
Supplemental Material
AZ-whiteness test: a test for signal uncorrelation on

spatio-temporal graphs

A Proof of Theorem 1

We start by proving two auxiliary lemmas, Lemma 1 and Lemma 2, which will be used to prove
Theorem 1.

For brevity, in the following we use the short forms

s(e) , s((u, v)) , sgn(x>u xv),

πv(x̄) , Pxv
(x̄>xv > 0),

πe , π(u,v) , Exv [πu(xv)] .

Lemma 1. Under assumption (A1) of independent xv for v ∈ V , we have that

P(s(e) = a) = Exv [πu(axv)] = Exu [πv(axu)]

=


0 a = 0,

πe a = 1,

1− πe a = −1.

Furthermore, if (A2) holds, then E[s(e)] = 0.

Proof. 1) For any value a ∈ {−1, 0, 1}, edge e = (u, v) ∈ E, and distributions Pv of all node signal
xv for v ∈ V , we have:

P(s(e) = a) = P(ax>v xu > 0)

=

∫
P(a x̄>xu > 0|xv = x̄) dPv(x̄)

(A1) =

∫
RF \{0}

P(a x̄>xu > 0) dPv(x̄)

=

∫
RF \{0}

πu(a x̄) dPv(x̄) = Ex̄∼Pv [πu(ax̄)]

With analogous developments, we obtain P(s(e) = a) = Ex̄∼Pu
[πv(ax̄)], so π(u,v) = π(v,u). We

conclude that

P(s(e) = a) =


0 a = 0,

πe a = 1,

1− πe a = −1,

(11)

hence proving the first part of the thesis.

2) We observe that for all u ∈ V, x̄ 6= 0:

Exu∼Pu

[
sgn

(
x̄>xu

)]
= 1 · P

(
sgn

(
x̄>xu

)
= 1
)

+ 0 + (−1)P
(
sgn

(
x̄>xu

)
= −1

)
= πu(x̄)− (1− πu(x̄)) = 2πu(x̄)− 1.

Therefore, we have the following equivalence

Assumption (A2) ⇐⇒ πu(x̄) =
1

2
for all u ∈ V, x̄ 6= 0. (12)

From (11) and (A2) we conclude that

E[s(e)] = 1 · πe + 0 + (−1)(1− πe) = 2πe − 1

= 2Exv [πu(xv)]− 1 = 2
1

2
− 1 = 0.
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Lemma 2. Consider two distinct edges e, f ∈ E that are not self-loop.

• If (A1) holds and e, f are not adjacent, then random variables s(e) and s(f) are indepen-
dent.

• Otherwise, if e = (u, v), f = (u,w) for v 6= w, then s(e) and s(f) are independent if both
(A1) and (A2) hold.

Proof. To prove the thesis, we need to show that, for every a, b ∈ {−1, 0, 1},
(∗) , P(s(e) = a)P(s(f) = b) = P(s(e) = a, s(f) = b) , (∗∗)

1) If e and f are not adjacent, then s(e), s(f) are independent because computed from different node
pairs, which are independent by (A1). This proves the first part.

2) Consider now e = (u, v) and f = (u,w) for some distinct u, v, w ∈ V . We start from (∗) and, in
light of Lemma 1, we have that

(∗) = Exv
[πu(axv)] · Exw

[πu(bxw)].

3) On the other side

(∗∗) = P(s(e) = a, s(f) = b)

=

∫
P(a x̄>xv > 0, b x̄>xw > 0|xu = x̄) dPu(x̄)

(A1) =

∫
P(a x̄>xv > 0)P(b x̄>xw > 0) dPu(x̄)

= Exu [πv(axu)πw(bxu)] .

4) Under the additional assumption of (A2), we have πv(x) = 1/2 for all v and x, so

(∗) =

{
0 ab = 0,

1/4 ab 6= 0
= (∗∗).

This proves the independency of s(e) and s(f).

