
A Appendix

A.1 Experimental setup

A.1.1 Models and Hyper-parameters

MCTS in modern RL algorithms As mentioned in the related works, modern MCTS-based RL
algorithms include four stages in the search loop, namely selection, expansion, evaluation, and
backpropagation. (1) The selection stage targets selecting a new leaf node with UCT. (2) The
expansion stage expands the selected node and updates the search tree. (3) The evaluation stage
evaluates the value of the new node. (4) The backpropagation stage propagates the newly computed
value to the nodes along the search path to obtain more accurate Q-values with Bellman backup.

Model Design As for the architecture of the networks, we follow the implementation of EfficientZero
[34] in Atari games, which proposes three components based on MuZero: self-supervised consistency,
value prefix, and off-policy correction. In the implementation of EfficientZero, there is a representation
network, a dynamics network, and a reward/value/policy prediction network. The representation
network is to encode observations to hidden states. The dynamics network is to predict the next
hidden state given the current hidden state and an action. The reward/value/policy prediction network
is to predict the reward/value/policy. Notably, they propose to keep temporal consistency between
st+1 and the predicted state ŝt+1. The training objective is:

Lt(✓) = �1L(ut, rt) + �2L(⇡t, pt) + �3L(zt, vt) + �4Lsimilarity(st+1, ŝt+1) + c||✓||2

L(✓) = 1

lunroll

lunroll�1X

i=0

Lt+i(✓),
(3)

where ut,⇡t, zt are the target reward/policy/value of the state st and rt, pt, vt are the predicted
reward/policy/value of the state st respectively. The prediction will do lunroll = 5 times iteratively
for the state s on both Go and Atari games. We do some changes when dealing with board games.
Significantly, we remove the reward prediction network because the agent will receive a reward only
at the end of the games. The other major changes for board games are listed as follows.

Since the board game Go is harder than the Atari games, we add more residual blocks (two times
blocks). Specifically, we use 2 residual blocks in the representation network, the dynamics network, as
well as the value/policy prediction network on Go 9⇥9 while EfficientZero uses only 1 residual block
in those networks on Atari games. As for the representation network, we remove the downsampling
part here because there is no need to do downsampling for Go states. In the value/policy prediction
networks, we enlarge the dimension of the hidden layer from 32 to 128. Besides, considering that the
reward is sparse on Go (only the final value) and the collected data are sufficient, we only take the
self-supervised consistency component in EfficientZero to give more temporal supervision during
training.

Hyper-parameters In each case, we train EfficientZero for unrolled 5 steps and mini-batches of size
256. Besides, the model is trained for 100k batches with 100M frames of data on board games while
100k batches with 400k frames in Atari games. We stack 8 frames in board games without frameskip
while stacking 4 frames in Atari games with a frameskip of 4. During both training and evaluation,
EfficientZero chooses 150 simulations for each search in board games while 50 simulations of budget
for Atari games. Other hyper-parameters are listed in Table 6.

A.1.2 Training Details of Go

The detailed implementations of Atari games are discussed in EfficientZero [34]. However, it is
nontrivial to adapt to board games. Here we give detailed instructions for training board games Go
9⇥ 9 in our implementations.

Inputs We follow the designs of AlphaZero, and we use the Tromp-Taylor rules, which is similar to
previous work [31, 27]. The input states of the Go board are encoded into a 17⇥ 9⇥ 9 array, which
stacks the historical 8 frames and uses the last channels C to identify the current player, 0 for black and
1 for white. Notably, the one historical frame consists of two planes [X,Y ], where the first plane X

represents the stones of the current player and the second one [Y ] represents the stones of the opponent.
Besides, if there is a stone on board, then the state of the corresponding position in the frame will be

15



Go 9⇥ 9 Atari
Maximum number of tree size 150 50
Observation down-sampling No 96 ⇥ 96

Total frames 100M 400k
Replay buffer size 2M 100k

Max frames per episode 163 108k
Cost of training time 24h 8h

Komi of Go 6.5 -
Frame stack 8 4
Frame skip 1 4

Training steps 100k 100k
Mini batch 256 256

Learning rate 0.05 0.2
Weight decay (c) 0.0001 0.0001

Reward loss coefficient (�1) 0 1
Policy loss coefficient (�2) 1 1
Value loss coefficient (�3) 1 0.25

