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Abstract

In this work, we present and study a new framework for online learning in systems
with multiple users that provide user anonymity. Specifically, we extend the
notion of bandits to obey the standard k-anonymity constraint by requiring each
observation to be an aggregation of rewards for at least k users. This provides a
simple yet effective framework where one can learn a clustering of users in an
online fashion without observing any user’s individual decision. We initiate the
study of anonymous bandits and provide the first sublinear regret algorithms and
lower bounds for this setting.

1 Introduction

In many modern systems, the system learns the behavior of the users by adaptively interacting with
the users and adjusting to their responses. For example, in online advertisement, a website may show
a certain type of ads to a user, observe whether the user clicks on the ads or not, and based on this
feedback adjust the type of ads it serves the user. As part of this learning process, the system faces a
dilemma between “exploring” new types of ads, which may or may not seem interesting to the user,
and “exploiting” its knowledge of what types of ads historically seemed interesting to the user. This
concept is very well studied in the context of online learning.

In principle, users benefit from a system that automatically adapts to their preferences. However,
users may naturally worry about a system that observes all of their actions, and worry that the system
may use this personal information against them or mistakenly reveal it to hackers or untrustworthy
third parties. There therefore arises an additional dilemma between providing a better personalized
user experience and acquiring the users’ trust.

We study the problem of online learning in multi-user systems under a version of anonymity inspired
by k-anonymity [Sweeney, 2002]. In its most general form, k-anonymity is a property of anonymous
data guaranteeing that for every data point, there exist at least k − 1 other indistinguishable data
points in the dataset. Although there exist more recent notions of privacy and anonymity with stronger
guarantees (e.g. various forms of differential privacy), k-anonymity is a simple and practical notion
of anonymity that remains commonly employed in practice and enforced in various legal settings
[Goldsteen et al., 2021, Saf, November 2019, Slijepčević et al., 2021].

To explain our notion of anonymity, consider the online advertisement application mentioned earlier.
In online advertisement, when a user visits a website the website selects a type of ad and shows that
user an ad of that type. The user may then choose to click on that ad or not, and a reward is paid
out based on whether the user clicks on the ad or not (this reward may represent either the utility of
the user or the revenue of the online advertisement system). Note that the ad here is chosen by the
website, and the fact that the website assigns a user a specific type of ad is not something we intend
to hide from the website. However, the decision to click on the ad is made by the user. We intend to
protect these individual decisions, while allowing the website to learn what general types of ads each
user is interested in. In particular, we enforce a form of group level C-anonymity on these decisions,
by forcing the system to group users into groups of at least C users and to treat each group equally by
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assigning all users in the same group the same ad and only observing the total aggregate reward (e.g.
the total number of clicks) of these users.

More formally, we study this version of anonymity in a simple model of online learning based on the
popular multi-armed bandit setting. In the classic (stochastic) multi-armed bandits problem, there is
a learner with some number K of potential actions (“arms”), where each arm is associated with an
unknown distribution of rewards. In each round (for T rounds) the learner selects an arm and collects
a reward drawn from a distribution corresponding to that arm. The goal of the learner is to maximize
their total expected reward (or equivalently, minimize some notion of regret).

In our multi-user model, a centralized learner assigns N users to K arms, and each rewards for each
user/arm pair are drawn from some fixed, unknown distribution. Each round the learner proposes an
assignment of users to arms, upon which each user receives a reward from the appropriate user/arm
distribution. However, the learner is only allowed to record feedback about these rewards (and use
this feedback for learning) if they perform this assignment in a manner compatible with C-anonymity.
This entails partitioning the users into groups of size at least C, assigning all users in each group
to the same arm, and only observing this group’s aggregate rewards for this arm. For example, if
C = 3 in one round we may combine users 1, 2 and 4 into a group and assign them all to arm 3;
we would then observe as feedback the aggregate reward r13 + r23 + r43, where rij represents the
reward that user i experienced from arm j this round. The goal of the learner is to maximize the total
reward by efficiently learning the optimal action for each user, while at the same time preserving
the anonymity of individual rewards users experienced in specific rounds. See Section 2 for a more
detailed formalization of the model.

1.1 Our results

In this paper we provide low-regret algorithms for the anonymous bandit setting described above.
We present two algorithms which operate in different regimes (based on how users cluster into their
favorite arms):

• If for each arm j there are at least U ≥ C+1 users for which arm j is that user’s optimal arm,
then Algorithm 1 incurs regret at most Õ(NC

√
αKT ), where α = max(1, dK(C+1)/Ue).

• If there is no such guarantee (but N > C), then Algorithm 2 incurs regret at most
Õ(C2/3K1/3T 2/3).

We additionally prove the following corresponding lower bounds:

• We show (Theorem 3) that the regret bound of Algorithm 1 is tight for any algorithm to
within a factor of K

√
C (and to within a factor of

√
C for U ≥ K(C + 1)).

• We show (Theorem 4) that the dependence on T 2/3 in Algorithm 2 is necessary in the
absence of a lower bound on U .

