is often used instead, which obtains a point estimate H∗ for the optimal hyperparameters
according to the marginal likelihood p(D|H), which requires integration over the model parameters.

ML-II is routinely used in Gaussian processes (Rasmussen and Williams, 2006, § 5.2) and trades off
model simplicity with data fit (Rasmussen and Ghahramani, 2001). There are also strong relations
to quantities from other statistical frameworks, like cross-validation (Fong and Holmes, 2020),
Minimum Description Length (Grünwald, 2007), and generalisation error bounds (Germain et al.,
2016). Van der Wilk et al. (2018) showed its usefulness for selecting invariances, and elaborated on
the mechanism by which it works. The main advantage of the marginal likelihood,

p(D|H) =
∫
p(D|θ,H)p(θ|H) dθ =

∫ ∏N
n=1 p(yn|f(xn;θ),H)p(θ|H) dθ , (2)

is that it can be computed from the training data alone and optimised with gradients. In our work, the
integration is over the neural network parameters and requires particularly scalable approximations.

3.3 Bayesian Model Selection for Deep Learning

Computing the marginal likelihood for neural networks involves intractable integrals. The Laplace
approximation (Laplace, 1774; MacKay, 2003, § 27) offers a solution by approximating the log joint
of the parameters and data, p(D,θ|H), with a second-order Taylor expansion around a mode θ∗:

log p(D|H) ≈ log p(D,θ∗|H)− 1
2 log

∣∣ 1
2πHθ∗

∣∣ , (3)

where the first term decomposes into the log likelihood, a sum over data points, and the log prior,
both of which are cheap and easy to evaluate and correspond to a typical training loss evaluated at a
mode θ∗. The second term depends on the log determinant of the log-joint Hessian at the same mode

Hθ∗
def
= −∇2

θ log p(D,θ|H)|θ=θ∗ = HNLL
θ∗ −∇2

θ log p(θ|H)|θ=θ∗ , (4)

where HNLL
θ∗ denotes the Hessian of the negative log likelihood. This approach allows to estimate the

marginal likelihood using a MAP estimate θ∗ of the weights and its local curvature Hθ∗ .

To circumvent the high cost of estimating the full Hessian, structured generalised Gauss-Newton
(GGN) approximations are preferred for model selection in deep learning, as also in optimisa-
tion (Martens, 2020; Bottou, 2010). Immer et al. (2021a) recently demonstrated successful hyper-
parameter and architecture selection with such approximations. Further, they observe empirically
that their algorithm does not require to be at a mode θ∗, which allows for interleaved gradient-
based optimisation of parameters and hyperparameters during training. With the Jacobian matrix
Jθ(x)

def
= ∂f(x;θ)

∂θ ∈ RC×P of the network output given input x w.r.t. parameters, and Hessian of the
log likelihood w.r.t. network outputs Λ(f) = −∇2

f log p(y|f), the GGN simplifies the negative-log-
likelihood-dependent term of the Hessian:

HNLL
θ ≈ HGGN

θ
def
=
∑N

n=1Jθ(xn)
TΛ(f(xn;θ))Jθ(xn). (5)

Here, we assume that f forms the natural parameters of an exponential family likelihood func-
tion (Murphy, 2012). In classification, for example, f are the logits. We refer to the resulting
approximations as Laplace-GGN. To overcome the still intractable quadratic size of HGGN

θ in P ,
Immer et al. (2021a) use structured approximations like KFAC (Martens and Grosse, 2015). Cheaper
approximations, such as diagonal ones, often compromise accuracy (App. F; Daxberger et al., 2021).
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3.4 Kronecker-Factored Gauss-Newton Approximation (KFAC)

Kronecker-factored approximations to the Gauss-Newton, such as KFAC, are commonly used for
Laplace approximations as they currently seem to provide the best known trade-off between per-
formance and complexity (Ritter et al., 2018; Daxberger et al., 2021). KFAC is a block-diagonal
approximation to the Gauss-Newton matrix HGGN

θ where each block corresponds to a layer in the
neural network (Martens and Grosse, 2015; Botev et al., 2017). It is particularly efficient because
each block is represented as two Kronecker factors instead of one dense matrix. For example, the
GGN block of a layer with D × G parameters, that is, a fully-connected layer connecting D to G
neurons, would have quadratic memory complexity O(D2G2) while the corresponding Kronecker
approximation of KFAC is in O(D2 +G2) and is therefore even tractable for wide neural networks.

