
A Details of the toy experiment.

1. Dataset. In this experiment, we generate synthetic dataset consisting of 5 variables: a latent
binary variable Z, a binary variable X⇤, an MNIST image X, and two other binary variables
y, t standing for outcome and treatment respectively.

Zi, X
⇤
i 2 {0, 1}

Xi 2 R28⇤28 is an MNIST image of 0 or 1
yi, ti 2 {0, 1}
i 2 {1, 2, · · · , N}, N = 3000

These variables are sampled from the following distribution:

P [Z = 0] = P [Z = 1] = 0.5

P [t = 1|Z = 0] = ⇢t0, P [t = 1|Z = 1] = ⇢t1
P [X⇤ = 1|Z = 0] = ⇢x0, P [X⇤ = 1|Z = 1] = ⇢x1

X =

⇢
Binarized image of 0 when X⇤ = 0
Binarized image of 1 when X⇤ = 1

y = t� Z

2. Accounting for Confounding in ATE Computation.
As mentioned before, the definition of the Average Treatment Effect (ATE) is as follows:

ATE = E[ITE(x)]

= E
h
E[y | X = x, do(t = 1)]� E[y | X = x, do(t = 0)]

i

Now we consider the first term within the outer expectation:

E[ y | X = x, do(t = 1)]

= 1 ⇤ P [y = 1|X = x, do(t = 1)] + 0

=
X

z

P [y = 1|X = x, do(t = 1), Z = z] · P [Z = z|X = x, do(t = 1)]

=
X

z

P [y = 1|X = x, t = 1, Z = z] · P [Z = z|X = x]

= P [y = 1|X = x, t = 1, Z = 0] · P [Z = 0|X = x] + 0

= P [Z = 0|X = x]

where the second last equation is due to the fact that y = t� Z. Similarly, we can compute
the second term as

E[ y | X = x, do(t = 0)] = P [Z = 1|X = x].

Using the predefined generative process for this dataset, we can also write

P [Z = z|X = x] =
P [Z = z] · P [X = x|Z = z]

P [X = x]

=
0.5 · P [X = x|Z = z]

P [X = x]

=
0.5 · P [X⇤ = x⇤|Z = z]

P [X = x]
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where x is an image of binary variable x⇤. Plugging in the previous results, we can compute
the individual treatment effect (ITE):

ITE(x)

= E[y|X = x, do(t = 1)]� E[y|X = x, do(t = 0)]

=
P [Z = 0|X = x]� P [Z = 1|X = x]

P [X = x]

=
P [X = x|Z = 0]� P [X = x|Z = 1]

P [X = x]

=
P [X⇤ = x⇤|Z = 0]� P [X⇤ = x⇤|Z = 1]

P [X = x]

=

⇢
0.5 · (⇢x1 � ⇢x0)/(P [X⇤ = 0]), if x = image of 0
0.5 · (⇢x0 � ⇢x1)/(P [X⇤ = 1]), if x = image of 1

Therefore we can plug in the previous equation and get the final result of ATE:

ATE = E[ITE(x)]

=
X

x

P [X = x] · ITE(x)

=
X

x⇤

P [X⇤ = x⇤] · ITE(image of x⇤)

= 0.5 · ((⇢x0 � ⇢x1) + (⇢x1 � ⇢x0))

= 0

3. ATE Computation with Non-Causal Model. ATE computation goes wrong when X is
taken to be the only confounder. In the following computation of E[ y | X = x, do(t = 1)],
the second step goes wrong as adjustment is done over X instead of Z.

E[ y | X = x, do(t = 1)]

= 1 ⇤ P [y = 1|X = x, do(t = 1)] + 0

=
X

x

P [y = 1|X = x, t = 1] · P [X = x]

= P (X = image of 1) · P [y = 1|X = image of 1, t = 1]+

P (X = image of 0) · P [y = 1|X = image of 0, t = 1]

= P (X⇤ = 1) · P [y = 1|X⇤ = 1, t = 1] + P (X⇤ = 0) · P [y = 1|X⇤ = 0, t = 1]

= P (X⇤ = 1) · P [y = 1, X⇤ = 1, t = 1]

P [X⇤ = 1, t = 1]
+ P (X⇤ = 0) · P [y = 1, X⇤ = 0, t = 1]

P [X⇤ = 0, t = 1]

= P (X⇤ = 1) ·
P

z(P [y = 1, X⇤ = 1, t = 1|Z = z]P (Z = z))P
z(P [X⇤ = 1, t = 1|Z = z]P (Z = z))

+ P (X⇤ = 0) ·
P

z(P [y = 1, X⇤ = 0, t = 1|Z = z]P (Z = z))P
z(P [X⇤ = 0, t = 1|Z = z]P (Z = z))

= P (X⇤ = 1) · (P [y = 1, X⇤ = 1, t = 1|Z = 0] · 0.5)P
z(P [X⇤ = 1, t = 1|Z = z] · 0.5)

+ P (X⇤ = 0) · (P [y = 1, X⇤ = 0, t = 1|Z = 0] · 0.5)P
z(P [X⇤ = 0, t = 1|Z = z] · 0.5)

= P (X⇤ = 1) · ⇢x0⇢t0
⇢x1⇢t1 + ⇢x0⇢t0

+ P (X⇤ = 0) · ((1� ⇢x0)⇢t0)

(1� ⇢x1)⇢t1 + (1� ⇢x0)⇢t0
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Similarly, we get wrong expectation when performing intervention on variable t to set it to
zero.