The main technical contribution of this work is the development/analysis of Algorithm 1. The core idea
behind Algorithm 1 is to use recent algorithms developed for the problem of batched bandits (where
instead of T rounds of adaptivity, users are only allowed B � T rounds of adaptivity) to reduce
this learning problem to a problem in combinatorial optimization related to decomposing a bipartite
weighted graph into a collection of degree-constrained bipartite graphs. We then use techniques from
combinatorial optimization and convex geometry to come up with efficient approximation algorithms
for this combinatorial problem.

1.2 Related work

The bandits problem has been studied for almost a century [Thompson, 1933], and it has been
extensively studied in the standard single user version [Audibert et al., 2009a,b, Audibert and Bubeck,
2010, Auer et al., 2002, Auer and Ortner, 2010, Bubeck et al., 2013, Garivier and Cappé, 2011, Lai and
Robbins, 1985]. There exists recent work on bandits problem for systems with multiple users [Bande
and Veeravalli, 2019a,b, Bande et al., 2021, Vial et al., 2021, Buccapatnam et al., 2015, Chakraborty
et al., 2017, Kolla et al., 2018, Landgren et al., 2016, Sankararaman et al., 2019]. These papers
study this problem from game theoretic and optimization perspectives (e.g. studying coordination /
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competition between users) and do not consider anonymity. To the best of our knowledge this paper
is the first attempt to formalize and study multi-armed bandits with multiple users from an anonymity
perspective.

Learning how to assign many users to a (relatively) small set of arms can also be thought of as a
clustering problem. Clustering of users in multi-user multi-arm bandits has been previously studied.
Maillard and Mannor [2014] first studied sequentially clustering users, which was later followed up
by other researchers [Nguyen and Lauw, 2014, Gentile et al., 2017, Korda et al., 2016]. Although
these works, similar to us, attempt to cluster the users, they are allowed to observe each individual’s
reward and optimize based on that, which contradicts our anonymity requirement.

One technically related line of work that we heavily rely on is recent work on batched bandits. In the
problem of batched bandits, the learner is prevented from iteratively and adaptively making decisions
each round; instead the learning algorithm runs in a small number of “batches”, and in each batch
the learner chooses a set of arms to pull, and observes the outcome at the end of the batch. Batched
multi-armed bandits were initially studied by Perchet et al. [2016] for the particular case of two arms.
Later Gao et al. [2019] studied the problem for multiple arms. Esfandiari et al. [2019] improved
the result of Gao et al. and extended it to linear bandits and adversarial multi-armed bandits. Later
this problem was studied for batched Thompson sampling [Kalkanli and Ozgur, 2021, Karbasi et al.,
2021], Gaussian process bandit optimization [Li and Scarlett, 2021] and contextual bandits [Zhang
et al., 2021, Zanette et al., 2021].

In another related line of work, there have been several successful attempts to apply different notions
of privacy such as differential privacy to multi-armed bandit settings [Tossou and Dimitrakakis, 2016,
Shariff and Sheffet, 2018, Dubey and Pentland, 2020, Basu et al., 2019]. While these papers provide
very promising guarantees of privacy measures, they focus on single-user settings. In this work we
take advantage of the fact that there are several similar users in the system, and use this to provide
guarantees of anonymity. Anonymity and privacy go hand in hand, and in a practical scenario, both
lines of works can be combined to provide a higher level of privacy.

Finally, our setting has some similarities to the settings of stochastic linear bandits [Dani et al., 2008,
Rusmevichientong and Tsitsiklis, 2010, Abbasi-Yadkori et al., 2011] and stochastic combinatorial
bandits [Chen et al., 2013, Kveton et al., 2015]. For example, the superficially similar problem of
assigning N users to K arms each round so that each arm has at least C users assigned to it (and
where you get to observe the total reward per round) can be solved directly by algorithms for these
frameworks. However, although such assignments are C-anonymous, there are important subtleties
that prevent us from directly applying these techniques in our model. First of all, we do not actually
constrain the assignment of users to arms – rather, our notion of anonymity constrains what feedback
we can obtain from such an assignment (e.g., it is completely fine for us to assign zero users to an
arm, whereas in the above model no actions are possible when N < CK). Secondly, we obtain more
nuanced feedback than is assumed in these frameworks (specifically, we get to learn the reward of
each group of ≥ C users, instead of just the total aggregate reward). Nonetheless it is an interesting
open question if any of these techniques can be applied to improve our existing regret bounds (perhaps
some form of linear bandits over the anonymity polytopes defined in Section 3.4.2).

2 Model and preliminaries

Notation. We write [N ] as shorthand for the set {1, 2, . . . , N}. We write Õ(·) to suppress any
poly-logarithmic factors (inN , K, C, or T ) that arise. We say a random variableX is σ2-subgaussian
if the mean-normalized variable Y = X − E[x] satisfies E[exp(sY )] ≤ exp(σ2s2/2) for all s ∈ R.

Proofs of most theorems have been postponed to Appendix C of the Supplemental Material in interest
of brevity.

