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Abstract

Designing reinforcement learning (RL) agents is typically a difficult process that
requires numerous design iterations. Learning can fail for a multitude of reasons,
and standard RL methods provide too few tools to provide insight into the exact
cause. In this paper, we show how to integrate value decomposition into a broad
class of actor-critic algorithms and use it to assist in the iterative agent-design
process. Value decomposition separates a reward function into distinct components
and learns value estimates for each. These value estimates provide insight into an
agent’s learning and decision-making process and enable new training methods to
mitigate common problems. As a demonstration, we introduce SAC-D, a variant
of soft actor-critic (SAC) adapted for value decomposition. SAC-D maintains
similar performance to SAC, while learning a larger set of value predictions. We
also introduce decomposition-based tools that exploit this information, including a
new reward influence metric, which measures each reward component’s effect on
agent decision-making. Using these tools, we provide several demonstrations of
decomposition’s use in identifying and addressing problems in the design of both
environments and agents. Value decomposition is broadly applicable and easy to
incorporate into existing algorithms and workflows, making it a powerful tool in
an RL practitioner’s toolbox.

1 Introduction

Deep reinforcement-learning (RL) approaches have achieved successes in a range of application areas
such as gaming ([5, 32, 36, 38]), robotics ([22]), and the natural sciences ([25, 35]). Despite these
successes, applying RL techniques to complex control problems remains a daunting undertaking,
where initial attempts often result in underwhelming performance. Unfortunately, there are many
reasons why an agent may fail to learn a good policy, making it difficult to diagnose which reason(s)
caused a particular agent to fail. For example: an agent may fail because the state features were
insufficient to make accurate predictions, different task objectives defining the reward function may
be imbalanced, the agent may fail to sufficiently explore the state-action space, values may not
accurately propagate to more distant states, the neural network may not have sufficient capacity to
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approximate the policy or value function(s), or, there may be subtle differences between training and
evaluation environments. Without a way to diagnose the causes of poor performance or to recognize
when a problem has been remedied, practitioners typically engage in a long trial-and-error design
process until an agent reaches a desired level of performance. Frustrations with this trial-and-error
process have been expressed in other work [16].

We describe how value decomposition, a simple, broadly-applicable technique, can address these
application challenges. In RL, the agent receives a reward that is often a sum of many reward
components, each designed to encode some aspect of the desired agent behavior. From this composite
reward, it learns a single composite value function. Using value decomposition, an agent learns a
component value function for each reward component. To perform policy optimization, the composite
value function is recovered by taking a weighted sum of the component value functions. While
prior work has proposed value decomposition methods for discrete-action Q-learning [19, 29, 31],
we show how value decomposition can be incorporated into a broad class of actor-critic (AC)
methods. In addition, we introduce SAC-D, a version of soft actor-critic (SAC) [13, 14] with value
decomposition, and explore its use in multi-dimensional continuous-action environments. We also
introduce the influence metric, which measures how much an agent’s decisions are affected by each
reward component.

While earlier work focuses on its use in reward design [16, 19], value decomposition can facilitate
diagnosis of a wide range of issues and enable new training methodologies. To demonstrate its
utility, in Sec. 6 we show how to use it to: (1) diagnose insufficient state features; (2) diagnose
value prediction errors and exploit the decomposed structure to inject background-knowledge; and
(3) identify reward components that are inhibiting exploration and mitigate the effect by gradually
incorporating component predictions into policy optimization.

Value decomposition’s additional diagnostic and training capabilities come at the cost of a more-
challenging prediction problem: instead of learning a single value function, many must be learned.
To investigate if this difficulty negatively impacts agent performance, we compare the average
performance of SAC-D to SAC on benchmark environments. We find that a naive implementation of
SAC-D underperforms SAC and then show how to improve SAC-D so that it matches and sometimes
exceeds SAC’s performance. These improvements may also be applied to value decomposition for
other AC algorithms.