E[ y | X = x, do(t = 0)] = P (X⇤ = 1) · ⇢x1(1� ⇢t1)

⇢x1(1� ⇢t1) + ⇢x0(1� ⇢t0)
+

P (X⇤ = 0) · ((1� ⇢x1)(1� ⇢t1))

(1� ⇢x1)(1� ⇢t1) + (1� ⇢x0)(1� ⇢t0)

Also,

P (X⇤ = 1) =
X

z

P (X⇤ = 1|Z = z)P (Z = z)

= (⇢x1 + (1� ⇢x0)) · 0.5.

P (X⇤ = 0) = 1� P (X⇤ = 1) = (⇢x0 � ⇢x1 + 1) · 0.5.

With the above expressions, we can check that setting ⇢x0 = 0.1, ⇢t0 = 0.2, ⇢x1 = 0.3,
⇢t1 = 0.4 gives a non-zero ATE when computed using non-causal methods (i.e. without
accounting for hidden confounder). This corresponds to the non-causal baseline in Table 1.
To get ATE of zero using non-causal baseline, we need to set ⇢t1 = 1�⇢t0 and ⇢x1 = 1�⇢x0.

B Neural Architecture of Deep Structural Equations and Approximate
Inference Networks

Our Architecture In this section, we add the details of the DGSE and DMSE architecture that we
used. Xi denotes an input datapoint, i.e. the feature vector (possibly containing multiple modalities),
ti is the treatment assignment, yi denotes the corresponding outcome and Zi is the latent hidden
confounder. Within DGSE and DMSE, the latent variable is modeled as a Gaussian. For DGSE, we
write (similar to Louizos et al. [28]):

p[Zi] =
DzY

j=1

N(Zij | 0, 1)

p[ti | Zi] = Bern(�(NN1(Zi)))

p[Xi | Zi] =
DxY

j=1

p[Xij | Zi]

where �(·) is the sigmoid function, Bern is the Bernoulli distribution, Dx, Dz are the dimensions of
X and Z respectively, and p[Xij | Zi] is an appropriate probability distribution for the covariate j. If
the treatment variable is not binary, we can modify the distribution appropriately. Within DMSE, it is
possible to further factorize the distribution p(Xi|Zi) into product of distributions over component
modalities owing to the conditional independence.

If the outcome y is discrete, we parameterize its probability distribution as a Bernoulli distribution:
p[yi | ti,Zi] = Bern (⇡ = ⇡̂i)

⇡̂i = � (NN2(Zi, ti))

and if it is continuous, we parameterize its distribution as a Gaussian with a fixed variance v̂, defined
as:

p[yi | ti,Zi] = N
�
µ = µ̂i,�

2 = v̂
�

µ̂i = NN2(Zi, ti).

Here each of the NNi(·) is a neural network.

The posterior distribution for DGSE is approximated as

q[Zi | Xi, ti, yi] =
DzY

j=1

q[Zij | Xi, ti, yi] =
DzY

j=1

N(µij ,�
2
ij),
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where

µij ,�
2
ij = NN4(Xi, yi, ti).

For DMSE, the posterior distribution is computed differently using Product-of-Experts (PoE) [56]
formulation, due to which it can handle missing modalities during training and inference gracefully.

The objective of DGSE model is the variational lower bound defined as:

L =
NX

i=1

Eq[Zi | Xi,ti,yi]

h
log p[Zi] + log p[Xi, ti | Zi]

+ log p[yi | Zi, ti]� log q[Zi | Xi, ti, yi]
i

The DMSE, on the other hand, requires a sub-sampled training objective to ensure that the modality
specific posterior networks are trained and the relationships between individual modalities is captured.
For DGSE, we also define the auxiliary encoders and the extra term in the variational lower bound
following Louizos et al. [28].

Auxiliary Encoders:

q[ti | Xi] = Bern(⇡ = �(NN5(ti)))

For discrete yi, we have

q[yi | ti,Xi] = Bern (⇡ = ⇡̂i)

⇡̂i = �(NN6(Xi, ti)).

For continuous yi, we write

p[yi | ti,Xi] = N
�
µ = µ̄i,�

2 = v̂
�

µ̂i = NN6(Xi, ti).

This introduces the following extra term in the variational lower bound:

L0 =
NX

i=1

log q[ti | Xi] + log q[yi | Xi, ti]
i

DMSE does not involve these extra terms within its ELBO objective.

Compared with Louizos et al. [28], we can extend DGSE to different types of architectures for the
posterior distribution q[Zi | Xi, ti, yi]. When X is an image (e.g. medical scans, patient photos),
we can use a suitable Convolutional Neural Network (CNN) architecture for extracting information
effectively [23]. In our experiments with image modality, we used pretrained CLIP embeddings [24]
in the first layer to extract relevant features from the images. To avoid the overwhelming difference
between the image and two binary variables t, y, we also apply dimension reduction techniques
such as Principle Component Analysis to the embeddings of the image before feeding it into the
network that is shared with t, y. When X is time-series data, (e.g. text, recording), we can change the
architecture to recurrent neural networks such as Long Short Term Memory [14]. More generally, we
can choose modality specific architectures and make appropriate design choices to perform learning
and inference over unstructured modalities as inputs. DMSE can handle different types and lengths
of modalities gracefully and also work with missing modalities owing the specialized variational
learning and inference procedures.

C Comparing Our Methods with Other VAE- Based Estimators

While our method is an instance of generative models, we identify the following key differences:

1. We propose new generative model architectures that extend existing models (e.g., DSE,
CEVAE) to multiple proxies Xi, each possibly coming from a different modality.

2. We derive novel inference algorithms for these extended models, which have the following
benefits:
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(a) Our algorithms scale better to large sets of modalities by leveraging the independence
structure of the Xi.

(b) Our inference algorithms naturally handle missing Xi.
(c) They are also simpler: they don’t require auxiliary networks (e.g., like in CEVAE [28]).