2.1 Anonymous bandits

In the problem of anonymous bandits, there are N users. Each round (for T rounds), our algorithm
must assign each user to one of K arms (multiple users can be assigned to the same arm). If user
i plays arm j, they receive a reward drawn independently from a 1-subgaussian distribution Di,j
with (unknown) mean µi,j ∈ [0, 1]. We would like to minimize their overall expected regret of our
algorithm. That is, if user i receives reward ri,t in round t, we would like to minimize
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Reg = T

N∑
i=1

max
j
µi,j − E

[
T∑
t=1

N∑
i=1

ri,t

]
.

Thus far, this simply describes n independent parallel instances of the classic multi-armed bandit
problem. We depart from this by imposing an anonymity constraint on how the learner is allowed to
observe the users’ feedback. This constraint is parameterized by a positive integer C (the minimum
group size). In a given round, the learner may partition a subset of the users into groups of size at
least C, under the constraint that the users within a single group must all be playing the same arm
during this round. For each group G, the learner then receives as feedback the total reward

∑
i∈G ri,t

received by users in this group. Note that not all users must belong to a group (the learner simply
receives no feedback on such users), and the partition into groups is allowed to change from round to
round.

Without any constraint on the problem instance, it may be impossible to achieve sublinear regret (see
Section 3.6). We therefore additionally impose the following user-cluster assumption on the users:
each arm j is the optimal arm for at least U users. Such an assumption generally holds in practice
(e.g., in the regime where there are many users but only a few classes of arms). This also prevents
situations where, e.g., only a single user likes a given arm but it is hard to learn this without allocating
at least C users to this arm and sustaining significant regret. Typically we will take U > C; when
U ≤ C the asymptotic regret bounds for our algorithms may be worse (see Section 3.5).

2.2 Batched stochastic bandits

Our main tool will be algorithms for batched stochastic bandits, as described in Gao et al. [2019]. For
our purposes, a batched bandit algorithm is an algorithm for the classical multi-armed bandit problem
that proceeds in B stages (“batches”) where the bth stage has a predefined length of Db rounds (with∑
bDb = T ). At the beginning of each stage b, the algorithm outputs a non-empty subset of arms Ab

(representing the set of arms the algorithm believes might still be optimal). At the end of each stage,
the algorithm expects at least Db/|Ab| independent instances of feedback from arm j for each j ∈ S;
upon receiving such feedback, the algorithm outputs the subset of arms Ab+1 to explore in the next
batch.

In Gao et al. [2019], the authors design a batched bandit algorithm they call BaSE (batched successive-
elimination policy); for completeness, we reproduce a description of their algorithm in Appendix A.
When B = log log T , their algorithm incurs a worst-case expected regret of at most Õ(

√
KT ). In

our analysis, we will need the following slightly stronger bound on the behavior of BaSE:
Lemma 1. Set B = log log T . Let µ∗ = maxj∈[K] µj , and for each j ∈ [K] let ∆j = µ∗ − µj .
Then for each 1 ≤ b ≤ B, we have that:

Db · E
[
max
j∈Ab

∆j

]
= Õ(

√
KT ).

In other words, Lemma 1 bounds the expected regret in each batch, even under the assumption that
we receive the reward of the worst active arm each round (even if we ask for feedback on a different
arm).

It will also be essential in the analysis that follows that the total number of rounds Db in the bth
batch only depends on b and is independent of the feedback received thus far (in the language of
Gao et al. [2019], the grid used by the batched bandit algorithm is static). This fact will let us run
several instances of this batched bandit algorithm in parallel, and guarantees that batches for different
instances will always have the same size.

3 Anonymous Bandits

3.1 Feedback-eliciting sub-algorithm

Our algorithms for anonymous bandits will depend crucially on the following sub-algorithm, which
allows us to take a matching from users to arms and recover (in O(C) rounds) an unbiased estimate
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of each user’s reward (as long as that user is matched to a popular enough arm). More formally, let
π : [N ]→ [K] be a matching from users to arms. We will show how to (in 2C + 2 rounds) recover
an unbiased estimate of µi,π(i) for each i such that |π−1(π(i))| ≥ C + 1 (i.e. i is matched to an arm
that at least C other users are matched to).

The main idea behind this sub-algorithm is simple; for each user, we will get a sample of the total
reward of a group containing the user, and a sample of the total reward of the same group but minus
this user. The difference between these two samples is an unbiased estimate of the user’s reward.
More concretely, we follow these steps:

1. Each round (for 2C + 2 rounds) the learner will assign user i to arm π(i). However, the
partition of users into groups will change over the course of these 2C + 2 rounds.

2. For each arm j such that |π−1(j)| ≥ C + 1, partition the users in π−1(j) into groups of size
at least C + 1 and of size at most 2C + 1. Let G1, G2, . . . , GS be the set of groups formed
in this way (over all arms j). In each group, order the users arbitrarily.