Mathematically, KFAC approximates the GGN of the lth block of the neural network parameters by
enforcing a Kronecker factorisation across data points. This would only be exact for a single data
point xn, for which we can write the GGN block corresponding to the parameters of the lth layer as

HGGN
l,n = [al,n ⊗ gl,n]Λn[al,n ⊗ gl,n]

T = [al,na
T
l,n]⊗ [gl,nΛng

T
l,n]

def
= Al,n ⊗Gl,n, (6)

where al,n ∈ RDl is the input to the lth layer for data point xn, gl,n ∈ RGl×C is the transposed
Jacobian of the network output with respect to the output of the lth layer for xn, and Λn =
Λ(f(xn;θ)). Thus, the factors in Eq. 6 are the Jacobian terms as in the GGN (Eq. 5) but only for
the lth layer, i.e., Jθl

(xn)
T = al,n ⊗ gl,n. KFAC then approximates the sum over N data points by

summing up the Kronecker factors individually instead of breaking the Kronecker-factored structure:

HGGN
l =

∑N
n=1[al,na

T
l,n]⊗ [gl,nΛng

T
l,n] ≈ 1

N

[
def
= Al

∑N
n=1al,na

T
l,n

∑N
n=1al,na

T
l,n

∑N
n=1al,na

T
l,n

∑N
n=1al,na

T
l,n

∑N
n=1al,na

T
l,n

∑N
n=1al,na

T
l,n

∑N
n=1al,na

T
l,n

∑N
n=1al,na

T
l,n

∑N
n=1al,na

T
l,n

∑N
n=1al,na

T
l,n

∑N
n=1al,na

T
l,n

∑N
n=1al,na

T
l,n

∑N
n=1al,na

T
l,n

∑N
n=1al,na

T
l,n

∑N
n=1al,na

T
l,n

∑N
n=1al,na

T
l,n

∑N
n=1al,na

T
l,n

]
⊗
[

def
= Gl

∑N
n=1gl,nΛng

T
l,n

∑N
n=1gl,nΛng

T
l,n

∑N
n=1gl,nΛng

T
l,n

∑N
n=1gl,nΛng

T
l,n

∑N
n=1gl,nΛng

T
l,n

∑N
n=1gl,nΛng

T
l,n

∑N
n=1gl,nΛng

T
l,n

∑N
n=1gl,nΛng

T
l,n

∑N
n=1gl,nΛng

T
l,n

∑N
n=1gl,nΛng

T
l,n

∑N
n=1gl,nΛng

T
l,n

∑N
n=1gl,nΛng

T
l,n

∑N
n=1gl,nΛng

T
l,n

∑N
n=1gl,nΛng

T
l,n

∑N
n=1gl,nΛng

T
l,n

∑N
n=1gl,nΛng

T
l,n

∑N
n=1gl,nΛng

T
l,n

]
, (7)

where Al ∈ RDl×Dl and Gl ∈ RGl×Gl can be understood as the uncentered covariance over N data
points of the inputs to the lth layer and the Jacobians wrt. the output of the lth layer, respectively.
The normalization by 1

N is necessary to account for the additional terms that arise from distributing
the sum over the factors. For a single-layer model, i.e., a linear model, KFAC is exact (cf. App. F).

4 Invariance Learning with Differentiable Laplace Approximations

We propose a Laplace-GGN approximation to the marginal likelihood for invariant neural networks
and enable gradient-based optimisation of their invariance parameters during training, without the
use of validation data (see Fig. 1 for a high-level overview). In our approach, we integrate the
augmentation distribution p(x′|x,η) into a Bayesian neural network model such that the marginal
likelihood directly depends on the invariance parameters η ∈ H. In particular, this is due to a
modified likelihood function p(y|f̂(x;θ,η),H) (c.f., Nabarro et al., 2021). This model enables
optimisation of the invariance parameters η using gradient ascent on the log marginal likelihood,

η ← η +∇η log p(D|H = {η,M}) , (8)
where M = H \ {η} are remaining hyperparameters, such as regularisation strength or model
architecture. However, the tractable Laplace-GGN and KFAC approximations are not available for
invariant Bayesian neural networks, which prohibits straightforward application of the update in Eq. 8
using the methods described in Sec. 3.