3. Lastly, our key contribution is that we demonstrate the effectiveness of generative models
at modeling unstructured proxies (many previous methods instead relied on propensity
scoring).

Appendix H.5.1 empirically shows that DMSE model compares favorably against CEVAE on synthetic
datasets.

D Setups used for IHDP and STAR Dataset experiments

D.1 IHDP Experiments

The data corresponding to non-white mothers in the treated set of children is removed so that causal
effect of the intervention cannot be estimated directly. The column corresponding to mother’s race
is removed so that this confounder cannot be obtained directly from the input. We consider 100
replicates of this dataset, where the output is simulated according to setting ’A’ of NPCI package
[9]. The true treatment effect is known as the simulation provides expected output values for both
values of binary treatment variable. We train a DGSE model on each replicate with a 63/27/10 ratio
of training, validation and test dataset size. We set the latent dimension to be 20 units and the number
of hidden layers to be 2. The hidden layers have size of 20 units.

The IHDP-Full Setting There are 25 input features in this experimental setting. We report the
absolute error in ATE produced by DGSE and OLS for this setting in Table 7.

The IHDP-Mini Setting Here, we choose 9 features from the 25 input features so that removal
of the feature ‘baby’s gender’ produces statistically significant treatment effect. We used mutual
information and F-statistics between each of the original 25 features and the target variable y to
assess the importance of each feature in the initial 100 replicates of IHDP. While making sure that
the absolute ATE errors don’t deviate too much from the corresponding errors produced by IHDP-
Full setting, we experimented with several combinations of the high ranking features to select the
following 9 features in the IHDP-Mini setting.

1. Feature 6: ‘sex of baby’
2. Feature 0: ‘birth-weight’
3. Feature 1: ‘b.head’
4. Feature 2: ‘preterm’
5. Feature 3: ‘birth.o’
6. Feature 8: ‘mom married?’
7. Feature 9: ‘mom’s education lower than high school?’
8. Feature 12: ‘Smoked cig during pregnancy?’
9. Feature 20: ‘harlem’

Table 7 shows a comparison of absolute ATE errors between the IHDP-Full setting and IHDP-Mini
setting. Table 2 shows the comparison of our approach with CFRNet [16] and Ordinary Least Squares
(OLS) approach. OLS takes the concatenation of the covariates and treatment variable value as input
to produce output. We see that the CFRNet baseline does not utilize the image effectively while
OLS shows small difference between the setting where baby’s gender was removed (8 attrs) and
the setting where baby’s gender was retained (9 attrs) setting. Hence the replacement of image (8
attrs+image) produces a small average improvement as compared to the setting where baby’s gender
was dropped (8 attrs). We also note that we have dropped 6 replicates from the 100 IHDP replicates
under consideration. These 6 replicates showed a large degradation in ATE estimates by adding
baby’s gender (9 attrs) as compared to removing it (8 attrs).
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D.2 STAR Experiments

We ‘derandomize’ this dataset by removing 80% of the data corresponding to white students in the
treated population. The dataset [1] has 15 input attributes. The true treatment effect can be estimated
directly since the original dataset corresponds to a randomized controlled trial. Hence, it is possible
to compute ATE error as the absolute difference between true ATE estimate and the ATE as predicted
by the model. Similar to IHDP, we choose the following subset of attributes for the STAR experiment

1. Feature 2: ‘Student grade’
2. Feature 3: ‘Student class-type’
3. Feature 4: ‘Highest degree obtained by teacher’
4. Feature 5: ‘Career ladder position of teacher’
5. Feature 6: ‘Number of years of experience of teacher’
6. Feature 7: ‘Teacher’s race’
7. Feature 10: ‘Student’s gender’
8. Feature 11: ‘Student’s ethnicity’

Table 6: Multimodal Experiments on STAR Dataset: Removing student gender and ethnicity (6 attrs)
shows increased ATE errors when compared with retaining these attributes (8 attrs), signaling that
these two attributes are important for predicting treatment effect. Replacing these with image of a
child shows no degradation in ATE estimation.

Setting "ATE (Train+Val) "ATE error(Test)

Deep Str Eqns

8 attrs 36.479 (1.770) 34.039 (2.336)
6 attrs 43.682 (1.520) 40.651 (2.425)
6 attrs + image 35.581 (1.723) 33.654 (2.476)

CFRNet

8 attrs 61.835 (1.025) 25.436 (2.332)
6 attrs 62.055 (1.001) 25.649 (2.339)
6 attrs + image 61.350 (1.109) 25.219 (2.313)

In Table 6, we repeat the experiment 100 times and report average ATE errors along with standard error.
We removed 8 repetitions in the experiment where DGSE or CFRNet showed lack of convergence as
evidenced by very high validation loss on any setting of input attributes.

Table 7: Treatment effects on IHDP Dataset. Using a reduced set of features in the IHDP Mini setting
produces comparable absolute ATE errors as the degradation is small. Numbers in round braces
indicate standard deviations. Since this is a simulated dataset, we can directly compute the treatment
effect using the simulated factual and counterfactual outputs. ATE error is the absolute difference
between true ATE and predicted ATE.

MODELS INPUT "ATE (TRAIN+VAL) "ATE ERROR(TEST)

DGSE FULL 0.289 (0.027) 0.358 (0.041)
OLS FULL 0.535 (0.089) 0.718 (0.132)
DGSE MINI 0.404 (0.107) 0.720 (0.159)

E Evaluating Quality of Pre-Trained Embeddings

We demonstrate that our pre-trained embeddings contain useful signal by building a neural network
model that predicts the gender, age and ethnicity from the CLIP embedding [24] of the corresponding
image.
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We build a simple neural network model that takes the CLIP embedding of an image as input and
predicts the age of the person in that image. We use 5-dimensional PCA embeddings of 500 randomly
chosen images of people aged 10-45 years (corresponding to the age-group in the IHDP experiment).
We have an independent test dataset corresponding to 100 images chosen in a similar way. We
see that the R2 value for the age prediction on test dataset is 0.45. If we increase the size of PCA
embedding to 50, this R2 value increases to 0.58. Thus, it is possible to extract the age information
from randomly chosen images using a simple neural network.