Consistency loss coefficient (�4) 2 0.5
Dirichlet ↵ 0.03 0.3
c1 in P-UCT 1.25 1.25
c2 in P-UCT 19652 19652

✏ 0.1 0.1
r 0.2 0.2

Table 6: Hyper-parameters of V-MCTS on Go 9⇥ 9 and Atari games

set to 1, otherwise to 0. For example, if the current player is black and suppose b[i, j] is the current
board state, X[i, j] = 1b[i,j]=black stone, Y [i, j] = 1b[i,j]=white stone. In summary, we concatenate
together the historical planes to generate the input state s = [Xt�7, Yt�7, Xt�6, Xt�6, ..., Xt, Yt, C],
where Xt, Yt are the feature planes at time step t and C gives information of the current player.

Training As for the training phase, we train the model from scratch without any human expert data,
which is the same as the setting of Atari games. Besides, limited to the GPU resources, we do not use
the reanalyzing mechanism of MuZero [27] and EfficientZero [34], which targets at recalculation of
the target values and policies from trajectories in the replay buffer with the current fresher model.
Specifically, we use 6 GPUs for doing self-play to collect data, 1 GPU for training, and 1 GPU for
evaluation.

Exploration To make a better exploration on Go, we reduce the ↵ in the Dirichlet noise Dir(↵) from
0.3 to 0.03, and we scale the exploration noise through the typical number of legal actions, which
follows these works [31, 27]. In terms of sampling actions from MCTS visit distributions, we will
mask the MCTS visit distributions with the legal actions and sample an action at, where

at :=

⇢
at ⇠ ⇡t, t < T

at = argmax⇡t, t � T
(4)

T is set to 16 in self-play and is set to 0 in evaluation, which is similar to these works [31, 27]. In this
way, the agent does more explorations for the previous T steps while taking the best action afterwards.
But for Atari games, 8t, we choose at ⇠ ⇡t in self-play and at = argmax⇡t in evaluation, which is
the same as these works [27, 34].

Two-player MCTS On board games, there are two players against each other, which is different from
that of one-player games. Therefore, we should do some changes to the MCTS with the two-player
game. For one thing, the value network always predicts the Q-value of the black player instead of the
current player, which provides a more stable prediction. Furthermore, A significant change is that
during backpropagation of MCTS, the value should be updated with the negative value from the child
node. Because the child node is the opponent, the higher value of the opponent indicates a worse
value of the current player. Besides, as for Q-values of the unvisited children on Go and Atari games,

16



we follow the implementation of EfficientZero [34] as follows:

Q̄(sroot) = 0

Q̄(s) =
Q̄(sparent) +

P
b 1N(s,b)>0Q(s, b)

1 +
P

b 1N(s,b)>0

Q(s, a) : =

⇢
Q(s, a) N(s, a) > 0
Q̄(s) N(s, a) = 0

(5)

Notably, we allow the resignation for players when maxa2A Q(sroot, a) < �0.9 during self-play
and evaluation, which means that the predicted winning probability is less than 5%. For convenience,
when playing against GnuGo during evaluation, our agent will follow the skip action if GnuGo agent
chooses the skip action. As for other hyperparameters on both Go and Atari games, we note that we
choose the same values as those in EffcientZero. Specifically, the c1, c2 in our mentioned P-UCT
formula (Eq. 1) are set to 1.25 and 19652, following these works [27, 34].

A.1.3 Comparison of time cost on Go

To give the comparison of time cost among the methods considering the languages and hardwares.
Here, we list the detailed settings of our models and the GnuGo engines in Table 7.

Table 7: Comparisons about the languages and hardware.

C Python CPU GPU Time
MCTS X X X X 0.24
V-MCTS X X X X 0.12
GnuGo X X 0.18

Table 8: Extra time consumed by virtual expansion on Go. Here k is vanilla expansion times and T is
extra virtual expansion times.

T = 30 T = 60 T = 90 T = 120
k = 30 0.7ms 1.5ms 2.2ms 3.0ms

To Give clear statistics about the extra time consumed by virtual expansion. Here, we record the time
cost among different virtual expansion times in total after a fixed number of vanilla expansions. The
results are listed in Table 8. We can find the extra time consumed by virtual expansion is little and
linearly increased because there are only some atomic computations written in C++.