In the following, we extend the Laplace-GGN and KFAC approximations to invariant neural net-
works (Secs. 4.1 and 4.2), which enables optimising the log marginal likelihood in parallel to the
neural network parameters, as in Immer et al. (2021a). However, their algorithm has an intractable
memory complexity for computing the gradients w.r.t. invariance parameters or other complex hy-
perparameters that act on the neural network function f directly. In practice, they only considered
gradient-based optimisation of hyperparameters that act linearly on the Hessian Hθ, for example
regularisation strength and observation noise. In Sec. 4.3, we lift this constraint by proposing a
method to obtain gradients w.r.t. complex hyperparameters without memory overhead. The final
algorithm and a discussion of approximations for invariance learning are detailed in Apps. F and H.

4.1 Laplace-GGN for an Invariant Neural Network

To define the Laplace-GGN approximation to the log marginal likelihood, the hyperparameter objec-
tive, we need to extend the GGN to invariant neural networks. For an invariant neural network with
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parameter estimate θ∗, the log marginal likelihood approximation is given by

log p(D|η,M) ≈∑N
n=1 log p(yn|f̂(xn;θ∗,η),M) + log p(θ∗|M)− 1

2 log | 12π ĤGGN
θ∗ (η)|, (9)

where the first two terms constitute the training loss of the invariant neural network corresponding to
the log joint as in the vanilla Laplace approximation in Eq. 3 and the last term is the Gauss-Newton
approximation ĤGGN

θ∗ of the invariant neural network f̂ , which we derive below. The first and last term
depend on the invariance parameter η that we want to learn and differentiate with respect to. We use
S Monte Carlo samples ϵ1, . . . , ϵS

iid∼ p(ϵ) to estimate the invariant neural network f̂ as in Eq. 1.

The log-likelihood term is approximated with S Monte Carlo samples, which leads to a lower bound,∑N
n=1 log p(yn|f̂(xn;θ,η),M) ≥∑N

n=1Eϵ1,...,ϵS [log p(yn| 1S
∑

sf(g(xn, ϵs;η);θ),M)]

≈∑N
n=1 log p(yn| 1S

∑
sf(g(xn, ϵs;η);θ),M) , (10)

which is due the concavity of the log likelihood in its natural parameter f̂ and Jensen’s inequality as
shown by Nabarro et al. (2021), Schwöbel et al. (2022), and detailed in App. F.1. The subsequent
Monte Carlo approximation is then unbiased. Increasing S leads to a tighter bound and improves
the approximation. In practice, we sample ϵs independently per data point xn to reduce correlation.
We can obtain a stochastic gradient w.r.t. η by sampling a mini-batch of M ≪ N data but it is not
possible to batch over the S augmentations that parameterise the likelihood function. The runtime
and memory complexity are therefore increased by a factor of S. For a subset of data and S ≤ 100
augmentations, the gradient w.r.t. η can be computed using backpropagation (Benton et al., 2020).

The Gauss-Newton can be derived from the log-likelihood approximation in Eq. 10 using the same
S samples. In particular, the Jacobian and log-likelihood Hessian required for the GGN are given by

Ĵθ(x;η)
def
= 1

S

∑
sJθ(g(x, ϵs;η)) and Λ̂(x;θ,η)

def
= Λ( 1

S

∑
sf(g(x, ϵs;η);θ)). (11)

Both terms depend on the invariance parameter η and are later differentiated with respect to it. The
resulting GGN of the invariant neural network log likelihood estimated with S samples is defined as

ĤGGN
θ (η)

def
=
∑N

n=1 Ĵθ(xn;η)
T Λ̂(xn;θ,η) Ĵθ(xn;η). (12)

The GGN for an invariant model therefore requires averaging individual Jacobians and functions of the
underlying neural network f . This is in contrast to the GGN of an improper Bayesian model (Wenzel
et al., 2020) with standard data augmentation, which averages log-likelihood terms instead of
functions. In this case, entire GGN terms are averaged over the S augmentations and the marginal
likelihood cannot be optimised because it requires tempering (Immer et al., 2021a). Computing the
GGN of an invariant model increases the runtime by a factor of S over a non-invariant model. The
empirical Fisher, which is often cheaper, can be extended analogously and requires averaging gradients
instead of Jacobians. Finally, the Laplace-GGN is obtained by computing the log determinant.

