A Appendix

A.1 Additional quantitative results

SKFlow-RAFT. We further test the effectiveness of our proposed SKBlock on other optical
networks, e.g., RAFT [4]. In SKFlow-RAFT, we adopt the same SKBlock architecture as that in
SKFlow. As shown in Table[I] SKFlow-RAFT outperforms RAFT on Sintel training and test set with
a modest increase in parameters. All models are trained with the same settings. From the table, we
could learn that SKBlock could be easily adopted by other flow networks.

Table 1: Comparison of model size and performance on Sintel dataset.

Model Clean (train)  Final (train) Clean (test) Final (test) Parameters
RAFT 0.76 1.22 1.61 2.86 5.26M
SKFlow-RAFT 0.62 0.91 1.46 2.61 5.59M
GMA 0.62 1.06 1.39 247 5.88M
SKFlow 0.52 0.78 1.28 2.27 6.27TM

Occlusion analysis on Sintel test set. We also test the occluded areas on the Clean and Final pass
test set. Although it is hard to obtain accurate occluded areas on the test set since we authors have no
access to those occlusion maps, the Sintel server provides statistics on the matched and unmatched
areas. According to the Sintel website, the matched areas are regions that remain visible in adjacent
frames, and the unmatched denote regions visible only in one of two adjacent frames. Therefore,
we could still evaluate the performance in the generalized occluded areas. The results are shown in
Table 2] We could learn that both SKFlow-RAFT and SKFlow predict more accurate flows on the
occluded areas and non-occluded areas on the test set.

Table 2: Performance on the matched and unmatched areas on Sintel test set.

Model Matched (train) Unmatched (train) Matched (test) Unmatched (test)
RAFT 0.623 9.647 1.405 14.680
SKFlow-RAFT 0.617 8.346 1.288 13.352
GMA 0.582 7.963 1.241 12.501
SKFlow 0.554 7.239 1.145 11.511

Super dilated convolution kernels. We also explore the application of dilated convolutions to
obtain large receptive fields with modest computation. In our dilated version, the large 15 x 15
depth-wise convolutions are replaced with a 9 x 9 dilated convolutions with a dilation rate of 2.
Quantitive results are shown in Table[3] All models are trained using the C' — T schedule and then
validated on Sintel. GMA denotes the result in the original paper and GMA* denotes our reproduced
result.

The dilated version indeed obtains less computation. Nevertheless, although our method and the
dilated version have a receptive field of a similar size, there is a small gap in the performance. We

Table 3: Comparison of dilated and non-dilated models on the Sintel dataset.

Model Sintel (clean) Sintel (final) Parameters
GMA 1.30 2.74 5.88M
GMA* 1.36 2.72 5.88M
SKFlow-Dilated 1.32 2.55 6.10M
SKFlow 1.22 2.46 6.27TM




Table 4: Runtime comparison of different methods on KITTI.

Model Time
RAFT 0.13s
GMA 0.16s
SKFlow-Dilated 0.21s
SKFlow 0.22s

argue that the gap may be caused by the gridding effect [3]]. Namely, the receptive field of a dilated
convolution kernel covers an area with checkerboard patterns. Therefore, the sampled locations
contribute to the calculation but the neighboring information is lost. In this case, the gridding
effect leads to two issues that might affect the estimating of per-pixel motion: (1) Absence of local
information. (2) Irrelevant information across large distances due to the sparse sample of input.
However, given the efficiency and the various applications of dilated convolution, we believe that
how to more properly apply it to optical flow networks is still a question worth further studying.

Runtime comparison. Runtime comparison for different methods is shown in Table[d] Test settings
were introduced in the experiment section. We could learn that the runtime of SKFlow is a little bit
longer in practice but the increase is still modest. The additional latency is caused by the lack of
efficient implementation for large depth-wise and dilated kernels in the current PyTorch library.

A.2 Qualitative evaluation in realistic scenes

In addition, we compare the qualitative results in more realistic scenes. As shown in Figure[I] we
visualize the predicted flow on the KITTI [3]] test set, which contains more realistic frames compared
with Sintel [T]]. From Figure[]] we can see that SKFlow also improves the state-of-the-art method in
realistic scenes.

(a) Input views (b) GMA (c) Ours

Figure 1: Visualization on the KITTTI test set. (b) Results of GMA [2]]. (¢) Results of our SKFlow.
Differences are highlighted by the dash boxes. Compared with state-of-the-art method, our proposed
SKFlow predicts more accurate flow in realistic scenes.
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