In the above setting, we also studied the classification accuracy of separate neural networks that
predict gender and ethnicity from the CLIP embeddings. We saw that gender was predicted with 94%
accuracy and ethnicity was predicted with 58% accuracy using a 5-dimensional PCA embedding.
After increasing the size of PCA embedding to 50 dimensions, the gender prediction accuracy
increased to 95% and ethnicity prediction accuracy increased to 77%. This further supports our
idea of replacing the attribute corresponding to ’s baby’s gender or student ethnicity/gender with an
appropriate image.

F Plant GWAS

Setup We apply our deep structural equations framework for correcting the effects of confounding.
We fit a DGSE model in two stages: (1) first, we only fit the model of p(T |Z) using the DGSE
ELBO objective; (2) then we fit p(Y |Z, T ) with a fixed Z produced by the auxiliary model q(Z|T ).
We found this two-step procedure to produce best results. The subsampled SNPs corresponding to
each genome are taken as input X . The encoder and decoder use a single hidden layer of 256 units
while a 10-dimensional latent variable Z is used. This network is optimized using ClippedAdam
with learning rate of 0.01, further reduced exponentially over 20 training epochs. The confounding
variable for each genome can now be computed as latent representation produced by the DSE. To
measure the success of confounding correction, we compute the R2 values between the true GDP of
the region and the GDP output as predicted via our model and the baselines. If we have corrected for
confounding, then we should get low R2 values.

Historical Weather Data We used historical weather data collected from Menne et al. [32] to add
a new modality while performing plant GWAS. We use per day precipitation data from year 2000
collected by weather station closest in distance to the latitude/longitude coordinates of the location
from which the SNPs of plant were collected. For the locations where weather data was missing, we
replaced those entries with zeros.

G Simulated GWAS Experiments

We provide additional details on this experiment here.

G.1 Data generating process

To simulate the confounders, SNPs (genotypes), and the outcomes (phenotypes), we follow the
“Spatial” simulation setup from Appendix D.1 & D.2 of [49]. Specifically, we generate random low-
rank factorization of the allele frequency logits F = ��1(�S), where � is sigmoid, as is common
in the literature [4, 40]. In the “Spatial” Setting [49], the S matrix is interpreted as geographic
spatial positions of the individuals. For the m-th SNP of the n-th individual, we generate the SNP
Xnm ⇠ Bin(3,�(Fnm)). In this simulation, we considered M = 10 SNPs with N = 10000
individuals.

Individuals are clustered into K = 3 groups based on their locations, and the individual’s cluster
is the unobserved confounder. Then, the outcomes are calculated from both the SNPs, where only
c = 2 SNPs have a non-zero causal effect, plus a confounding term that is a function of the cluster,
and some i.i.d. Gaussian noise. One small deviation from Tran & Blei [49] is that our noise is i.i.d.
Gaussian (hence, the variance does not depend on the confounder).
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We further augmented the dataset to include a time-series proxy that can help identify the unobserved
spatial position of individuals. For each cluster, we came up with some Fourier coefficients,

Cluster 0: a(0)0 = 0.0, a(0)1 = �1.0, a(0)2 = 1.0, b(0)1 = �1.0, b(0)2 = 1.0

Cluster 1: a(1)0 = 1.0, a(1)1 = �5.0, a(1)2 = 2.0, b(1)1 = �5.0, b(1)2 = 2.0

Cluster 2: a(2)0 = �1.0, a(2)1 = �2.0, a(2)2 = 5.0, b(2)1 = �2.0, b(2)2 = 5.0.

For each individual in the k-th cluster, we sampled at Nsamples = 50 uniformly spaced times,
across Nperiods = 2 periods of length T = 5. That is, our time series proxy consists of points
{xi}i2[Nsamples],

xi =
1

2
a(k)0 +

2X

`=1

a(k)` cos

✓
2⇡ti(`� 1)

T

◆
+

2X

`=1

b(k)` sin

✓
2⇡ti(`� 1)

T

◆
,

ti =
TNperiodsi

Nsamples
.

Please see Fig. 3 for a visualization of the time-series generated for each cluster.

Figure 3: Visualization of Time-series Proxy.

G.2 DSE Modeling and evaluation setup

To handle the SNP data, we trained a Multi-Layer Perceptron (MLP) based �-variational autoencoder
[12] with ReLU activations, which output parameters of a Gaussian latent distribution. The MLPs
consisted of 3 hidden layers, each with 64 units, and our latent dimension z was 2. To handle time
series data (new modality), we trained a �-VAE that encoded and decoded with 1D convolutions, as
1D convolutions have been shown to strongly approximate fast Fourier transforms [34]. There were 3
hidden convolutional layers, each of which had 32 output channels, with a kernel of length 3 and a
stride of 1. Following the convolution was an MLP with 1 hidden layer consisting of 64 units. ReLU
activations were used throughout the architecture.

In our experiments, we swept over � 2 {0.1, 0.2, 0.5, 1.0, 1.2, 1.5}. Our general hypothesis was
that lower � values would make our VAE perform better, as unlike in the standard VAE evaluation
scheme, we sample from the posterior to generate latents for individuals, and not the prior, so the KL
divergence term in the ELBO doesn’t matter as much.