The Laplace-GGN approximation derived here already allows to learn small invariant neural networks
with few layers and small datasets via automatic differentiation. For example, this is tractable for
the classification example illustrated in Fig. 1. However, computing the log determinant of the GGN
has a cubic complexity in the number of parameters P and is therefore intractable for deep neural
networks on larger datasets. To enable its estimation, we extend KFAC to invariant neural networks in
Sec. 4.2. Further, differentiating the log determinant has intractable memory complexity because it
does not allow for a stochastic gradient but requires construction of a computational graph for the
entire GGN approximation. This is a key limitation of the method proposed by Immer et al. (2021a)
when optimising complex hyperparameters, for which we provide a solution in Sec. 4.3.

4.2 Extending KFAC to Invariant Neural Networks

Computing KFAC as described in Sec. 3 for an invariant neural network would not preserve the
Kronecker structure and therefore be intractable for deep neural networks due to the quadratic cost in
the numbers of parameters per layer. In particular in Eq. 6, KFAC uses the fact that the Jacobian w.r.t.
the parameters of the lth layer, Jθl

(xn), can be written as the Kronecker product al,n ⊗ gl,n. For an
invariant neural network, the Kronecker structure cannot be maintained because of the sum over S
augmentation-sample Jacobians, each of which constitutes a Kronecker product:

Ĵθl
(xn;η) =

1
S

∑
sJθl

(g(xn, ϵs;η)) =
1
S

∑
s

[
a
(s)
l,n ⊗ g

(s)
l,n

]
, (13)
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where a(s),g(s) depend on the sth sample xs = g(x, ϵs;η) and thus η. In general, the sum of
Kronecker products does not allow for efficient computation and requires evaluating the products,
which is intractable as it requires O(D2

l G
2
l ) instead of O(D2

l +G2
l ) memory.

Similar to the idea underlying KFAC itself (Martens and Grosse, 2015), we enforce the efficient
Kronecker-factored structure by approximating the sum of a Kronecker product as a Kronecker
product of sums and appropriately normalizing by the number of terms. However, instead of applying
this approximation to the GGN over multiple data points, we apply it to the Jacobian and have

Ĵθl
(xn;η) =

1
S

∑
s[a

(s)
l,n ⊗ g

(s)
l,n] ≈ 1

S2

[∑
sa

(s)
l,n

]
⊗
[∑

sg
(s)
l,n

]
. (14)

Applying this Jacobian approximation, the nth summand of the GGN can be written as

ĤGGN
l,n (η) ≈

[
1
S2

[∑
sa

(s)
l,n

]
⊗
[∑

sg
(s)
l,n

]]
Λ̂(xn;θ,η)

[
1
S2

[∑
sa

(s)
l,n

]
⊗
[∑

sg
(s)
l,n

]]T
(15)

= 1
S4

[[∑
s a

(s)
l,n

][∑
s a

(s)
l,n

]T
]
⊗
[[∑

s g
(s)
l,n

]
Λ̂(xn;θ,η)

[∑
s g

(s)
l,n

]T
]

def
= Âl,n ⊗ Ĝl,n.

To compute the full KFAC, we then accumulate the Kronecker factors for the lth layer, Âl,n and Ĝl,n,
of the invariant neural network over all n data points to obtain Âl and Ĝl as in Eq. 7 for vanilla KFAC.
Like KFAC, our approximation for invariant models remains exact for linear models (App. F.1).

The log determinant required for the marginal-likelihood approximation can be computed from
Ĝl, Âl individually (Immer et al., 2021a) and has a complexity of O(D3

l + G3
l ) as opposed to

the intractable O(D3
l G

3
l ). This enables us to apply our method to deep invariant neural networks

with widths of order 104, like vanilla KFAC. We discuss computational complexities in depth in
App. D. We note that KFAC for invariant neural networks could further be of independent interest for
second-order optimisation and inference (Martens and Grosse, 2015; Zhang et al., 2018).

4.3 Efficient Gradient Estimation of the Laplace-GGN w.r.t. Complex Hyperparameters

Automatic differentiation (AD) of the log determinant term in the Laplace-GGN w.r.t. complex
hyperparameters, such as invariances, has an intractable memory complexity. Here, we propose
a method to estimate the gradient of the log determinant in the Laplace-GGN without memory
overhead. For AD, the memory complexity is equivalent to the runtime complexity of computing the
log determinant, which is at least O(NP ), the cost of training a deep neural network for one epoch.
Such computation is only tractable due to batching (e.g., for standard training losses) and otherwise
would require several terabytes of memory for deep neural networks. However, the log determinant
does not allow for a batched gradient and therefore AD requires storing the full training data pass.