While variations of value decomposition has been explored extensively in past work (see Sec. 7), in this
paper, we make the following contributions. (1) We show how to integrate value decomposition into
a broad class of actor-critic algorithms. (2) We analyze the performance of different implementations
of value decomposition for SAC on a range of benchmark continuous-action environments. (3) We
introduce the influence metric: a novel value decomposition metric for measuring how much each
reward component affects decision-making. (4) We provide a set of illustrative examples of how
value decomposition and influence can be used to diagnose various kinds of learning challenges. (5)
We describe new training methods that exploit the value decomposition structure and can be used to
mitigate different learning challenges.

2 Background

2.1 MDPs and Q-functions

In RL, an agent’s interaction with the environment is modeled as a Markov Decision Process (MDP):
(S,A, P,R, �), where S is a set of states, A is a set of actions, P : S ⇥ A ⇥ S ! R is a state
transition probability function P (s, a, s0) = Pr(St+1 = s0|St = s,At = a), R : S ⇥ A ! R is
a reward function R(s, a) = E[Rt+1|St = s,At = a], and � 2 [0, 1] discounts future rewards.4
The goal of an agent is to learn a policy ⇡(a|s) that maps states to an action probability distribution
that maximizes the sum of future rewards. The agent is trained to maximize the discounted return
E [

P1
t �tR(st, at)]. The Q-function maps state-action pairs to the expected cumulative discounted

reward when starting in state s, taking action a, and then following policy ⇡ thereafter:

Q⇡(s, a) , E
" 1X

t=0

�tR(st, at)|⇡, s0 = s, a0 = a

#
. (1)

4For continuing tasks, � must be < 1, and we only consider algorithms for � < 1.
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2.2 Soft actor-critic

Soft actor-critic (SAC) [13, 14] is an off-policy actor-critic algorithm parameterized with five neural
networks: a stochastic policy network ⇡ with parameters �, and two pairs of Q-functions and
target Q-functions with parameters (✓1, ✓2) and (✓̄1, ✓̄2), respectively. As with other actor-critic
algorithms, SAC has two main steps: policy evaluation (in which it estimates the Q-function for
policy ⇡), and policy improvement (in which it optimize the policy to maximize its Q-function
estimates). Unlike other actor-critic algorithms, SAC optimizes a maximum entropy formulation
of the MDP, in which rewards are augmented with policy entropy bonuses that prevent premature
policy collapse. To perform policy evaluation and improvement, SAC minimizes the following loss
functions simultaneously:

LQi = E

1

2
(Q(s, a; ✓i)� y)2

�
for i 2 {1, 2} , (2a)

L⇡ = E

↵ log ⇡(u|s;�)� min

j2{1,2}
Q(s, u; ✓j)

�
, (2b)

where (s, a, r, s0) transitions are drawn from an experience replay buffer, y := r +
�
�
minj2{1,2} Q(s0, a0; ✓̄j)� ↵ log ⇡(a0|s0;�)

�
, a0 ⇠ ⇡(·|s0;�), u ⇠ ⇡(·|s;�), and ↵ is an

(optionally learned) entropy regularization parameter. The min of Q-function pairs addresses
overestimation bias in value function estimation [11, 15]. The parameters ✓̄1 and ✓̄2 are updated
toward ✓1 and ✓2 via an exponentially moving average each step.

2.3 Environments

Throughout the paper, we italicize descriptive names for the components of the continuous-action
Lunar Lander (LL), Bipedal Walker (BW) and Bipedal Walker Hardcore (BWH) environments. In
LL, an agent must land a spacecraft in the center of a landing zone using as little fuel as possible.
The reward components include: a reward for successful landing; penalties for crashing (crash) and
engine usage (main, side); shaping rewards used to encourage the agent to stay upright (angle), move
towards the center of the landing pad (position) with low velocity (velocity) and land with both legs
(right leg, left leg). In BW, an agent learns to make a 2-legged robot walk. The reward components
include: a reward for forward progress, a penalty for falling (failure), a cost for actions (control), and
a shaping reward to discourage head movement (head). BWH is identical to BW, but adds additional
obstacles for the agent to navigate.