A.2 Proof

Before the proof, let us recap some notations. In the MCTS procedure mentioned above, we suppose
that there are total |A| actions to select and N trials in total. Since the policy is defined as the
visitation distributions of the root node, we only care about the Q-value and visitation changes of the
root nodes.

Each action a 2 A is associated with a value, which is a random variable bounded in the interval
[0, 1] with expectation Qa. For convenience, we assume that different actions (arms) are ordered by
their corresponding expected values, which means that 1 � Q1 � Q2 � · · ·Qa � · · · � Q|A| � 0.
At k iteration step of the search loop, the agent will select an action at the root note and receive an
independent sample of its value R

k
a 2 [0, 1] from the neural networks, for simplification. And at k

step, the action a 2 A of the root node is selected for Nk(s, a) = T
k
a  k times of vanilla expansion.

We use the notation Q̄
k
a = 1

Tk
a

PTk
a

t=1 R
t
a to denote the empirical mean values and U

k(s, a) to denote
the ucb scores of the action a given the root state s at step k. (Here all Rt

a are independent and
bounded in [0, 1]). For virtual expansion, we use Q̂k

a to denote the empirical mean values at step k. It
is obvious that Q̂N

a = Q̂
k
a when k satisfies the VET-rule.

17



Lemma A.1. Given r 2 (0, 1), action set A, N > |A|. 9N0, 8N > N0, k � rN , we have
8a, T k

a � 1.

Proof. The ucb score is defined by Eq. (1). Empirically, we will set c2 given a budget N and usually
we have c2 > N �

P
b N(s, b), so we note c1 + log

P
b N(s,b)+c2+1

c2
as c = c1 + log N+c2+1

c2
2

(c1, c1 + log 3) At step k, suppose there exist an action a, which has T k
a = 0. Then at step k, the ucb

score of a should be

U
k(s, a) = Q̄(s) + P (s, a)

pP
b N(s, b)

1 +N(s, a)
c

> Q̄(s) + c1Ma

p
k

> c1Ma

p
k,where T

k
a = 0.

(6)

For action b, which has T k
b � 1. At step k, we have

U
k(s, b) = Q̄

k
b + P (s, b)

pP
i N(s, i)

1 +N(s, a)
c

< 1 + (c1 + log 3)Mb

p
k

1 + T k
b

< 1 + (c1 + log 3)Mb

p
k

2
,where T

k
b � 1.

(7)

Since k � rN > rN� |A| and f(k) = c1Ma

p
k�(1+(c1+log 3)Mb

p
k
2 ) is increasing for k. 9N0,

we have c1Ma
p
rN0 = 1 + (c1 + log 3)Mb

p
rN0

2 . Let N0 = max{N0, |A|}, 8N > N0, f(k) > 0,
c1Ma

p
k > 1 + (c1 + log 3)Mb

p
k
2 . Then we have U

k(s, a) > U
k(s, b). Therefore, at step k, for

the action b will be not selected. After extra |A| steps at most, all the action will be selected. Thus,
we have 8a, T k

a � 1.

Theorem A.2. (Value Consistency in Virtual Expansion): Given r 2 (0, 1), confidence � 2 (0, 1),

finite action set A. 9N0, 8N > N0, k � rN , let ✏k =
q

1
2k ln 100k2

� , we have (1) After k times

vanilla expansion, Pr{
T

a2A
��Q̄k

a �Qa

�� < ✏k} > (1� e�|A|
50k2 ); (2) After k times vanilla expansion

and N � k times virtual expansion, Pr{
T

a2A

���Q̂N
a �Qa

��� < ✏k} > (1 � e�|A|
50r2N2 ), where e is the

Euler’s number.