Proven Lemmas 1 and 2, we return to Theorem 1. Without loss of generality, we can assume that the
given graph G = (V,E,W) is undirected. Otherwise, we can always construct an undirected graph
G̃ = (Ṽ , Ẽ,W̃) from directed graph G that produces the same test statistics C(G) = C(G̃) and for
which W in (5) simplifies to

∑
e∈E w

2
e ; to do so, it is enough to consider Ṽ = V , construct Ẽ by

removing the orientation of the edges in E, and considering w̃u,v ∈ W̃ as wu,v + wv,u if both (u, v)
and (v, u) ∈ E, otherwise w̃u,v equals either wu,v or wv,u, depending on which edge is present in E.

Under the assumption of undirected graph with no self-loops, we see that C̃(G) in (4) is a weighted
sum of i.i.d. Bernoulli random variables:

C̃(G) =
∑

(e)∈E

wes(e)

or, equivalently, a sum of independent [Lemma 2], but not identically distributed terms. However, a
central limit theorem [1, Th. 27.3] can still be applied to prove the thesis if the following Lindeberg
condition (13) on random variables {we s(e) | e ∈ E} holds.

Consider sequence of independent processes{
{Xn,k | k ≤ n} | n ∈ N

}
with E[Xn,k] = 0 and Var[Xn,k] = σ2

n,k for all k ≤ n, n ∈ N, and

sn =

(∑
k

σ2
n,k

)1/2

.
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The Lindeberg condition [1, Eq. 27.16] is the following

lim
n→∞

1

s2
n

n∑
k=1

∫
|X|E|,e|≥εsn

|Xn,k|2 dPn,k = 0, for all ε > 0, (13)

where Pn,k is the distribution of Xn,k. Now we show that (13) holds for X|E|,e = wes(e).

1) Under assumptions (A1) and (A2), by Lemma 2 {X|E|,e | e ∈ E} are independent and, by
Lemma 1, E[X|E|,e] = 0 with

E[X2
|E|,e] = w2

eE[s(e)2] = w2
eE[1] = w2

e .

So s2
|E| =

∑
e∈E w

2
e · 1 = W . Substituting the quantities we have just calculated in (13), we can

express the Lindeberg condition as follows

1

s2
|E|

∑
e∈E

∫
|X|E|,e|≥εs|E|

|we s(e)|2 dPs(e) =
1

s2
|E|

∑
e∈E

∫
|we||s(e)|≥εs|E|

w2
e dPs(e)

=
1

s2
|E|

∑
e∈E

w2
eI(|we| ≥ εs|E|)

2) From (A3), s2
|E| = W → ∞ as |E| → ∞. Therefore, for every ε > 0 there is a number

N(ε, w+) of edges such that w+ < εsN(ε,w+), and for which I(|we| ≥ εsN(ε,w+)) = 0 for all e. We
conclude that (13) holds true and, in turn, C(G) weakly converges to N (E[C(G)],Var[C(G)]) by
Theorem 27.3 in [1].
3) Finally, observe that the expected value of C(G) is

E[C(G)] =
∑
e∈E

weE[s(e)]W−1/2 = 0

thanks to Lemma 1, and the variance is

Var[C(G)] =
1

W
Var

[∑
e

wes(e)

]

(Lem. 2) =
1

W

∑
e∈E

w2
e(E[s(e)2]− E[s(e)]2)

=
1

W
W (1− 0) = 1.

We concluded the thesis of Theorem 1.

B Comments on the assumptions of Theorem 1

Assumption of no self-loops and P(xv = 0) = 0 Quantities sgn(x>v xv) arising from self-loops
do not carry relevant information to test the independence of node signals. Moreover, we could
have expressed (4) as a sum over all edges that are not self-loops. Therefore, the assumption of no
self-loops simplifies the notation only. Also, requesting null probability for null node signals xv is
another simplifying assumption that eliminates the probability that sgn(x>v x̄) = 0.