3 Value decomposition for actor-critic methods

Most RL algorithms estimate the value function and use it to improve its policy. Unfortunately,
value functions and policies provide little insight into the agent’s decision-making. However, reward
functions are often composite functions of multiple component state-action signals. By learning a
value function estimate for the current policy for each component, practitioners gain insight into
what the agent expects to happen and how these reward components interact. Naturally, policy
improvement still requires the composite value function. In Sec. 3.1 we show how the composite Q-
function can be recovered from the component Q-functions. From this property, a range of actor-critic
algorithms can be adapted to use value decomposition by following the below template.5

1. Alter Q-function networks to have m outputs instead of 1, where m is the number of reward
components.

2. Use the base algorithm’s Q-function update for each of the m components, replacing the
composite reward term with the respective component reward term.

3. Apply the base algorithm’s policy improvement step by first recovering the composite
Q-function.

For example, this template can be applied to algorithms that use TD(0) [33], or ones that use
Retrace [27]. It works with algorithms that improve the policy by differentiating through the Q-
function [11, 14, 23], and ones that fit it toward non-parametric target action distributions [1].

5Composite state value functions can similarly be recovered; however, Q-functions allow for deeper
introspection, so we focus on that setting in this work.
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Algorithm 1 SAC-D and SAC-D-CAGrad Update
Require: Experience replay buffer B; twin Q-function parameters ✓1, ✓2 (with ⇥ = ✓1 [ ✓2) and target

parameters ✓̄1, ✓̄2; policy parameters �; discount factor �; entropy parameter ↵; reward weights w 2 Rm+1;
learning rates �q,�⇡; target network step size ⌘; Boolean use_cagrad for SAC-D-CAGRAD or SAC-D.

1: Sample transition (minibatch) (s, a, r, s0) ⇠ B . r 2 Rm is a vector of m reward components
2: Sample policy actions a0 ⇠ ⇡(·|s0;�) and u ⇠ ⇡(·|s;�)
3: rm+1  �↵ log ⇡(a0|s0;�) . Extend reward vector to include entropy reward
4: j  argmin

j2{1,2}

Pm+1
i wiQi(s

0, a0; ✓̄j) . Find target network by minimum composite Q-value

5: yi  ri + �Qi(s
0, a0; ✓̄j)

6: LQi  
P2

j=1
1
2 (Qi(s, a; ✓j)� yi)

2

7: L⇡  ↵ log ⇡(u|s;�)�minj2{1,2}
Pm+1

i wiQi(s, u; ✓j)
8: if use_cagrad then

9: ⇥ ⇥� �qCAGRAD(JLQ,⇥)
10: else

11: ⇥ ⇥� �qr⇥
1

m+1

Pm+1
i LQi

12: end if

13: � �� �⇡r�L⇡
14: Update target networks ⇥̄ (1� ⌘)⇥̄+ ⌘⇥

Although this template is conceptually simple, learning component Q-functions poses a more difficult
prediction problem: multiple predictions must be learned instead of one composite prediction. Ideally,
this increased difficulty would not negatively impact agent performance. In Sec. 3.2 we introduce
SAC-D, an adaptation of SAC to use value decomposition, and describe additions we made to
the above template to maintain performance with conventional SAC. Although these additions are
contextualised to SAC, they are general and can be used when adapting other actor-critic algorithms.

3.1 Recovering the composite Q-function

We assume the environment’s reward function is a linear combination of m components: R(s, a) ,Pm
i wiRi(s, a), where wi 2 R is a scalar component weight for the ith component and Ri(s, a) ! R

is the reward function of the ith component for state-action pair (s, a). Applying the linearity of
expectation, we find the Q-function inherits the linear structure from the reward6:

Q⇡(s, a) =
mX

i

wiQ
⇡
i (s, a), (3)

where we define the i’th component Q-function as Q⇡
i (s, a) , E[

P
t �

tRi(st, at)|⇡, s0 = s, a0 = a].
Unless otherwise specified, we assume wi = 1 for all i. Because the component weights are factored
out of the component Q-functions, they may be varied without changing the component prediction
target, allowing the policy to be evaluated for any weight combination. Although the assumption
of linearity may seem restrictive, note that each reward component may be a non-linear function of
state variables, allowing for very expressive environment rewards. Furthermore, many environments,
including all the environments we investigate in this paper, are naturally structured as a sum of
(non-linear) reward components.