When evaluating on a set of SNPs and time series data corresponding to a set of individuals, we
generate latents by passing the data of each respective type into the appropriate encoder and sampling
from the resulting distributions. The latent z for each individual is the concatenation of the SNP
latent zsnp and the time series latent zts.
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Once we have the latent confounder z for an individual, we calculate the causal effect of the mth SNP
by performing the linear regression,

y = �0 +
X

i

�izi + �mxm + ✏i,

where ✏i are i.i.d. standard normal. We solved this using the closed form solution for least-squares
linear regression, given by

b� = (ATA)�1AT y,

where Ai = [zi, 1, xm] is the ith row in the matrix A. Then b�m is our estimated causal effect for the
mth SNP. We let b� be a vector of length M to denote our estimates for each SNP’s causal effect.

G.3 Results

We tested our single modality DSE model and multi-modal DSE model against several linear latent
model baselines. Two baselines, Principle Components Analysis (PCA) and Factor Analysis (FA),
also generate a latent z, which we then use within our linear regression approach to calculate b�. We
also ran the Linear Mixed Model (LMM) implementation by Limix [27]. We also plot two oracle
baselines. The first is when b� = �?, labeled “truth”. The second is when z is the true confounder
used when generating the data, according to “Spatial”.

Let �? denote the ground truth causal effect vector. We report `1 and `2 norms to measure kb� � �?k.
We also report true/false positive/negatives, which we define as follows. For an individual, let
⌧ = mini:�i 6=0 |�i|/2. Then, SNP m is a

1. True Positive (tp): if b�m � ⌧ and �?
m � ⌧ or b�m  �⌧ and �?

m  �⌧ .
2. True Negative (tn): if |b�m| < ⌧ and |�?

m| < ⌧ .
3. False Negative (fn): if |b�m| < ⌧ but |�?

m| > ⌧ .
4. False Positive (fp): if none of the above hold. Concretely, there are two cases. First, if

|b�m| > ⌧ but |�?
m| < ⌧ . Second, if the direction is wrong, i.e. b�m > ⌧ but �?

m < �⌧ , or
b�m < �⌧ but �?

m > ⌧ .

Finally, recall that precision is tp/(tp+ fp) and recall is tp/(tp+ fn), and higher is better for both.
In the following table, we show the mean and standard error of the mean (sem) over 10 seeds at
evaluation time. The unimodal DSE only encodes the SNPs vector into a 2 dimensional embedding.
The multimodal DSE also encodes the time-series vector into a 2 dimensional embedding, and we
concatenate this to the 2-dimensional embedding of SNPs to form a 4 dimensional embedding that
can be used in our linear regression. PCAk denotes Principal Components Analysisn(PCA) with
k components. Similarly, FAk denotes Factor Analysis (FA) with k components. Amongst the
non-oracle baselines, multi-modal DSE has the smallest errors and highest precision/recall. It beats
all linear baselines including LMM. Unimodal DSE, while worse than LMM, still beats PCA and
FA. In general, we see that precision starts to deteriorate faster than recall, suggesting that false
positives are more likely from the weaker linear deconfounding techniques such as PCA/FA. It’s
also interesting that when PCA/FA used more components, we see worse performance across the
board. This illustrates the importance of picking the right size of latent dimension, which is an open
question. If the latent dimension is too small then we may not capture all the confounders. If the
latent dimension is too large, the latent encoding may also end up capturing spurious correlations.

H Alternative Causal Graph Structures

This section derives estimators of ATE and ITE under assumptions on the causal graph that are
different from the ones described in Figure 1. The key takeaway of this section is that ATE and ITE
can be computed under arbitrary causal graphs using minor modifications of our algorithms, which
we describe in this section.

H.1 Alternative Causal Graph Structures

We start by formally defining the class of causal graphs that will be studied in this section. Formally,
we identify two sets of modification to Figure 1. We will derive small modifications to our algorithms
to allow the new types of causal graphs implied by these modifications.
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Model `1(#) `2(#) tp (") fp (#) tn (") fn (#)
Mean (sem) Mean (sem) Mean (sem) Mean (sem) Mean (sem) Mean (sem)

Optimal 0.22 (0.04) 0.09 (0.02) 2.0 (0.00) 0.1 (0.10) 7.9 (0.10) 0.0 (0.00)
DSE (2 modalities) 0.30 (0.06) 0.14 (0.03) 2.0 (0.00) 0.2 (0.13) 7.8 (0.13) 0.0 (0.00)
LMM 0.44 (0.06) 0.17 (0.02) 2.0 (0.00) 0.7 (0.42) 7.3 (0.42) 0.0 (0.00)
DSE (1 modality) 0.60 (0.09) 0.26 (0.05) 2.0 (0.00) 1.1 (0.59) 6.9 (0.59) 0.0 (0.00)
PCA (1 component) 0.93 (0.17) 0.40 (0.07) 2.0 (0.00) 2.3 (0.72) 5.7 (0.72) 0.0 (0.00)
FA (1 component) 1.08 (0.17) 0.59 (0.13) 2.0 (0.00) 2.0 (0.71) 6.0 (0.71) 0.0 (0.00)
PCA (2 components) 1.38 (0.24) 0.56 (0.09) 1.8 (0.13) 3.4 (0.83) 4.6 (0.83) 0.2 (0.13)
FA (2 components) 1.44 (0.30) 0.71 (0.19) 2.0 (0.00) 2.6 (0.75) 5.4 (0.75) 0.0 (0.00)
PCA (3 components) 1.66 (0.23) 0.68 (0.09) 1.6 (0.16) 3.8 (0.80) 4.2 (0.80) 0.4 (0.16)
FA (3 components) 1.89 (0.45) 0.95 (0.25) 1.8 (0.13) 3.0 (0.56) 5.0 (0.56) 0.2 (0.13)

Table 8: Comparison of DSE with Baselines to Perform GWAS.