Our approach to reducing the memory complexity relies on computing a vector-Jacobian product
where both, the vector and the Jacobian, can be estimated from batches of data. Mathematically,
the problem reduces to differentiation of the log determinant of a sum of square matrices w.r.t.
hyperparameter η, i.e., ∂

∂η log |H(η)| with H(η) =
∑

n Hn(η) ∈ RP×P . For a positive definite

matrix H, we have ∂ log |H|
∂H = H−1. Therefore, we can differentiate w.r.t. η with

∂
∂η log |H(η)| =∑P

p=1

∑P
q=1[H

−1(η)]p,q[
∂
∂η

∑N
n=1 Hn(η)]p,q

= vec
(
H−1(η)

)T∑N
n=1

∂
∂η vec (Hn(η)) , (16)

where the two vectorised matrices are P 2-dimensional vectors and can both be computed from
individual batches of Hn as follows: the first term acts as a preconditioner and can be computed
by summing up the batches and inverting the resulting matrix H without storing the computation
graph. The second term is a sum over N Jacobians w.r.t. η and we can either aggregate it or obtain
an unbiased stochastic estimate from batches of data. The product of both terms constitutes a
vector-Jacobian product and is a standard procedure of AD (Paszke et al., 2017).

The proposed method allows to aggregate gradients with respect to complex hyperparameters with
memory complexity that is controlled by the batch size 1 ≤M ≤ N . In contrast to naive application
of AD to the log determinant, this allows to decouple memory and runtime complexity and enables
gradient-based optimisation of the log determinant in Eq. 9 w.r.t. the augmentation parameters for deep
invariant networks on large datasets. More generally, our method enables gradient-based marginal
likelihood optimisation for more complex hyperparameters than previously considered (Immer et al.,
2021a; Antorán et al., 2022a). In App. E, we describe the gradient computation for KFAC in detail.

7



Figure 2: Trajectories of invariance parameters η = [η1, η2, ..., η6]
T optimised with LILA over

1000 epochs for different versions of the MNIST dataset. From each distribution, two sampled
transformations are represented as flow fields with arrow lengths scaled to pixel movement. LILA
automatically learns the correct type and amount of invariance for each of the modified training
datasets and keeps the other affine invariance parameters at zero as desired.

5 Experiments

We evaluate our method that learns invariances using Laplace approximations (LILA) by optimising
affine invariances on different MNIST (LeCun and Cortes, 2010), FashionMNIST (Xiao et al., 2017),
and CIFAR-10 (Krizhevsky et al., 2009) classification tasks. To validate whether the method is
capable of learning appropriate invariances, we construct several additional datasets modified by
known sets of invariance transformations with the goal to recover them. We consider the following
affine transformations: full rotation, partial rotation, translation, and scaling (full details in App. B).
We compare our approach with a non-invariant baseline and Augerino (Benton et al., 2020), which is,
to our knowledge, the only other method that is capable of learning invariances on complex image
datasets in deep neural networks without validation data. In the non-invariant model, prior parameters
are learned using the marginal likelihood (Immer et al., 2021a). For invariance learning, prior
parameters and η are jointly learned based on the marginal likelihood. For Augerino, we minimise
the regular cross entropy with added regularising term−10−2||η||2 and a fixed weight decay of 10−4,
following the original paper (Benton et al., 2020). The same parameterisation, network architecture,
and initialisations (in particular η = 0) were used for all methods. We assess performance of our
approach by inspecting learned invariances η, marginal likelihoods, and final test performances.

5.1 Recovering Known Invariances

To assess the invariances learned by our method LILA, we can inspect the learned invariance pa-
rameters. The invariance parameter vector η = [η1, η2, ..., η6]

T describes affine invariances with
components corresponding to x-translation, y-translation, rotation, horizontal and vertical scaling, and
shearing (App. B). As an MLP has little symmetry encoded in the architecture itself, we expect η to
almost correctly recover the invariances. In Fig. 2, we plot the trajectories of each vector component
over the course of training for an MLP model on different transformed MNIST datasets. As reference,
we show the amount of invariance that was imposed on each dataset as a dashed line. From the figure,
we can observe that for each dataset, LILA learns the correct invariance as well as the amount of each
invariance. To some extent, the model also learned translational invariance on the regular MNIST
dataset which can be explained by intrinsic translational invariance of the dataset.