3. In the first round, the learner reports the partition into groups {G1, G2, . . . , GS}. For each
group Gs, let rs,0 be the total aggregate reward for group Gs this round.

4. In the kth of the next 2C + 1 rounds, the learner reports the partition into groups
{G1,k, G2,k, . . . , GS,k}, where Gs,k is formed from Gs by removing the kth element (if
k > |Gs|, then we setGs,k = Gs). Let rs,k be the total aggregate reward fromGs,k reported
this round.

5. If user i is the kth user in Gs, we return the estimate µ̂i,π(i) = rs,0 − rs,k of the average
reward for user i and arm π(i).

Lemma 2. In the above procedure, E[µ̂i,π(i)] = µi,π(i) and µ̂i,π(i) is an O(C)-subgaussian random
variable.

3.2 Anonymous decompositions of bipartite graphs

The second ingredient we will need in our algorithm is the notion of an anonymous decomposition of
a weighted bipartite graph. Intuitively, by running our batched stochastic bandits algorithm, at the
beginning of each batch we will obtain a demand vector for each user (representing the number of
times that user would like feedback on each of the m arms). Based on this, we want to generate a
collection of assignments (from users to arms) which guarantee that we obtain (while maintaining
our anonymity guarantees) the requested amount of information for each user/arm pair.

Formally, we represent a weighted bipartite graph as a matrix of nm non-negative entries wi,j
(representing the number of instances of feedback user i desires from arm j). We will assume that for
each i,

∑
j wi,j > 0 (each user is interested in at least one arm). A C-anonymous decomposition of

this graph is a collection of R assignments M1,M2, . . . ,MR from users to arms (i.e., functions from
[N ] to [K]) that satisfies the following properties:

1. A user is never assigned to an arm for which they have zero demand. That is, if Mr(i) = j,
then wi,j 6= 0.

2. If Mr(i) = j, and |M−1r (j)| ≥ C + 1, we say that matching Mr is informative for the
user/arm pair (i, j). (Note that this is exactly the condition required for the feedback-eliciting
sub-algorithm to output the unbiased estimate ˆµi,j when run on assignment Mr.) For each
user/arm pair (i, j), there must be at least wi,j informative assignments.

The weighted bipartite graphs that concern us come from the parallel output of N batched bandit
algorithms (described in Section 2.2) and have additional structure. These graphs can be described
by a positive total demand D and a non-empty demand set Ai ⊆ [K] for each user i (describing the
arms of interest to user i). If j ∈ Ai, then wi,j = D/|Ai|; otherwise, wi,j = 0. To distinguish graphs
with the above structure from generic weighted bipartite graphs, we call such graphs batched graphs.

Moreover, for each user i, let j∗(i) be the optimal arm for user i (i.e., j∗(i) = arg maxi µi). In
the algorithm we describe in the next section, with high probability, j∗(i) will always belong to
Ai. Moreover, a user-cluster assumption of U implies that, for any arm j, |j∗−1(j)| ≥ U . This
means that in batched graphs that arise in our algorithm, there will exist an assignment where each
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user i is assigned to an arm in Ai, and each arm j has at least U assigned users. We therefore call
graphs that satisfy this additional assumption U -batched graphs. Note that this assumption also
allows us to lower bound the degrees of arms in this bipartite graph. Specifically, for each arm j, let
Bj = {i ∈ [N ] | j ∈ Ai}. Then a user-cluster assumption of U directly implies that |Bj | ≥ U .

In general, our goal is to minimize the number of assignments R required in such a decomposition
(since each assignment corresponds to some number of rounds required). We call an algorithm that
takes in a U -batched graph and outputs a C-anonymous decomposition of that graph an anonymous
decomposition algorithm, and say that it has approximation ratio α(C,U) ≥ 1 if it generates an
assignment with at most α(C,U) ·D+O(NK) total assignments. This additiveO(NK) is necessary
for technical reasons, but in our algorithm, D will always be much larger than K (we will have
D ≥

√
T ), so this can be thought of as an additive o(D) term.

Later, in Section 3.4, we explicitly describe several anonymous decomposition algorithms and their
approximation guarantees. In the interest of presenting the algorithm, we will assume for now we
have access to a generic anonymous decomposition algorithm Decompose with approximation ratio
α(C,U).

3.3 An algorithm for anonymous bandits

We are now ready to present our algorithm for anonymous bandits. The main idea behind this
algorithm (detailed in Algorithm 1) is as follows. Each of the N users will run their own independent
instance of BaSE with B = log log T synchronized batches. During batch b, BaSE requires each
user i to get a total of Db instances of feedback on a set Ai,b of arms which are alive for them.
These sets Ai,b (with high probability) define a U -batched graph, so we can use an anonymous
decomposition algorithm to construct a C-anonymous decomposition of this graph into at most
α(C,U)Db assignments. We then run the feedback-eliciting sub-algorithm on each assignment,
getting one unbiased estimate of the reward for each user/arm pair for which the assignment is
informative.