Model Precision (") Recall (")
Mean (sem) Mean (sem)

Optimal 0.97 (0.03) 1.0 (0.00)
DSE (2 modalities) 0.93 (0.04) 1.0 (0.00)
LMM 0.85 (0.08) 1.0 (0.00)
DSE (1 modality) 0.78 (0.08) 1.0 (0.00)
PCA (1 component) 0.58 (0.09) 1.0 (0.00)
FA (1 component) 0.62 (0.08) 1.0 (0.00)
PCA (2 components) 0.44 (0.09) 0.9 (0.07)
FA (2 components) 0.55 (0.09) 1.0 (0.00)
PCA (3 components) 0.37 (0.08) 0.8 (0.08)
FA (3 components) 0.44 (0.08) 0.9 (0.07)

Table 9: Comparison of DSE with Baselines in Terms of Precision and Recall Metrics.

Observed confounders We consider an expanded set of graphs over a space of random variables
(X,Y, T, Z, V ), where V represents observed (non-proxy) confounders and the other random vari-
ables are associated with the observed data x, y, t, z. We look at causal graphs implied by structural
equations of the form:
Z ⇠ PZ V ⇠ PV Xj ⇠ PXj (✓Xj (Z))) 8j T ⇠ Ber(⇡T (Z, V )) Y ⇠ PY (✓Y (Z, V, T ))),

(8)

where PXj ,PY are probability distributions with a tractable density and the µ,�,⇡, ✓ are functions
parameterized by neural networks that output the parameters of their respective probability distribution
as a function of ancestor variables in the causal graph.

In the above equations, V is variable that is assumed to be always observed (just like y(i) and t(i)).
All the other technical terms are defined as in the main body of the paper. The above equations result
in a causal graph with edges between V and Y, T and define a distribution p(x, y, t, z, v).

Dependent proxies Another possible set of modifications to Figure 1 is the presence of edges
between proxies Xi, Xj , which can be denoted as

Xj ⇠ PXj (✓Xj (Z, pa(Xj)))) 8j
where pa(Xj)) denotes the set of parents of Xj among the other unstructured proxy variables Xi.

H.2 A General Estimator Class

The following Theorem shows that we can estimate ATE and ITE when the data distribution follows
the structure in Figure 1, plus the two types of modifications outlined above (observed confounders
and dependent proxies).
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Theorem 3. The true ITE(x,M) for any subset M ✓ {1, 2, ...,m} of observed modalities is identifi-

able when the true data distribution p(x, y, t, z, v) has the causal graph structure of a DMSE model

(Figure 1) in addition to having observed confounders v and possibly dependent confounders.

Proof: Let xM = {xj | j 2 M} be the data from the observed subset of modalities. Let v be
the observed proxy variable. We need to show that p(y|xM, v, do(t = t0)) is identifiable for any t0.
Observe that

p(y|xM, v, do(t = t0)) =

Z

z
p(y|z, xM, v, do(t = t0))p(z|xM, v, do(t = t0))dz

=

Z

z
p(y|z, xM, v, t0)p(z|xM)dz,

where the second equality follows from the rule of do-calculus (applying backdoor adjustment). Since
our proof holds for any t0 and all elements on the right-hand side are identifiable, the claim follows.

H.3 Observed Confounders

Next, we derive an extension of the DMSE model to the setting in which we have observed con-
founders V . We refer to this modified model as DMSE-V.

As earlier, the DMSE-V model induces a tractable joint density p(X,Y, T, Z, V ), which allows
us to fit its parameters using stochastic variational inference by optimizing the evidence lower
bound (ELBO) on the marginal log-likelihood p(y(i), x(i), t(i), v(i)) defined over an expanded dataset
{y(i), x(i), t(i), v(i)}ni=1:

ELBOX =
nX

i=1

Eq

2

4
mX

j=1

log p(x(i)
j |z) + log p(y(i), t(i), v(i), z)� log q(z|x(i), y(i), t(i), v(i))

3

5 ,

(9)

where p(y(i), t(i), v(i), z) = p(y(i)|t(i), v(i), z)p(t(i)|z, v(i))p(z)p(v(i)) and q(z|x(i), y(i), t(i), v(i))
is the approximate variational posterior. Note that since v(i) is always observed (just like y(i) and
t(i)), the p(v(i)) term can be ignored.

In practice, this reduces to the vanilla DMSE model with the following modifications:

• The log p(y(i)|t(i), v(i), z) term becomes additionally conditioned on v(i).

• The log p(t(i)|v(i), z) term becomes additionally conditioned on v(i).

• The approximate posterior q(z|x(i), y(i), t(i), v(i)) becomes additionally conditioned on
v(i).

Crucially, the specialized inference algorithms derived for the DMSE model remain unchanged. Since
V is always observed, learning a DMSE-V model is equivalent to learning a model p(y, x, t, z|v),
which has the same structure as a DMSE model. In particular, all the Xi are conditionally independent
given Z. Hence, the same learning and inference algorithms apply.

H.4 Causal Links Among Proxies

Another type of causal graph that we consider is one in which proxies Xi are connect by causal edges.
First, we note that when proxies are unstructured, such causal edges are expected to be rare, i.e., we
do not expect the pixels of an image Xi to have a direct influence on other variables.

When Xi takes on a structured form and directly influences other proxies, our strategy is to “collapse”
any sets of variables Xj that have edges among them, until we have the conditionally independent
structure in Figure 1. In the extreme case, we might need to collapse all proxies Xi into a single
proxy X that consists of their concatenation.