3.2 SAC with value decomposition

Here we introduce SAC-D (Alg. 1), an adaptation of SAC to use value decomposition. Adapting SAC
only requires one additional consideration from our template: the entropy bonus reward term SAC
adds is treated as an m+ 1’th reward component: Rm+1(s0) , �↵ log ⇡(a0|s0;�) (line 3). However,
this approach, which we refer to as SAC-D-Naive, underperforms SAC in many settings. We found
two additional modifications essential to match the performance of SAC. The first concerns how we
apply the twin-network minimum of Eq. 2 in the context of value decomposition. The second is to
use Conflict-Averse Gradient descent (CAGrad) [24] to address optimization problems that arise
when training multi-headed neural networks. We refer to SAC with value decomposition and the

6See Theorem A.1 for the proof. This linear decomposition property of value functions has been explored
elsewhere [3, 9], but in different contexts and with different motivations. See Sec. 7 for more information.
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Figure 1: Benchmark results (a)-(b) Comparison of algorithms over 8 environments. For each
algorithm, scores are collected from the 10 final checkpoints (10 episodes ⇥ 10 final policies),
and normalized on individual environments. The 95% CIs are estimated using stratified bootstrap
sampling. (a) The interquartile mean (IQM), which gives the mean over the central 50% of values.
(b) For each normalized score x, % of runs achieving a score of at least x. Grey region, x > 1.0,
corresponds to runs outperforming the mean SAC baseline score. (c) Training curves on continuous-
control benchmarks for BWH. Solid lines represent mean episode return over 10 trials. Shaded areas
are confidence intervals. Lines are uniformly smoothed for clarity. (d) Same as (c), but for Ant.

twin-network correction as SAC-D, and the variant with twin-network correction and CAGrad as
SAC-D-CAGrad.

Twin-network minimums in value decomposition: In SAC, the Q-value target is the minimum
of two Q-function networks (Eq. 2). Using the same Q-value update rule for each component,
as described in our template, suggests using a minimum for each component target: qi :=
minj2{1,2} Qi(s, a; ✓̄j). However, this is not a good choice in practice. The purpose of the twin-
network minimum is to mitigate overestimation bias from the feedback loop of the policy optimizing
the Q-function. Because the policy optimizes the composite Q-function, a better approach is to use
all the predictions from the network with the minimum composite Q-function (Alg. 1, lines 5-6)).
This approach reduces underestimation bias and improves performance compared to an element-wise
minimum (see Sec. 4).

Mediating the difficulty of multi-objective optimization: Even though the scalar values of the
composite Q-function are identical to those used in SAC, simultaneous optimization of all Q⇡

i
components may introduce training problems common in multi-objective optimization: conflicting
gradients, high curvature and large differences in gradient magnitudes [39].7 The CAGrad method,
designed for the multi-task RL setting, addresses these issues by replacing the gradient of a multi-task
objective with a weighted sum of per-task loss gradients. This updated gradient step maximizes
the improvement of the worst-performing task on each optimization step, and still converges to a
minimum of the unmodified loss. We incorporate CAGrad into SAC-D by treating each component
as a “task”, and update the gradient vector accordingly (Alg. 1, line 9).

4 Robustness experiments

We benchmark SAC-D, SAC-D-CAGrad and SAC-D-Naive against SAC on a selection of continuous-
action Gym [7] environments. For each environment, we exposed existing additive reward components
without altering the behavior of the environments or their composite rewards. That is, these
environments already implemented their reward functions as a linear combination of separate reward
components and we simply exposed that information to the algorithm (for details, see App. B). As
outlined in App. C, we used hyperparameters previously published for use with SAC [14] for all
experiments. We tied SAC-D’s hyperparameters to SAC’s because our goal is for value decomposition
to be a drop-in addition without significant loss in agent-performance. However, it is possible better
performance could be reached with tuning.