Assumption (A2) Assumption (A2) requests all node signals have a distribution yielding the same
probability of being in either of the two half-spaces of RF defined by the sign of the scalar product
with x̄, and allows node signals to have different distributions. Note that in the scalar case with
F = 1, (A2) implies that P(xv > 0) = P(xv < 0), which is equivalent to requesting that the median
of all xv is zero. Therefore it does not impose any real constraint on the data distribution as we can
always shift the data to have null median. Conversely, for F > 1, it is not always possible to center
the data by shifting all signals by vector x0 so that (A2) holds for signals xv −x0. A counterexample
is given by considering all components of all node signals to be i.i.d. from the mixture distribution
U [−4, 0) + U [0, 1) where, for F = 2, x0 must be 0 for (A2) to hold for x̄ = [0, 1]> and [1, 0]>,

15



however, it results that for x̄ = [1, 1]> (A2) does not hold. That said, for F > 1 with invalid
assumption (A2), we can perform F individual tests with statistic C(G(f)), one for each component
X(f), f = 1, . . . , F , of the graph signal and then combine the results with a multiple hypothesis test
correction, like [13]. Alternatively, when C(G(f)), f = 1, . . . , T , are statistically independent, their
sum CF (G) ,

∑
f C(G(f)) is again distributed as a Gaussian [Theorem 1] and we can design a test

on it.

Assumption (A3) Assumption (A3) requests the weights to be positive. Here, the edge weights
are assumed to encode the strength of the relation between the corresponding node so that higher
weights imply a stronger impact on statistics (3). As an example, consider the case where weights
come from the absolute value of Pearson’s correlation between signals. Not rarely, however, the given
graph does not come with edge weights or the provided edge attributes do not reflect the criterion
assumed above. In all such situations, we can still apply test (2) straightforwardly considering that all
weights are equal to 1; accordingly, constant W in (5) becomes equal to the number |E| of edges in
the graph. Other criteria to re-weight the graph can be designed for specific cases. The assumption of
bounded weights, instead, is technical and only takes part in the limit case of |E| → ∞. Intuitively,
(A3) ensures that all edges bring a tangible contribution to the final statistics C(G).

C Weights for temporal edges

Commenting further about weighting the temporal edges, we note that by definition of G∗ there is,
typically, a larger number of spatial edges than temporal edges; in the case of a static unweighted
graph G, |Etm| = (T − 1) · |V |, while

|Esp| = T · |V | · d ≈ d · |Etm|,

where d is the average degree of the nodes in G. Consequently, an imbalance of positive and negative
signs encountered along the temporal edges has, overall, a lower impact on the final test statistic
C(G∗) than that of the spatial edges. Accordingly, we may find it appropriate to weight temporal
edges so that spatial and temporal relations are of comparable importance in C(G∗). In the remainder
of this section, we derive a weight wtm that meets the above criterion when associated with all
temporal edges.

Statistics C(G∗) can be decomposed into a sum of contributions of the spatial and temporal edges,
and can be rewritten as

C(G∗) =
C̃sp + C̃tm

(Wsp +Wtm)
1
2

where C̃tm and C̃sp collect the temporal and spatial terms in C̃(G∗), respectively, i.e.

C̃sp ,
∑

(u[t],v[t])∈Esp

wu,v[t] · sgn
(
xu[t]>xv[t]

)
,

C̃tm ,
∑

(v[t],v[t+1])∈Etm

wtm · sgn
(
xv[t]

>xv[t+ 1]
)
.

Instead, Wtm = |Etm| · w2
tm and Wsp is defined as

Wsp =
∑

(u[t],v[t])∈Esp\E↔
sp

wu,v[t]
2 +

∑
(u[t],v[t])∈E↔

sp

(wu,v[t] + wv,u[t])2,

that is similar to (5), but limiting to the weights of the spatial edges, and with E↔sp containing all
self-loops in Esp.

Under the assumptions of Theorem 1, we have that E[C̃sp] = 0 = E[C̃tm], while Var[C̃sp] = Wsp

and Var[C̃tm] = Wtm. We conclude that balancing the spatial and temporal contributions amounts to
selecting wtm such that the variance is the same, i.e., Wsp = Wtm, and results in

wtm =

(
Wsp

|Etm|

) 1
2

.
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When appropriate, the user can consider trading off the spatial and temporal components in terms
of a scalar value λ ∈ [0, 1] defining a convex combination of C̃sp and C̃tm. Accordingly, we define
statistic

C(G∗;λ) ,
λ C̃sp + (1− λ) C̃tm

(λ2Wsp + (1− λ)2Wtm)
1
2

, (14)

which turns out to be equivalent to C(G∗), where the weights of the spatial and temporal edges are
scaled by λ and 1−λ, respectively, and C(G∗; 1/2) = C(G∗). Therefore, statistic (14) enjoys all the
properties of statistic C(G∗). In particular, as a corollary of Theorem 1, C(G∗;λ) is approximately
distributed as a standard Gaussian under the null hypothesis, and can be directly employed in
AZ-test (8).