The result is a model that has the same structure as DMSE, and that can be learned using the same set
of inference and learning algorithms. The only drawback is increased computational efficiency.
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H.5 Additional Synthetic Data Experiment Details

We generate synthetic data to simulate a process with modified causal links as covered in subsec-
tion H.3 and H.4. Specifically, we simulate four different datasets with generative process detailed in
the following section. We generate {Xi, ti, yi}i=m

i=0 where m = 10000. We use train/val/test split of
63/27/10. Here, � stands for logical XOR.

1. Case of Original Causal Graph (Dataset A)
Variables: X1 is unstructured input, X2 is structured input, T is treatment, Y is output, Z
is confounder
Edges in graph: Z ! X1, Z ! X2, {Z} ! T, {T, Z} ! Y
Thus we added no extra edges.
Generative process:
(a) P (z = 1) = 0.5
(b) P (x10 = 1|z = 1) = P (x10 = 0|z = 0) = 0.1 (x10 is an intermediate variable)
(c) P (x2 = 1|z = 1) = P (x2 = 0|z = 0) = 0.2
(d) P (t = 1|z = 1) = P (t = 0|z = 0) = 0.2
(e) y = (z � t)
(f) P (x1|x10 = 1) is unif. over MNIST images of ‘1’, P (x1|x10 = 0) is unif. over

MNIST images of ‘0’
2. Case of the Observed Confounder (Dataset B)

Variables: X1 is unstructured input, X2 is structured input, T is treatment, Y is output, Z
is confounder
Edges in graph: Z ! X1, {X2, Z} ! T, {X2, T, Z} ! Y
Thus we added extra edges X2 ! T and X2 ! Y .
Generative process:
(a) P (z = 1) = 0.5, P (x2 = 1) = 0.5
(b) P (x10 = 1|z = 1) = P (x10 = 0|z = 0) = 0.1 (x10 is an intermediate variable)
(c) P (t = 1|z = 1, x2 = 1) = P (t = 0|z = 0, x2 = 1) = 0.2;

P (t = 1|z = 1, x2 = 0) = P (t = 0|z = 0, x2 = 0) = 0.9
(d) y = x2 AND (z � t)
(e) P (x1|x10 = 1) is unif. over MNIST images of ‘1’, P (x1|x10 = 0) is unif. over

MNIST images of ‘0’
3. Case of the Observed Confounder (Dataset C)

Variables: X1 is unstructured input, X2 is structured input, T is treatment, Y is output,
confounder Z = (Z1, Z2)
Edges in graph: Z ! X1, Z ! X1, Z� > X2, {X2, Z} ! T, {X2, T, Z} ! Y
Thus we added extra edges Z ! X2, X2 ! T and X2 ! Y .
Generative process:
(a) P (z1 = 1) = 0.5, P (z2 = 1) = 0.5
(b) P (x10 = 1|z1 = 1) = P (x10 = 0|z1 = 0) = 0.1 (x10 is an intermediate variable)
(c) P (x2 = 1|z2 = 1) = P (x2 = 0|z2 = 0) = 0.9
(d) z = z1 � z2
(e) P (t = 1|z = 1, x2 = 1) = P (t = 0|z = 0, x2 = 1) = 0.9; P (t = 1|z = 1, x2 =

0) = P (t = 0|z = 0, x2 = 0) = 0.1
(f) y = x2� t� (z1� z2)
(g) P (x1|x10 = 1) is unif. over MNIST images of ‘1’, P (x1|x10 = 0) is unif. over

MNIST images of ‘0’
4. Case of Causal Links Among Proxies (Dataset D)

Variables: X1 is structured input, X2 is structured input, X3 is unstructured input, T is
treatment, Y is output, confounder Z = (Z1, Z2, Z3)
Edges in graph:Z ! X1, Z ! X2, Z ! X3, X1 ! X2, {Z} ! T, {T, Z} ! Y
Thus we added extra edge: X1 ! X2
Data generation:
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(a) P (z1 = 1) = P (z2 = 1) = P (z3 = 1) = 0.5
(b) P (x1 = 1|z1 = 1) = P (x1 = 0|z1 = 0) = 0.1
(c) P (x2 = 1|z2 = 1, x1 = 0) = P (x2 = 0|z2 = 0, x1 = 0) = 0.8

P (x2 = 1|z2 = 1, x1 = 1) = P (x2 = 0|z2 = 0, x1 = 1) = 0.2
(d) P (x30 = 1|z3 = 1) = P (x30 = 0|z3 = 0) = 0.3 (x30 is an intermediate variable)
(e) z = z1 � z2 � z3
(f) P (t = 1|z = 1) = P (t = 0|z = 0) = 0.2
(g) y = t� z
(h) P (x3|x30 = 1) is unif. over MNIST images of ‘1’, P (x3|x30 = 0) is unif. over

MNIST images of ‘0’
5. Case of Increasing Number of Proxies (Dataset E)

Variables: {X1, X2, ..Xm} are unstructured inputs, T is treatment, Y is output, confounder
Z = (Z1, Z2, .., Zm). m is number of modalities Edges in graph: Zi ! Xi, Z !
T, {T, Z} ! Y

(a) P (zi = 1) = i
m

(b) P (x0
i = 1|zi = 1) = P (x0

i = 0|zi = 0) = 1 (x0
i are intermediate variables)

(c) z = �m
i=1zi (xor over all zi)

(d) P (t = 1|z = 1) = P (t = 0|z = 0) = 0.25
(e) P (y = 1|t = 1) = sigmoid(3z + 2), P (y = 1|t = 0) = sigmoid(3z � 2)
(f) P (xi|x0

i = 1) is unif. over MNIST images of ‘1’, P (xi|x0
i = 0) is unif. over MNIST

images of ‘0’