Figure 1(a) shows the performance of each algorithm aggregated across all environments and all
experimental runs. Figure 1(b) shows the same information, but highlights the distribution of scores
across experimental runs. In aggregate, SAC-D-CAGrad slightly outperforms SAC, although it has a
broader range of performance scores. SAC-D-Naive significantly underperforms SAC.

7Multi-headed prediction can also improve representation learning, as in work on auxiliary tasks [18, 26]
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Figure 2: Influence calculation for a three-component environment with a 2D action space. In
this illustrative example, component 2 has high influence, while components 1 and 3 have low
influence, but for different reasons. Each figure shows a contour-map view of the Q-function over
the 2D action space for the same state. (a) The composite Q-function the policy optimizes. The
black point is a (near-optimal) policy selection, and the black arrow is the policy gradient. (b)-(d)

Each component Q-function. (e)-(g) Component-ablated composite Q-function surfaces Q¬i used to
compute influence for each component. Influence is defined by the length of the red line, which is the
difference of the policy gradients computed for the composite Q-function Q (black arrow) and for
Q¬i (orange arrow). (e) Component 1 has low influence because it is out-weighed by component 2.
(f) Conversely, component 2 has high influence; without it, the policy would move toward the peak of
component 1. (g) While component 3 contributes a large value, it has low influence because the value
is nearly uniform; much of its value is received regardless of the action selected.

We provide training curves for the 8 environments investigated in App. D, but highlight the atypical
training curves for BWH (Fig. 1(c)) and Ant (Fig. 1(d)). In the case of BWH, SAC-D-CAGrad
significantly outperforms SAC. It was not the goal of this work for SAC-D to improve on SAC.
Rather, we sought to provide more insights into the learning process. As such, we make no strong
claims about when SAC-D can be expected to outperform SAC. Nevertheless, this result does suggest
that SAC-D may sometimes benefit from auxiliary task learning. We leave this question as a subject
for future investigation.

In Ant, SAC-D (without CAGrad) underperforms all other methods. We found that infrequent
environment termination causes large Q-function errors and leads to catastrophic gradient conflicts.
Further analysis of termination issues and CAGrad behavior is described in Appendices E and F
respectively.

5 Reward component influence

It can be difficult to understand how an agent’s predictions interact to affect decision-making. We
now introduce the reward influence metric, which indicates how much each component contributes
to an agent’s decision. Intuitively, low influence means that removing a component would not alter
decision-making; high influence means that removing it would significantly alter decision-making.

For multi-dimensional continuous actions, we define the optimal influence of component i in state s
by how much the optimal policy ⇡⇤ in state s differs from the optimal policy when component i is
removed: I⇤

i (s) , ||⇡⇤(s)� ⇡⇤
¬i(s)||2, where ⇡⇤

¬i , argmax⇡ E
hP1

t �t
P

j 6=i wjRj(st, at)|⇡
i
.8

In practice, we apply two approximations to I⇤
i (s) for computational efficiency. First, rather

than compare the difference of optimal policies, we compare the difference between one step
of policy improvement: I⇡

i (s) , || argmaxa Q
⇡(s, a)� argmaxa Q

⇡
¬i(s, a)||2, where Q⇡

¬i(s, a) ,P
j 6=i wjQ⇡

j (s, a). Second, since argmax is computationally demanding and sensitive to statistical
noise, we replace the argmaxa Q(s, a) policy improvement operator with a policy gradient-step

8Discrete-action spaces could use a probability distance measure, but we focus on continuous-action spaces.
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Figure 3: Fractional influence (a) Fractional influence for 1 evaluation trajectory of BWH. For this
agent and trajectory, the forward component dominates the failure component in decision-making,
except at two points (red arrows). At the first point, the agent was at risk of falling into a pit. After
the agent stabilizes, the forward component returns to being dominant. After the second point, the
agent becomes unable to move forward. Failure’s dominance indicates that if the agent cannot move
forward, it prefers standing to falling. If it is possible to surmount this obstacle, more exploration
may be required. (b) Mean stacked fractional influence across 10 trials of Lunar Lander. We observe:
(1) the sparse landing reward doesn’t meaningfully contribute to decision-making in the earliest part
of training; (2) crashing influence starts high and then decreases, suggesting the agent initially learns
to avoid crashing; (3) the position, angle, and velocity reward components – each a shaping reward –
maintain large influence, suggesting possible overreliance on shaping rewards; (4) numerous reward
components never have much influence; they might be unnecessary or require more attention.

operator (typical in RL algorithms like SAC): ā + �rāQ(s, ā), where ā is a deterministic policy
action selection (such as the mode) and � 2 (0, 1) is a step size.