D Whiteness test for K-hop and K-lag correlation

When the dependency among signals covers more than 1-hop neighbors, or more than 1 time lag,
we can consider K-hop relationships, with K > 1. It is enough to extend the edge set E to ∪Kk=1Ek
where

Ek , {(v1, vk) | ∃(v1, . . . , vk) with distinct v1 . . . vk ∈ V and (vi, vi+1) ∈ E,∀i < k} ,

that is, all pairs of nodes connected by paths of length k ≤ K. The presented strategy can be seen as
an extension to graphs of the portmanteau lack-of-fit test presented in [3]. When appropriate, edges
can be weighted differently, for instance, according to the associated path length.

E Synthetic graph signals

In Figure 5, we report graph signals generated according to the procedure of Section 5.1 and displaying
different levels of correlation. Temporal correlation is visible as horizontal strikes of similar color in
the heatmaps. Instead, having numbered the nodes so that neighboring nodes have similar indices,6
the spatial correlation is suggested by vertical strikes.

Figure 6 shows the graph considered in the GPVAR dataset and a portion of the graph signal generated
according to (10).

F Hardware and software

Experiments are implemented in Python 3.8 and run on an NVIDIA Titan V GPU with 12 GB of
memory. The code is based on PyTorch-Geometric [10] and TorchSpatiotemporal [6].

The run time of the experiments in Section 5.1 is in the order of milliseconds for signals with T = 104

time steps and F = 1 node features on an 18-node graph, since only the computation of the statistical
test is involved. Instead, the run time of the experiments of Section 5.2, which includes the training
time, is about 3 hours for each problem setting, except for the training of DCRNN and GWNet
on MetrLA, which took about 20 hours. Apart from minor adjustments (like increased number of
epochs), the hyperparameters are the default ones provided by TorchSpatiotemporal (and are detailed
in the config files).

G Extended experiments on multivariate node signals

In Figure 7, we extend the analysis of the of Table 3 to multivariate node signals, i.e., when
xv[t] ∈ RF , with F > 1. We considered the data generating process in (9), with the components of
Z ∈ R|V |×T×F sampled i.i.d. from standard Gaussian and different values of c. We observe a slight
performance improvement when F increases.

6We numbered the nodes according to the magnitude of components of the eigenvector associated with
the smallest non-null eigenvalue of the Laplacian matrix L of G. The Laplacian of an undirected graph with
adjacency matrix A is defined by L = D−A, where Dij = 0 if i 6= j, and Dii =

∑
j Aij .
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Figure 5: Graph signals displaying different levels of correlation. Each row corresponds to a different
value of c, with csp = c and ctm = c d in (9), and where d is the average node degree. The number
of time steps is T = 500, the node feature dimension is F = 1, and the distribution of all zv[t]
is the standard Gaussian. On the right-hand side, we draw a heatmap of graph signals X. On the
left-hand side, we draw the underlying graph with nodes numbered according to the ordering used in
the heatmaps. The node color encodes the value of the node signals at time T/2, and the edge color
encodes the sign of the product of the corresponding node signals, i.e., sgn(xu[T/2]xv[T/2]) for all
edges (u, v).
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Figure 6: Graph and graph signal from the GPVAR dataset of Section 5.2. The displayed graph signal
consists of the last T = 200 consecutive time steps of the entire dataset.
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Figure 7: Rate of rejected null hypotheses for different node signal dimensions F , number of time
steps T , and correlation parameters csp = c and ctm = 0. The considered graph is displayed on the
left-hand side of the figure.