Other network architectures have certain symmetries already built-in to some extent (e.g., translational
equivariance of convolutional layers). Yet, we find that LILA is also capable of inferring the correct
invariances with such larger and other network architectures and on a variety of datasets in App. J.3.
In App. F, we further show that cheaper Hessian approximations, such as the diagonal GGN instead
of KFAC and empirical Fisher (EF) instead of GGN lead to worse performance for invariance learning.
This suggests that our extension of KFAC to invariant neural networks is necessary for sufficient
invariance learning. While Immer et al. (2021a) find that diagonal approximations can suffice
for learning regularisation hyperparameters, this does not apply for the more complex invariance
parameters considered here and more accurate approximations tend to increase performance.
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non-invariant
Augerino

LILA (ours)

Figure 3: LILA improves data efficiency on different versions of CIFAR-10 by learning invariances.
We compare test accuracy on randomly sampled subsets to a non-invariant network and Augerino
using a ResNet. For example on fully-rotated CIFAR-10, invariance learning achieves the final
accuracy of the non-invariant model with 10 times less data. In most cases, LILA further improves
over Augerino. We plot the average performance and standard error over three seeds.

Dataset Network Method Fully Rotated Partially Rotated Translated Scaled Original

MNIST

MLP
non-invariant 93.82 ±0.10 95.83 ±0.03 94.15 ±0.02 97.07 ±0.06 98.20 ±0.03

Augerino 97.83 ±0.03 96.35 ±0.02 94.47 ±0.08 97.45 ±0.03 98.45 ±0.03

Diff. Laplace (ours) 97.74 ±0.07 97.81 ±0.11 97.28 ±0.05 98.33 ±0.05 98.98 ±0.05

CNN
non-invariant 95.97 ±0.33 97.51 ±0.17 96.54 ±0.29 98.37 ±0.00 99.09 ±0.02

Augerino 99.04 ±0.02 98.91 ±0.03 97.79 ±0.09 98.77 ±0.06 98.26 ±0.10

LIL KFAC (ours) 98.83 ±0.07 98.92 ±0.05 98.69 ±0.07 99.01 ±0.06 99.42 ±0.02

F-MNIST

MLP
non-invariant 77.62 ±0.30 81.10 ±0.23 77.68 ±0.10 81.84 ±0.05 88.48 ±0.56

Augerino 77.76 ±0.15 81.40 ±0.05 78.05 ±0.10 82.46 ±0.09 89.10 ±0.13

LILA (ours) 87.39 ±0.06 86.72 ±0.13 84.62 ±0.08 84.31 ±0.06 89.94 ±0.12

CNN
non-invariant 78.69 ±0.28 82.12 ±0.35 80.33 ±0.19 83.66 ±0.37 89.54 ±0.23

Augerino 85.76 ±3.23 81.54 ±0.19 82.94 ±0.13 83.58 ±0.08 90.07 ±0.12

LILA (ours) 89.45 ±0.03 88.40 ±0.00 87.73 ±0.20 87.33 ±0.00 91.92 ±0.21

CIFAR-10 ResNet
non-invariant 54.16 ±0.40 59.90 ±0.12 69.65 ±0.16 66.06 ±0.13 74.13 ±0.51

Augerino 75.40 ±0.19 74.76 ±0.34 73.71 ±0.31 72.07 ±0.09 79.03 ±1.04

LILA (ours) 79.50 ±0.62 77.71 ±0.46 79.21 ±0.17 76.03 ±0.15 84.19 ±0.76

Table 1: Test accuracy for models using LILA on different versions of the MNIST, FashionMNIST,
and CIFAR-10 datasets. We report the average performance and the standard error over three random
seeds. Our method outperforms the non-invariant network and Augerino for most models and datasets.

5.2 Invariance Learning in Different Networks Method Test accuracy
non-invariant 85.17 ±0.39

Augerino 87.67 ±0.08

LILA (ours) 91.98 ±0.04

LILA EF (ours) 91.64 ±0.26

Table 2: Invariance Learning with KFAC
on CIFAR-10 with a Wide ResNet
achieves best test accuracy. Also, the
cheaper empirical Fisher (EF) variant im-
proves over Augerino.