The guarantees of the C-anonymous decomposition mean that this process gives us Db total pieces
of feedback for each user, evenly split amongst the arms in Ai,b. We can therefore pass this feedback
along to BaSE, which will eliminate some arms and return the set of alive arms for user i in the next
batch.

Algorithm 1: Low-regret algorithm for anonymous bandits.
Input: Anonymity parameter C, a lower bound on the user-cluster assumption U , time-horizon
T , number of users N , and number of arms K. We additionally assume we have access to an
anonymous decomposition algorithm Decompose with approximation factor α = α(C,U).

For each user i ∈ [N ], initialize an instance of BaSE with a time horizon of T ′ = T
α(2C+2) and

B = log log T batches. Let D1, D2, . . . , Db be the corresponding batch sizes (with∑
bDb = T ′). Let Ai,b be the set of active arms for user i during batch b.

for b← 1 to B do
If Db and (A1,b, A2,b, . . . , An,b) do not define a U -batched graph, abort the algorithm (this
means we have eliminated the optimal arm for a user, which can only happen with
negligible probability).

Run Decompose on Db and (A1,b, A2,b, . . . , An,b) to get a C-anonymous decomposition
into at most Rb = αDb assignments. Let Mr be the rth such assignment.

for r ← 1 to Rb do
Over (2C + 2) rounds, run the feedback-soliciting sub-algorithm (Section 3.1) on Mr to
get estimates µ̂i,Mr(i) for all users i for which Mr is informative.

end
For each user i, we are guaranteed to receive (by the guarantees of Decompose) at least

Db

|Ai,b| independent samples of feedback µ̂i,j for each arm j ∈ Ai,b. Pass these samples to
user i’s instance of BaSE and receive Ai,b+1 in response (unless this is the last batch).

end

Theorem 1. Algorithm 1 incurs an expected regret of at most Õ(NC
√
αKT ) for the anonymous

bandits problem.
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One quick note on computational complexity: note that we only run Decompose once every batch;
in particular, at most log log T times. This allows us to efficiently implement Algorithm 1 even for
complex choices of Decompose that may require solving several linear programs.

3.4 Algorithms for constructing anonymous decompositions

3.4.1 A greedy method

We begin with perhaps the simplest method for constructing an anonymous decomposition, which
achieves an approximation ratio α(C,U) = K as long as U ≥ C + 1. To do this, for each arm
j ∈ [K], consider the assignment Mj where all users i with j ∈ Ai (i.e., users with any interest in
arm j) are matched to arm j, and other users are arbitrarily assigned to arms in their active arm set.
Our final decomposition contains D copies of Mj for each j ∈ [K] (for a total of KD assignments).

Note that since U ≥ C + 1, there will be at least C + 1 users matched to arm j in Mj , and therefore
Mj will be informative for all users i with j ∈ Ai. Since we repeat each assignment D times, we will
have at least D informative assignments for every valid user/arm pair, and therefore this is a valid
C-anonymous decomposition for the original batched graph.

Substituting this guarantee into Theorem 1 gives us an anonymous bandit algorithm with expected
regret Õ(NCK

√
T ).

3.4.2 The anonymity polytope

As U grows larger than C, it is possible to attain even better approximation guarantees. In this section
we will give an anonymous decomposition algorithm that applies techniques from combinatorial
optimization to attain the following guarantees:

• If U ≥ K(C + 1), then α(C,U) = 1.

• If (C + 1) ≤ U ≤ K(C + 1), then α(C,U) =
⌈
K(C+1)

U

⌉
.

To gain some intuition for how this is possible, assume U = K(C + 1), and consider the randomized
algorithm which matches each user i to a random arm in Ai each turn. In expectation, after D rounds
of this, user i will be matched to each arm j ∈ Ai exactly D/|Ai| times (as user i desires). Moreover,
since U ≥ K(C + 1), each arm j has at least K(C + 1) candidate users that can match to it. Each of
these users matches to arm j with probability at least 1/K, so in expectation at least C + 1 users
match to arm j, and therefore the feedback from arm j is informative “in expectation”.

The catch with this method is that it is possible (and even reasonably likely) for fewer than C+1 users
to match to a given arm j, and in this case we receive no feedback for user i. While it is possible to
adapt this method to work with high probability, this requires additional logarithmic factors in either
α or the user-cluster bound U , and even then has some probability of failure. Instead, we present a
deterministic algorithm which can exactly achieve the guarantees above by geometrically “rounding”
the above randomized matching into a small weighted collection of deterministic matchings.

We define the C-anonymity polytope PC ⊆ RN×K to be the convex hull of all binary vectors
v ∈ {0, 1}N×K that satisfy the following conditions:

• For each i,
∑
j vij ∈ {0, 1}.

• For each j, either
∑
i vij ≥ C + 1 or

∑
i vij = 0.

We can interpret each such vertex v as a single assignment in a C-anonymous decomposition, where
vij = 1 iff we get feedback on the user/arm pair (i, j) (so we must match user i to j, and at least
C + 1 users must be matched to arm j).