Proof. Firstly, we have Hoeffding’s inequality:

8i = 1, 2, · · · , n, ai  Xi  bi, Sn = X1 +X2 + · · ·+XN

Pr{|Sn � E[Sn]| � t}  2 exp
�2t2Pn

i=1(bi � ai)2
(8)

Observe that at step k, given confidence �, let ✏k =
q

1
2k ln 100k2

� , assumed that Rt
a are independent

and bounded in [0, 1]. Then for action a, we have

Pr{
��Q̄k

a � E[Q̄k
a]
�� � ✏k} = Pr{

��Q̄k
a �Qa

�� � ✏k} = Pr{

������

Tk
aX

t=1

R
t
a � T

k
aQa

������
� ✏kT

k
a }

 2 exp (
�2(✏kT k

a )
2

T k
a

) = 2 exp (�2T k
a ✏

2
k) = �k,a

(9)

From Lemma A.1, we know that 1  T
k
a  k, we have 2 exp (�2k✏2k)  �k,a  2 exp (�2✏2k).

After simplification, 8a 2 A, we have

�

50k2
 �k,a  �

50k2
exp (

1

k
) (10)

18



And we know that
P

a2A T
k
a = k, so we have

Pr{
\

a2A

��Q̄k
a �Qa

�� � ✏k} 
Y

a2A
�k,a

=
Y

a2A
2 exp (�2T k

a ✏
2
k)

= 2 exp (�2k✏2k)

=
�

50k2
= �k

(11)

And from Eq. (9), we have Pr{
��Q̄k

a �Qa

�� < ✏k} � 1� �k,a, then

Pr{
\

a2A

��Q̄k
a �Qa

�� < ✏k} �
Y

a2A
(1� �k,a)

�
Y

a2A
(1� �

50k2
exp (

1

k
))

= (1� �

50k2
exp (

1

k
))|A|

(12)

Consider the function f(x) = (1� x)n � (1� nx), x = �
50k2 exp (

1
k ) 2 (0, e�

50 ], n = |A| >= 2, we
have f

0
(x) = �n(1� x)n�1 + n. Since � < 1, k � 1, x  e�

50 <
e
50 < 1. Then we have f

0
(x) > 0.

Therefore, we have f(x) > f(0) = 0 and (1� x)n > (1� nx). So

Pr{
\

a2A

��Q̄k
a �Qa

�� < ✏k} = (1� �

50k2
exp (

1

k
))|A|

> (1� �|A|
50k2

exp (
1

k
))

> (1� e�|A|
50k2

)

(13)

So we have

lim
k!1

✏k = lim
k!1

r
1

2k
ln

100k2

�
= 0,

lim
k!1

�k = lim
k!1

�

50k2
= 0,

lim
k!1

(1� e�|A|
50k2

) = 0,

(14)

Therefore, we know that

Pr{
\

a2A

��Q̄k
a �Qa

�� < ✏k} > (1� e�|A|
50k2

), ✏k =

r
1

2k
ln

100k2

�

lim
k!1

Pr{
\

a2A

��Q̄k
a �Qa

�� = 0} = 1
(15)

The probability can be converged to 1, and the convergence rate is O( 1
k2 ).

According to description of virtual expansion in Algo. 2, we know that after extra N � k virtual
expansion, the estimated Q-values keep the same as the k-step. This is because the visitation
distributions of the previous k steps are identical.

Therefore, for virtual expansion, the Eq. (15) is also satisfied.

Since k � rN , tor the next N � k steps, the empirical mean Q-values Q̂N
a are equal to Q̄

k
a. So we

have
Pr{

\

a2A

���Q̂N
a �Qa

��� < ✏k} > (1� e�|A|
50k2

) > (1� e�|A|
50r2N2

) (16)

19



Theorem A.3. (Best Action Identification in Virtual Expansion): Given r 2 (0, 1), confidence
� 2 (0, 1), finite action set A. Suppose Q̂

N
a is the final empirical mean value of action after V-

MCTS, Q̄N
a is the final empirical mean value of after vanilla MCTS. a = 1 is the action of the

highest expected value, a = ⇤ is the action of the highest empirical mean value. 9N0, 8N >

N0, k � rN , let ✏k =
q

1
2k ln 100k2

� , after V-MCTS, we have Pr{
���Q̂N

⇤ � Q̄
N
1

��� < ✏k + ✏N} >

1� 2( �
50k2 exp (

1
1.61

p
k
) + �

50N2 exp (
1
N )).