When taking the difference of the gradient-step operator applied to the Q⇡ and Q⇡
¬i surfaces, the ā

terms cancel, and � can be factored out of the norm. The result is the influence metric (Fig. 2):

I⇡i (s; ✓) , �||rāQ
⇡(s, ā; ✓)�rāQ

⇡
¬i(s, ā; ✓)||2. (4)

The raw magnitudes of component influence can be informative by themselves; for example, a sharper
Q-function surface leads to larger influence values. However, to compare influence values across
components, we typically compute the fractional influence by normalizing the (always non-negative)
influence: Î⇡i (s; ✓) ,

I⇡
i (s;✓)Pm

j I⇡
j (s;✓) .

We use several techniques to visualize the fractional influence. For trajectories, plotting influences
over timesteps may help identify and explain key decision points (Fig. 3(a)). When studying an
agent’s behavior across training, we maintain summary statistics of fractional influence. We visualize
mean fractional influence across all components as a stack plot, sorted so that the component with the
maximum influence at the end of training is at the bottom. Figure 3(b) shows such a diagram for the
Lunar Lander environment; we provide figures for all environments in App. G.

6 Value decomposition: strategies for agent design

Agent design is often a brute-force process of trial and error: when an agent doesn’t perform as
expected, we choose some aspect of the agent’s design to vary, and then we train again. Although
this approach can succeed, it can be expensive in both time and computation.

In this section, we illustrate a different approach, showing how a decomposed reward helps break from
trial-and-error by encouraging the designer to consider an agent’s point of view. In three examples,
each using either the LL or BWH environments (Sec. 2.3), we draw on value decomposition tools to:
(1) identify learning problems by comparing components’ empirical returns to their predictions; (2)
constrain component value estimation; (3) identify adverse reward interactions with the influence
metric; (4) dynamically re-weight reward components.

These examples are not just meant to demonstrate these specific techniques, nor to demonstrate
significant performance improvements on these well-tested benchmark environments (in fact, SAC-D
eventually produces good policies for both environments without additional tuning). Rather, the
goal is to showcase a general approach to agent design for novel applications in which iteration and
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Figure 4: Remedies for incorrect value predictions. (a) For the landing component empirical
return (dashed blue), the value prediction (green) for a value function trained with baseline features
matches the return well except for a final plateau in the shaded region. Training a value function with
the added V trace

0 feature (red) improves predictions in this region. The dashed pink line indicates the
point after which we compute error metrics in App. H. (b) Value predictions for the crash component
with sign constraints (blue lines; using both target and prediction constraints) and without (orange
lines). Each line represents an independent trial. Unconstrained estimates can be positive; constrained
value estimates keep predictions negative.

failure is costly. Combined with statistical tools that allow us to reason with small-sample statistics,
value decomposition provides a vocabulary to describe an agent’s behavior and interpretable tools
for targeted interventions. Even these small examples are more intuitive – and less computationally
demanding – than they would be with a trial-and-error approach.

For all examples, training parameters are identical to the robustness results of Sec. 4.

Diagnosing and improving insufficient features: We analyze the behavior of an agent trained on
Lunar Lander by comparing each component’s empirical return to the agent’s value predictions, Qi.
The agent is trained to land successfully, and generally the component value predictions match their
empirical returns well. Curiously, all component predictions are flat near the end of the episode.
For most components, these flat predictions are a good match for their returns, but not for landing.
Investigating the landing dynamics, we found the simulator waits many steps after touchdown before
producing a landing reward. During this period, the observations are constant, suggesting the features
are inadequate to represent landing’s return. To make the observations Markov, we introduce a new
feature to the agent’s observations that indicates the duration since the agent’s velocity (horizontal,
vertical and angular) went to zero: V trace

0 (t) = V steps
0 (t)/c, where V steps

0 (t) is the number of time steps
since all the velocities dropped below a threshold and c is a fixed normalizing constant. With this
feature, post-landing predictions show a marked improvement (see Figure 4(a) and Appendices C, H).