Now, for a fixed U -batched graph G, let w ∈ [0, 1]N×K be the weights of this G normalized by the
demand D: so wij = 1/|Ai| if j ∈ Ai, and wij = 0 otherwise. It turns out that we can reduce (via
Caratheodory’s theorem) the problem of finding a C-anonymous decomposition of G into finding the
maximal β for which βw ∈ PC .
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Lemma 3. If for some β > 0, βw ∈ PC , then there exists a C-anonymous decomposition of G into
at most 1

βD +NK + 1 assignments. Similarly, if there exists a C-anonymous decomposition of G
into αD assignments, then 1

αw ∈ PC .

In a sense, Lemma 3 provides an “optimal” algorithm for the problem of finding C-anonymous
decompositions. There are two issues with using this algorithm in practice. The first – an interesting
open question – is that we do not understand the approximation guarantees of this decomposition
algorithm (although they are guaranteed to be at least as good as every algorithm we present here).
Open Problem 1. For aU -batched graphG, let β(G) be the maximum value of β such that βw ∈ PC
(where w is the weight vector associated with C). What is maxβ(G) over all U -batched graphs? Is
it Ω(1)?

The second is that, computationally, it is not clear if there is an efficient way to check whether a
point belongs to PC (let alone write it as a convex combination of the vertices of PC). We will now
decompose PC into the convex hull of a collection of more tractable polytopes; while it will still
be hard to e.g. check membership in PC , this will help us efficiently compute decompositions that
provide the guarantees at the beginning of this section.

For a subset S ⊆ [K] of arms, let PC(S) ⊆ RN×K be the convex hull of the binary vectors that
satisfy the following conditions:

• For each i,
∑
j vij ∈ {0, 1}.

• If j ∈ S, then
∑
i vij ≥ C + 1.

• If j 6∈ S, then
∑
i vij = 0.

By construction, each vertex of PC appears as a vertex of some PC(S) and each vertex of PC(S)
belongs to PC , so PC = conv({PC(S) | S ⊆ [K]}). We now claim that we can write each
polytope PC(S) as the intersection of a small number of halfspaces (and therefore check membership
efficiently). In particular, we claim that x ∈ RN×K belongs to PC(S) iff it satisfies the following
linear constraints:

0 ≤ xij ≤ 1, ∀ i ∈ [N ], j ∈ [K]∑
j∈[K]

xij ≤ 1, ∀ i ∈ [N ]∑
i∈[N ]

xij ≥ C + 1, ∀ j ∈ S∑
i∈[N ]

xij = 0, ∀ j ∈ [K] \ S.

(1)

Lemma 4. A point x ∈ RN×K belongs to PC(S) iff it satisfies the constraints in (1).

We can now prove the guarantees at the beginning of the section. We start with the case where U ≥
K(C + 1). Here we show (via similar logic to the initial randomized argument) that w ∈ PC([K]).
Lemma 5. If U ≥ K(C + 1), then w ∈ PC([K]).

Applying Caratheodory’s theorem, we immediately obtain a C-anonymous decomposition from
Lemma 5
Corollary 1. If U ≥ K(C+1), there exists a C-anonymous decomposition into at mostD+KC+1
assignments. Moreover, it is possible to find this decomposition efficiently.

When C + 1 ≤ U ≤ K(C + 1), we first arbitrarily partition our arms into α = dK(C + 1)/Ue
blocks S1, S2, . . . , Sα of at most U/(C + 1) vertices each. We then show how to write w as a linear
combination of α points, one in each of the polytopes PC(Sa).

Lemma 6. There exist points w(a) ∈ PC(Sa) for 1 ≤ a ≤ α such that w ≤
∑α
i=1 w

(a).

Likewise, we can again apply Caratheodory’s theorem to obtain a C-anonymous decomposition from
Lemma 6.
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Corollary 2. If (C + 1) ≤ U ≤ K(C + 1), there exists a C-anonymous decomposition into at
most αD +NK + 1 assignments, where α = dK(C + 1)/Ue. Moreover, it is possible to find this
decomposition efficiently.

3.5 Settings without user-clustering

The previous algorithms we have presented for anonymous bandits rely heavily on the existence of
a user-cluster assumption U . In this section we present an algorithm (Algorithm 2) for anonymous
bandits which works in the absence of any user-cluster assumption as long as N > C. This comes at
the cost of a slightly higher regret bound which scales as T 2/3 – as we shall see in Section 3.6, this
dependence is in some sense necessary.

Algorithm 2: Explore-then-commit algorithm for anonymous bandits without a user-clustering
assumption.
Input: Anonymity parameter C, time-horizon T , number of users N , and number of arms K.
Set Texp = 10C2/3K1/3T 2/3(logNKT )1/3.
For each user i ∈ [N ] and arm j ∈ [K] initialize two variables nij = 0 and σij = 0.
for r ← 1 to dTexp/(2C + 2)e do

Divide [N ] arbitrarily into S groups G1, . . . , GS of size C + 1 (adding all remaining users to
the last group GS).