Proof. From Eq. (9) in Theorem A.2, we know that
Pr{Q1 � Q̄

k
1 < ✏k} � 1� �k,1,

P r{Q̄k
1 �Q1 < ✏k} � 1� �k,1

(17)

, where ✏k =
q

1
2k ln 100k2

� , �k,a = 2 exp (�2T k
a ✏

2
k) Besides, we know that 8a 2 A, Qa  Q1, so

we have
Pr{Q1 � Q̄

k
⇤ < ✏k} � 1� �k,⇤,

P r{Q̄k
⇤ �Q1 < ✏k} � 1� �k,⇤

(18)

For different step k,N , we have
Pr{Q̄k

⇤ � Q̄
N
1 < ✏k + ✏N} � 1� �k,⇤ � �N,1,

P r{Q̄k
1 � Q̄

k
⇤ < 2✏k} � 1� �k,⇤ � �N,1

)Pr{
��Q̄k

⇤ � Q̄
N
1

�� < ✏k + ✏N} � 1� 2(�k,⇤ + �N,1)

(19)

Before finding the bound of �k,⇤, let us make an assumption first.

Assumption A.4. Suppose that 8a 2 A, Ma = P (s, a) 2 (0, 1) is the prior score obtained from the
learned neural networks, we have M⇤ � 1

|A|
P

a2A Ma = 1
|A| , where ⇤ := argmax

a
Q̄

k
a.

Here, this inequality is true when the learned neural networks can estimate the prior of the actions
after training for some trials. In such a case, for the best empirical action ⇤, the predicted prior score
should be larger than the mean prior scores.

From the Lemma 2 in P-UCT [25], we know that at most 1.61
p
n

M⇤
distinct arms are pulled during the

episode, where M⇤ is the prior score P (s, a) of the best action. M⇤ is a constant during the search
loop and we know that M⇤ � 1

|A|
P

a2A Ma = 1
|A| . An action will be selected for more times with

a higher empirical mean values. Therefore, for the empirical best action ⇤, it has been selected more
than k/

1.61
p
k

M⇤
= M⇤

1.61

p
k times, which means M⇤

1.61

p
k  T

k
⇤  k. So we have

�

50k2
 �k,⇤  �

50k2
exp (

M⇤

1.61
p
k
) (20)

From Eq. (20) and (10), we know that
Pr{

��Q̄k
⇤ � Q̄

N
1

�� < ✏k + ✏N} � 1� 2(�k,⇤ + �N,1)

� 1� 2(
�

50k2
exp (

M⇤

1.61
p
k
) +

�

50N2
exp (

1

N
))

(21)

According to description of virtual expansion in Algo. 2, we know that after extra N � k virtual
expansion, the estimated Q-values keep the same as the k-step. Compared with the visitations of
vanilla MCTS and V-MCTS, the only difference is the empirical mean Q-values. Observed that
Q̂

N
a = Q̂

k
a when k satisfies the VET-rule.

Consequently, for the V-MCTS, we have

Pr{
���Q̂N

⇤ � Q̄
N
1

��� < ✏k + ✏N} � 1� 2(
�

50k2
exp (

M⇤

1.61
p
k
) +

�

50N2
exp (

1

N
))

> 1� 2(
�

50k2
exp (

1

1.61
p
k
) +

�

50N2
exp (

1

N
))

(22)

20



Theorem A.5. (Error Bound of V-MCTS): Given r 2 (0, 1), confidence � 2 (0, 1), finite action set
A. Suppose the virtual expanded policy ⇡̂k is generated from Algorithm 3 (V-MCTS), 9N0, 8N >

N0, k � rN , 8✏ 2 [0, 1], we have: if �̂s(k, k/2) < ✏, Pr {||⇡N (s)� ⇡̂k(s)||1 < 3✏} > 1 �
e�|A|
50N2 (1 +

4
r2 ), where e is the Euler’s number.

Proof. Suppose that k satisfies the VET-rule, which means k � rN, ✏ 2 [0, 1], �̂s(k, k/2) =����⇡̂k(s)� ⇡̂k/2(s)
����
1
< ✏. Here, it is obvious that the given ✏ is in a range of [0, 1] because ⇡̂k(s) is

a probability distribution.

In general, given the expected values Qa of each action a, assume there exists a ground truth policy
⇡(s), which does MCTS for N times given the expected values Qa.