Diagnosing and mitigating value errors using domain knowledge: Lunar Lander’s design makes
clear that certain reward components are always non-positive (crash, main, side) while others are
always non-negative (landing). However, we observe that the agent’s decomposed value predictions
do not always match these bounds. In particular, value predictions of crash have a tendency to
oscillate about 0 after the agent learns to land. Value decomposition allows us to explicitly enforce a
sign constraint on crash (Figure 4(b); see App. I for details). In this particular example, constraints
do not alter policy learning performance, but the resulting predictions are easier to interpret, and the
same technique may improve performance in more complex environments.

Mitigating an adverse reward with component weight scheduling: Under the BWH reward
function, a random policy is far more likely to experience an unsuccessful outcome (falling over)
than a successful one (walking forward). This bias can inhibit agent exploration early in training,
causing an agent’s policy to fall into a local minimum (the agent stands still). Here, we diagnose
this dynamic using component predictions and influence metrics, and remedy it by varying a single
component weight during training.

We find that the failure component’s fractional influence dominates the forward component’s
fractional influence early in training, and that this relationship reverses as agent performance improves
(Fig. 5(a)). The forward component’s near-zero value predictions (Fig. 5(b)) early in learning indicate
that in many episodes, the agent neither moves nor expects to move (Fig. 5(c)). Early dominance by
the easy-to-observe failure suggests that it is inhibiting exploration.
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Figure 5: Remedy for an adverse reward (a) The initially low fractional influence of forward (blue
curve) indicates it may be initially inhibited by failure penalties with higher influence. (b) The
forward value predictions and returns (blue curves) are near zero early in training, indicating the
agent does not expect to move forward. (c) An agent trained with its failure weight scheduled from a
value close to zero up to one (orange curve) improves early forward progress compared to an agent
with a constant failure weight (blue curve). Forward progress is measured as the average forward
progress return from all evaluation episodes of the first 200k gradient steps. Shaded areas represent
95% bootstrap confidence intervals from 10 trials.

To mitigate this problem, we vary the failure component weight, wfailure, from 0.01 to 1 over the
course of learning according to the schedule described in App. J. This schedule significantly increases
the agents’ forward progress (Fig. 5(c)), and accelerates learning.

7 Related work

Our work builds upon earlier studies of value decomposition in the explainable reinforcement learning
(XRL) literature: DrQ [19], DrSARSA [29], and HRA [31].9 Like our approach, these methods
learn separate value function estimates for each term of a linear reward function. DrQ and HRA are
off-policy Q-learning-like methods, while DrSARSA is an on-policy method. HRA does not converge
to a globally optimal policy, as each value function is only locally-optimal for the reward component
it measures. The RDX and MSX metrics proposed by DrQ could be adopted in our setting, but the
influence metric is easier to use with continuous-actions, and aggregate with summary statistics.
Our approach improves upon these prior contributions by: (1) working in continuous-action and
discrete-action environments; (2) allowing for and demonstrating dynamic re-weighting of reward
components during training; and (3) being applicable to a family of actor-critic methods. While
these approaches and ours explore using value decomposition for explainability, these works focus
on describing why an agent took certain actions to users, whereas we focus on how to use value
decomposition to diagnose and remedy learning challenges.

The Horde architecture [34] and UVFA [30], methods for multi-goal learning, also employ multiple
value functions (one for each goal). UVFAs use a parameterized continuous space of goals, while
Horde makes multiple discrete value function predictions. The value functions in our work are
conditioned on a policy that optimizes the global reward, whereas in Horde and UVFAs the value
functions are conditioned on independent policies that greedily optimize local goals (similar to
HRA). Additionally, in our approach, the composite value function can be recovered from the
components. Other value decomposition work includes Empathic Q-learning [21] and Orchestrated
Value Mapping [10]. The primary difference between our work these other approaches regards the
motivation and application of value decomposition. These works focus on how value decomposition
can improve sample efficiency, generalization, or other aspects of the core learning problem, rather
than how to diagnose and remedy problems.