For each group Gs, set js = (r mod K).
Run the feedback-eliciting sub-algorithm on the assignment π induced by the groups Gs
(where if i ∈ Gs then π(i) = js).

for i← 1 to N do
ni,π(i) ← ni,π(i) + 1
σi,π(i) ← σi,π(i) + µ̂i,π(i). Here µ̂i,π(i) is the unbiased estimate for µi,π(i) produced by
the feedback-eliciting sub-algorithm.

end
end
for remaining rounds t do

Match user i to arg maxj σij/nij .
end

Algorithm 2 follows the standard pattern of Explore-Then-Commit algorithms (see e.g. Chapter
6 of Lattimore and Szepesvári [2020]). For approximately O(T 2/3) rounds, we run the feedback-
eliciting sub-algorithm on random assignments from users to arms (albeit ones which are chosen
to guarantee each arm with any users matched to it has at least C + 1 users matched to it), getting
unbiased estimates of the means µi,j . For the remaining arms, we match each user to their historically
best-performing arm.

Theorem 2. Algorithm 2 incurs an expected regret of at most Õ(NC2/3K1/3T 2/3) for the anony-
mous bandits problem.

3.6 Lower bounds

We finally turn our attention to lower bounds. In all of our lower bounds, we exhibit a family of
hard distributions over anonymous bandits problem instances, where any algorithm facing a problem
instance randomly sampled from this distribution incurs at least the regret lower bound in question.

We begin by showing an Ω(N
√
CKT ) lower bound that holds even in the presence of a user-cluster

assumption (and in fact, even when U ≥ K(C+1)). Since Algorithm 1 incurs at most Õ(NC
√
KT )

regret for U ≥ K(C + 1), this shows the regret bound of our algorithm is tight in this regime up to a
factor of

√
C (and additional polylogarithmic factors).

Theorem 3. Every learning algorithm for the anonymous bandits problem must incur expected regret
at least Ω(N

√
CKT ), even when restricted to instances satisfying U ≥ K(C + 1).

We now shift our attention to settings where there is no guaranteed user-cluster assumption. We first
show that the O(T 2/3) dependency of the algorithm in Section 3.5 is necessary.
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Theorem 4. There exists a family of problem instances satisfying N = C + 1 where any learning
algorithm must incur regret at least Ω(T 2/3).

Finally, we show the assumption in Section 3.5 that N > C is in fact necessary; if N = C then it is
possible that no algorithm obtains sublinear regret.
Theorem 5. There exists a family of problem instances satisfying N = C where any learning
algorithm must incur regret at least Ω(T ).

4 Simulations

Finally, we perform simulations of our anonymous bandits algorithms – the explore-then-commit
algorithm (Algorithm 2) and several variants of Algorithm 1 with different decomposition algorithms
– on synthetic data. We observe that both the randomized decomposition and LP decomposition based
variants of Algorithm 1 significantly outperform the explore-then-commit algorithm and the greedy
decomposition variant, as predicted by our theoretical bounds. We discuss these in more detail in
Section B of the Supplemental Material.

10



References
Safari privacy overview. Apple, November 2019. https://www.apple.com/safari/docs/
Safari_White_Paper_Nov_2019.pdf.

Y. Abbasi-Yadkori, D. Pál, and C. Szepesvári. Improved algorithms for linear stochastic bandits.
Advances in neural information processing systems, 24, 2011.

J.-Y. Audibert and S. Bubeck. Regret bounds and minimax policies under partial monitoring. The
Journal of Machine Learning Research, 11:2785–2836, 2010.

J.-Y. Audibert, S. Bubeck, et al. Minimax policies for adversarial and stochastic bandits. In COLT,
volume 7, pages 1–122, 2009a.

J.-Y. Audibert, R. Munos, and C. Szepesvári. Exploration–exploitation tradeoff using variance
estimates in multi-armed bandits. Theoretical Computer Science, 410(19):1876–1902, 2009b.

P. Auer and R. Ortner. Ucb revisited: Improved regret bounds for the stochastic multi-armed bandit
problem. Periodica Mathematica Hungarica, 61(1-2):55–65, 2010.

P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multiarmed bandit problem.
Machine learning, 47(2):235–256, 2002.

M. Bande and V. V. Veeravalli. Adversarial multi-user bandits for uncoordinated spectrum access. In
ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 4514–4518. IEEE, 2019a.

M. Bande and V. V. Veeravalli. Multi-user multi-armed bandits for uncoordinated spectrum access.
In 2019 International Conference on Computing, Networking and Communications (ICNC), pages
653–657. IEEE, 2019b.

M. Bande, A. Magesh, and V. V. Veeravalli. Dynamic spectrum access using stochastic multi-user
bandits. IEEE Wireless Communications Letters, 10(5):953–956, 2021.

D. Basu, C. Dimitrakakis, and A. Tossou. Differential privacy for multi-armed bandits: What is it
and what is its cost? arXiv preprint arXiv:1905.12298, 2019.

S. Bubeck, V. Perchet, and P. Rigollet. Bounded regret in stochastic multi-armed bandits. In
Conference on Learning Theory, pages 122–134. PMLR, 2013.