Then we have

�̂s(N, k) = ||⇡̂N (s)� ⇡̂k(s)||1  ||⇡̂N (s)� ⇡(s)||1 + ||⇡̂k(s)� ⇡(s)||1 . (23)

Assumption A.6. Suppose that given ✏, r 2 (0, 1), 9�✏, N0 > 0, 8a 2 A, 8N > N0, k � rN , whenT
a2A

��Q̄k
a �Qa

�� < �✏, we have ||⇡̂k(s)� ⇡(s)||1 < ✏.

This assumption shows that when the L1 difference between all empirical mean values and the
corresponding expected values, the difference of policy between ⇡(s) and ⇡̂k(s) can be bounded
with the given distance ✏. This is obvious because virtual MCTS will do virtual expansion for the
next N � k times without changing the empirical mean values. Therefore, when �✏ is small enough,
during the next N � k times expansion, the ucb scores of virtual expansion are similar to those
of vanilla expansion with expected values. For example, when �✏ ! 0, Q̄k

a ! Qa, the virtual
expansion is totally the same as the vanilla expansion with expected values. Then 9N0, 8N > N0,
||⇡̂k(s)� ⇡(s)||1 = ||⇡̂N (s)� ⇡(s)||1 = 0 < ✏.

From Eq. (15) in Theorem A.2, we have Pr{
T

a2A
��Q̄N

a �Qa

�� < ✏N} > (1 � e�|A|
50N2 ), where

✏N =
q

1
2N ln 100N2

� . Since 9N1, 8N > N1, �✏ is a constant when ✏ is given, so �✏ > ✏N , then with

at least probability of (1� e�|A|
50N2 )

||⇡̂N (s)� ⇡(s)||1 < ✏. (24)

Since we know that
����⇡̂k(s)� ⇡̂k/2(s)

����
1

< ✏, ||⇡̂k(s)� ⇡(s)||1 �
����⇡̂k/2(s)� ⇡(s)

����
1

����⇡̂k(s)� ⇡̂k/2(s)
����
1
< ✏.

From Eq. (15) in Theorem A.2, we have

Pr{
\

a2A

���Q̄k/2
a �Qa

��� < ✏k/2} > (1� 4e�|A|
50k2

) (25)

We know that k � rN , 9N2, 8N > N2, ✏k 
q

1
2rN ln 100r2N2

� < �✏, then with at least probability

of (1� 4e�|A|
50k2 ),

����⇡̂k/2(s)� ⇡(s)
����
1
< ✏ and

||⇡̂k(s)� ⇡(s)||1 
����⇡̂k/2(s)� ⇡(s)

����
1
+

����⇡̂k(s)� ⇡̂k/2(s)
����
1
< 2✏ (26)

Back to Eq. (23), with at least (1� e�|A|
50N2 )⇥ (1� 4e�|A|

50k2 ), we have

�̂s(N, k) = ||⇡̂N (s)� ⇡̂k(s)||1
 ||⇡̂N (s)� ⇡(s)||1 + ||⇡̂k(s)� ⇡(s)||1
< ✏+ 2✏ = 3✏

(27)

For the N -th iteration of the search process, the final visitation distributions keep the same between
the original expansion (Algorithm 1) and the virtual expansion (Algorithm 2). This is because at the

21



last iteration, searching the nodes after the root has no effects on the final distribution. Therefore,
⇡̂N (s) = ⇡N (s). So we have

||⇡N (s)� ⇡̂k(s)||1 = ||⇡̂N (s)� ⇡̂k(s)||1
 ||⇡̂N (s)� ⇡(s)||1 + ||⇡̂k(s)� ⇡(s)||1
< ✏+ 2✏ = 3✏

(28)

Therefore, let N0 = max{N1, N2}, 8N > N0,

Pr{||⇡N (s)� ⇡̂k(s)||1 < 3✏} >= (1� e�|A|
50N2

)⇥ (1� 4e�|A|
50k2

)

> 1� (
e�|A|
50N2

+
4e�|A|
50k2

)

= 1� e�|A|
50

(
1

N2
+

4

k2
)

� 1� e�|A|
50N2

(1 +
4

r2
)

(29)

22