Mathematically, value decomposition bears resemblance to work on successor features, which has
focused primarily on state representation and transfer learning [3, 4, 6, 12]. Methods for multi-
objective RL [16, 28] learn sets of policies, each with a distinct linear weight over multiple reward
objectives. Our work also recovers the value function for different linear reward preferences, but uses
this capability to diagnose behavior and learning problems rather than to learn multiple policies.

9For a broad overview of XRL, we direct the reader to Heuillet et al. [17].
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8 Concluding remarks

We have argued that the iterative design of reinforcement learning agents can be improved through the
use of value decomposition, in which we keep individual reward components separate and learn value
estimates of each. We provided a simple prescription for deriving value decomposition algorithms
from actor-critic methods, and applied it to SAC to derive the SAC-D algorithm. Combined with
the CAGrad method, SAC-D meets or exceeds SAC’s performance in all environments we tested.
We introduced the influence metric, and demonstrated its use in measuring each reward component’s
effect on an agent’s decisions. Finally, we provided several examples of how value decomposition
can diagnose and remedy agent learning problems.

Although value decomposition is a simple and broadly applicable tool, we note the following
limitations. (1) Our method requires a composite reward function of multiple components. (2)
We only study linear reward decomposition. (3) Component predictions only tell you the agent
expectations under the single learned policy; changing the weights doesn’t tell you what to expect
after re-optimizing the policy for them. (4) Our approach benefits most with methods that learn
Q-functions. Methods that optimize the policy with empirical returns have a weaker link between
agent expectations (component Q-functions) and policy decisions. The influence metric also requires
a Q-function model.

Our method presents the same societal benefits and risks as other RL methods. However, we believe
this technology has a net beneficial impact, because making agent decisions more introspectable
enables developers to catch problematic behavior before deploying the technology. One particular
concern, however, is that value estimates represent an agent’s beliefs, not ground truth; this should be
kept in mind when such predictions are used in real-world decision-making, as they may reinforce
biases or lead to incorrect conclusions.
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E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero,
C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, and SciPy 1.0
Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature
Methods, 17:261–272, 2020.

[38] P. R. Wurman, S. Barrett, K. Kawamoto, J. MacGlashan, K. Subramanian, T. J. Walsh,
R. Capobianco, A. Devlic, F. Eckert, F. Fuchs, L. Gilpin, P. Khandelwal, V. Kompella, H. Lin,
P. MacAlpine, D. Oller, T. Seno, C. Sherstan, M. D. Thomure, H. Aghabozorgi, L. Barrett,
R. Douglas, D. Whitehead, P. Dürr, P. Stone, M. Spranger, and H. Kitano. Outracing champion
Gran Turismo drivers with deep reinforcement learning. Nature, 602:223–228, 2022.

[39] T. Yu, S. Kumar, A. Gupta, S. Levine, K. Hausman, and C. Finn. Gradient surgery for multi-task
learning. In Conference on Neural Information Processing Systems (NeurIPS), 2020.

12



Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] We outline three limitations of

our approach in the Concluding Remarks.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] We devote

a paragraph of Sec. 8 to these issues.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] We assume
linearity of the reward function and other standard MDP requirements.

(b) Did you include complete proofs of all theoretical results? [Yes] Our paper is largely
empirical; however, we provide a proof for the Q-function identity used in the
introduction of the composite Q-function.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main

experimental results (either in the supplemental material or as a URL)? [No] At present,
we are unable to release our source code or data.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running
experiments multiple times)? [Yes] We report error bars in all experimental results.
For results within individual environments, we report standard deviation error bars. To
report aggregate results across all environments, we report bootstrap-resampled error
bars computed using the rliable framework [2].

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] We cite the creators

of Gym and the rliable toolkit.
(b) Did you mention the license of the assets? [N/A] We have no new assets that require

licenses.
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A] All empirical results are based on simultation
using standard benchmark environments.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

13