H Extended experiments on the optimality of forecasting models

We report an extended version of the experiments in Section 5.2 that includes the analysis of the
prediction residuals shifted to force null median. In particular, for each model fθ among FCRNN,
GWNet, GatedGN, and DCRNN, we compute the associated residuals R ∈ RT×N and reported the
outcomes of the analysis as described in Section 5.2. In addition, we carry out the same analysis on
shifted signal R′ = R−median(R), where median(R) is the empirical median of residuals R, so
that median(R′) = 0. The results on the adjusted residuals R′ are denoted in Table 3 with “-m” as
suffix to the original model name, e.g., FCRNN-m, GWaveNet-m, etc.

In all settings, we observe almost identical results before and after subtracting the median from the
residuals.
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Table 3: Analysis of the observed residuals on the considered datasets. The tests on the null-median
report the estimated median with the associated p-value subscripted. The AZ-tests report the statistic
C(G∗) and the associated p-value subscripted. Results with p-value larger than 0.01 are highlighted
in bold. Values reported as 0.000 are intended as < 0.001. Extended version of Table 2

Test AZ-test AZ-test AZ-test
Dataset Model MAE Median=0 Spatio-temporal Temporal Spatial

GPVAR Optimal Pred. 0.319 0.001 0.083 -0.8 0.416 -0.9 0.355 -0.2 0.823
GPVAR FCRNN 0.385 0.003 0.010 5.0 0.000 8.9 0.000 -1.8 0.067
GPVAR FCRNN-m 0.385 0.000 1.000 4.8 0.000 8.7 0.000 -1.9 0.057
GPVAR GWNET 0.324 0.004 0.000 0.3 0.709 0.3 0.706 0.1 0.881
GPVAR GWNET-m 0.324 0.000 1.000 0.4 0.630 0.3 0.731 0.3 0.736
GPVAR GATEDGN 0.321 0.008 0.000 1.3 0.172 2.7 0.006 -0.8 0.414
GPVAR GATEDGN-m 0.321 0.000 1.000 1.1 0.257 2.4 0.015 -0.8 0.411
GPVAR DCRNN 0.328 0.013 0.000 -0.0 0.955 -0.6 0.534 0.5 0.587
GPVAR DCRNN-m 0.328 0.000 1.000 -0.2 0.777 -0.7 0.428 0.3 0.696

PemsBay FCRNN 2.016 0.032 0.000 1107.4 0.000 1035.1 0.000 531.0 0.000
PemsBay FCRNN-m 2.015 0.000 0.994 1108.1 0.000 1036.9 0.000 530.2 0.000
PemsBay GWNET 0.841 -0.003 0.000 422.7 0.000 7.1 0.000 590.7 0.000
PemsBay GWNET-m 0.841 0.000 0.992 422.4 0.000 6.9 0.000 590.4 0.000
PemsBay GATEDGN 0.838 0.018 0.000 454.6 0.000 25.2 0.000 617.7 0.000
PemsBay GATEDGN-m 0.838 0.000 0.995 454.2 0.000 24.7 0.000 617.6 0.000
PemsBay DCRNN 0.845 -0.004 0.000 433.0 0.000 14.2 0.000 598.1 0.000
PemsBay DCRNN-m 0.845 0.000 0.989 432.3 0.000 13.6 0.000 597.8 0.000

MetrLA FCRNN 2.842 -0.016 0.000 415.3 0.000 238.5 0.000 348.8 0.000
MetrLA FCRNN-m 2.842 0.000 0.999 414.7 0.000 238.2 0.000 348.3 0.000
MetrLA GWNET 2.115 0.014 0.000 162.6 0.000 -6.5 0.000 236.5 0.000
MetrLA GWNET-m 2.115 0.000 1.000 162.7 0.000 -6.2 0.000 236.4 0.000
MetrLA GATEDGN 2.151 0.010 0.000 200.1 0.000 2.2 0.022 280.7 0.000
MetrLA GATEDGN-m 2.151 0.000 0.996 200.4 0.000 2.4 0.016 281.0 0.000
MetrLA DCRNN 2.141 -0.018 0.000 177.4 0.000 6.7 0.000 244.1 0.000
MetrLA DCRNN-m 2.141 0.000 1.000 176.5 0.000 6.4 0.000 243.2 0.000
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