To quantify the benefit of models with learned invariances,
we present final test accuracies of LILA and the baselines
with different models on each of the datasets in Table 1.
Additional marginal likelihood scores can be found in
App. J.2. In terms of test accuracy and marginal like-
lihood, we find that learning invariances always outper-
forms the non-invariant baseline and that our approach
improves over Augerino in almost all cases. This holds
across the transformed and original datasets. While the
improvements are modest for MNIST, the performance
improvements on F-MNIST and CIFAR-10 can be up to 10 percent points. In Table 2, we use
the commonly used Wide ResNet architecture on CIFAR-10 and find that invariance learning with
Augerino merely improves performance while our method achieves performance improvement of
almost 7% points. We also report the performance of LILA with the cheaper KFAC-EF instead of GGN.

5.3 Invariance Learning Improves Data Efficiency

Invariances can be particularly useful for data-efficiency, which can be evaluated by measuring
performance on subsets of data. In Fig. 3, we show the test accuracy of LILA, the non-invariant
baseline, and Augerino trained on different subsets of CIFAR-10 and its modified versions. We
further provide results for all architectures and datasets in App. J.5. In general, we find that invariance
learning with both Augerino and our method always improves performance across datasets and subset
sizes. Most notably on a subset of 1000 regular CIFAR-10 dataset samples, Augerino improved
performance by 18 percentage points compared to the non-invariant baseline, whereas our method
showed an improvement of 22 percentage points. LILA requires only 10% of the data to obtain the
same accuracy as the non-invariant model on the fully-rotated dataset. These findings suggest that
learning invariances is useful in general, and in particular when limited data is available.
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5.4 On the Learned Distributions

In some instances (see CIFAR-10 results in Apps. J.3 and J.4), we observed that the model learned
translational invariance on the scaled dataset rather than scale invariance. Our independent uniform
distributions over invariance components cannot capture correlations between components whereas
the scaled dataset was jointly scaled across the horizontal and vertical axes and thus is correlated. We
hypothesise that more complex distributions that do allow for capturing correlations could offer a
potential solution in such cases, but leave investigation of more complex families to future work.

6 Discussion and Limitations

We discuss the runtime complexity and approximations of our method in general, and for invariance
learning in particular, in detail in App. D and App. F, respectively. The runtime complexity of
LILA, just like that of Augerino and other methods that use test-time data augmentation, increases
linearly by the factor S, which denotes the number of augmentation samples used. Since we know
that we are sampling from a lower bound (Eq. 24), more samples are generally better and are
expected to improve the performance, which we also observed in our experiments. In addition,
LILA requires estimation and differentiation of the log-determinant term. While our extension of
KFAC to sampling-based invariant models and the batched gradients make such computation at all
tractable, it can still be expensive for a large number of classes C and augmentation samples S. Using
the EF instead of the GGN overcomes scaling in C but is a cruder approximation. Although these
additional computations make LILA slower than Augerino, they enable overcoming its issues, i.e.,
parameterisation-dependence and additional hyperparameters that need to be tuned (App. C), enable
to learn soft invariances much more preciselly.

7 Conclusion

We presented a method that enables automatic invariance learning in deep neural networks directly
from training data, without requiring supervision or validation data. The approach is inspired by
using the marginal likelihood, which is a parameterisation-independent quantity coinciding with
generalisation performance. To make this practical, we use a differentiable Laplace approximation
to allow for gradient-based optimisation of invariances in deep learning. While the accuracy of the
approximation is difficult to verify, we do show experimentally that the method is capable of learning
invariances in MNIST, FashionMNIST, and CIFAR-10 datasets, leading to better marginal likelihoods
and higher test performances. Our work shows that approximate Bayesian inference methods can be
useful for learning complex hyperparameters, even in deep learning, and are therefore relevant beyond
predictive uncertainty estimation. In future work, it would be interesting to improve the scalability
and accuracy of marginal likelihood approximations which could enable learning even more complex
hyperparameters, such as augmentation distributions parameterised by neural networks. Alternatively,
improving parameterisations of invariances in neural networks could greatly improve the scalability
of LILA and related approaches.
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