S. Buccapatnam, J. Tan, and L. Zhang. Information sharing in distributed stochastic bandits. In 2015
IEEE Conference on Computer Communications (INFOCOM), pages 2605–2613. IEEE, 2015.

M. Chakraborty, K. Y. P. Chua, S. Das, and B. Juba. Coordinated versus decentralized exploration in
multi-agent multi-armed bandits. In IJCAI, pages 164–170, 2017.

W. Chen, Y. Wang, and Y. Yuan. Combinatorial multi-armed bandit: General framework and
applications. In International conference on machine learning, pages 151–159. PMLR, 2013.

V. Dani, T. P. Hayes, and S. M. Kakade. Stochastic linear optimization under bandit feedback. 2008.

A. Dubey and A. Pentland. Differentially-private federated linear bandits. arXiv preprint
arXiv:2010.11425, 2020.

H. Esfandiari, A. Karbasi, A. Mehrabian, and V. Mirrokni. Regret bounds for batched bandits. arXiv
preprint arXiv:1910.04959, 2019.

Z. Gao, Y. Han, Z. Ren, and Z. Zhou. Batched multi-armed bandits problem. In Proceedings of the
33rd International Conference on Neural Information Processing Systems, pages 503–513, 2019.

A. Garivier and O. Cappé. The kl-ucb algorithm for bounded stochastic bandits and beyond. In
Proceedings of the 24th annual conference on learning theory, pages 359–376. JMLR Workshop
and Conference Proceedings, 2011.

C. Gentile, S. Li, P. Kar, A. Karatzoglou, G. Zappella, and E. Etrue. On context-dependent clustering
of bandits. In International Conference on Machine Learning, pages 1253–1262. PMLR, 2017.

11

https://www.apple.com/safari/docs/Safari_White_Paper_Nov_2019.pdf
https://www.apple.com/safari/docs/Safari_White_Paper_Nov_2019.pdf


A. Goldsteen, G. Ezov, R. Shmelkin, M. Moffie, and A. Farkash. Data minimization for gdpr
compliance in machine learning models. AI and Ethics, pages 1–15, 2021.

R. Hoeksma, B. Manthey, and M. Uetz. Efficient implementation of carathéodory’s theorem for the
single machine scheduling polytope. Discrete applied mathematics, 215:136–145, 2016.

C. Kalkanli and A. Ozgur. Batched thompson sampling. Advances in Neural Information Processing
Systems, 34, 2021.

A. Karbasi, V. Mirrokni, and M. Shadravan. Parallelizing thompson sampling. arXiv preprint
arXiv:2106.01420, 2021.

R. K. Kolla, K. Jagannathan, and A. Gopalan. Collaborative learning of stochastic bandits over a
social network. IEEE/ACM Transactions on Networking, 26(4):1782–1795, 2018.

N. Korda, B. Szorenyi, and S. Li. Distributed clustering of linear bandits in peer to peer networks. In
International conference on machine learning, pages 1301–1309. PMLR, 2016.

B. Kveton, Z. Wen, A. Ashkan, and C. Szepesvari. Tight regret bounds for stochastic combinatorial
semi-bandits. In Artificial Intelligence and Statistics, pages 535–543. PMLR, 2015.

T. L. Lai and H. Robbins. Asymptotically efficient adaptive allocation rules. Advances in applied
mathematics, 6(1):4–22, 1985.

P. Landgren, V. Srivastava, and N. E. Leonard. Distributed cooperative decision-making in multiarmed
bandits: Frequentist and bayesian algorithms. In 2016 IEEE 55th Conference on Decision and
Control (CDC), pages 167–172. IEEE, 2016.

T. Lattimore and C. Szepesvári. Bandit algorithms. Cambridge University Press, 2020.

Z. Li and J. Scarlett. Gaussian process bandit optimization with few batches. arXiv preprint
arXiv:2110.07788, 2021.

O.-A. Maillard and S. Mannor. Latent bandits. In International Conference on Machine Learning,
pages 136–144. PMLR, 2014.

T. T. Nguyen and H. W. Lauw. Dynamic clustering of contextual multi-armed bandits. In Proceed-
ings of the 23rd ACM International Conference on Conference on Information and Knowledge
Management, pages 1959–1962, 2014.

V. Perchet, P. Rigollet, S. Chassang, and E. Snowberg. Batched bandit problems. The Annals of
Statistics, 44(2):660–681, 2016.

P. Rusmevichientong and J. N. Tsitsiklis. Linearly parameterized bandits. Mathematics of Operations
Research, 35(2):395–411, 2010.

A. Sankararaman, A. Ganesh, and S. Shakkottai. Social learning in multi agent multi armed bandits.
Proceedings of the ACM on Measurement and Analysis of Computing Systems, 3(3):1–35, 2019.

R. Shariff and O. Sheffet. Differentially private contextual linear bandits. arXiv preprint
arXiv:1810.00068, 2018.
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