Table 10: Comparison of DMSE and CEVAE with increasing number of proxies

NUMBER OF CEVAE DMSE % IMPROVEMENT MADE BY
INPUT MODALITIES DMSE W.R.T CEVAE

"ATE "ATE "ATE "ATE "ATE "ATE

(TRAIN+VAL) (TEST) (TRAIN+VAL) (TEST) (TRAIN+VAL) (TEST)

5 0.0533 (0.0165) 0.0663 (0.0244) 0.0421 (0.0045) 0.0472 (0.0166) 21.0% 28.8%
10 0.0381 (0.0122) 0.0425 (0.0148) 0.0296 (0.0040) 0.0334 (0.0052) 22.5% 21.5%
15 0.0465 (0.0062) 0.0545 (0.0112) 0.0350 (0.0066) 0.0408 (0.0011) 24.7% 25.1%
20 0.0764 (0.0178) 0.0738 (0.0164) 0.0407 (0.0087) 0.0383 (0.0054) 46.6% 48.1%

Table 11: Comparison of DMSE with CEVAE on one modality

MODEL ATE ERROR ATE ERROR
(TRAIN+VAL) (TEST)

CEVAE 0.0637 (0.0162) 0.0641 (0.0178)
DMSE 0.0328 (0.0040) 0.0333 (0.0045)

H.5.1 Experimental Results

DMSE under alternative graph structures and comparison with CEVAE:We generate synthetic
data corresponding to Datasets A, B, C and D. Table 13 demonstrates that DMSE recovers ATE
under modified causal graph structures. We demonstrate that with increasing dataset size, the ATE
error on test dataset continues to fall. Thus, with dataset size approaching infinity, we can recover
the true ATE as long as the model class contains true distribution and our optimizer can find the
minimum. In Table 12, DMSE also compares favorably with CEVAE and recovers the ATE in this
extended setting. In this extended setting, we have a combination of structured and unstructured input
modalities. CEVAE takes a concatenation of these modalities as its input while DMSE has a separate
model and inference network for each modality. Hence DMSE can handle diverse modality types
gracefully as compared to CEVAE.
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Table 12: Comparison of CEVAE and DMSE under alternative graph structures

CAUSAL GRAPH CEVAE DMSE
ATE ERROR ATE ERROR ATE ERROR ATE ERROR

(TRAIN+VAL) (TEST) (TRAIN+VAL) (TEST)

DATASET A: 0.0636 (0.0244) 0.0752 (0.0276) 0.0335 (0.0127) 0.0303 (0.0140)
ORIGINAL CAUSAL GRAPH
DATASET B: 0.0522 (0.0134) 0.0498 (0.0148) 0.0152 (0.0038) 0.0237 (0.0049)
SOME INPUTS ARE OBSERVED CONFOUNDERS
DATASET C: 0.0591 (0.0145) 0.0671 (0.0180) 0.0315 (0.0055) 0.0328 (0.0113)
SOME INPUTS ARE OBSERVED CONFOUNDERS
DATASET D: 0.0375 (0.0141) 0.0539 (0.0075) 0.0096 (0.0022) 0.029 (0.0058)
SOME INPUT PROXIES ARE
NOT CONDITIONALLY INDEPENDENT

Table 13: DMSE under alternative graph structures

CAUSAL GRAPH TRAINING DATASET SIZE ATE ERROR (TRAIN+VAL) ATE ERROR (TEST)

DATASET A: 100 0.1966 (0.0389) 0.3590 (0.0564)
ORIGINAL CAUSAL GRAPH 1000 0.0575 (0.0103) 0.1155 (0.0220)

10000 0.0335 (0.0127) 0.0303 (0.0140)
25000 0.0274 (0.0055) 0.0292 (0.0058)

DATASET B: 100 0.1280 (0.0184) 0.2770 (0.0401)
SOME INPUTS 1000 0.0320 (0.0099) 0.0951 (0.0264)
ARE OBSERVED CONFOUNDERS 10000 0.0152 (0.0038) 0.0237 (0.0049)

25000 0.0195 (0.0058) 0.0204 (0.0063)

DATASET C: 100 0.1354 (0.0361) 0.1970 (0.0561)
SOME INPUTS 1000 0.0596 (0.0191) 0.1060 (0.0214)
ARE OBSERVED CONFOUNDERS 10000 0.0315 (0.0055) 0.0328 (0.0113)

25000 0.0140 (0.0039) 0.0226 (0.0072)

DATASET D: 100 0.1391 (0.0209) 0.2300 (0.0544)
SOME INPUT PROXIES 1000 0.0596 (0.0103) 0.1012 (0.0223)
ARE NOT CONDITIONALLY 10000 0.0096 (0.0022) 0.0290 (0.0058)
INDEPENDENT 25000 0.0139 (0.0033) 0.0206 (0.0045)

DMSE under increasing number of modalities and comparison with CEVAE: We generate
synthetic data corresponding to Dataset E with varying number of modalities (i.e. proxies). Table 11
contains the results of experiment with just one modality; the key difference between the two models
is the inference procedure. Table 11 shows that even in this setting, DMSE recovers the ATE more
accurately than CEVAE. Next, we compare CEVAE vs. DMSE when the data has many unstructured
modalities in Table 10. We generate synthetic data from K modalities (Dataset E). The CEVAE model
treats them as one concatenated vector; DMSE models them as separate vectors. As expected, DMSE
handles large numbers of modalities better than CEVAE.

I Identifiability of Causal Effects in the Presence of Proxies to Hidden
Confounder

If the structural equations have linear dependencies, we can establish the identifiability of total
treatment effect. Kuroki & Pearl [22] define the total treatment effect of X on Y as ‘the total sum of
the products of the path coefficients on the sequence of arrows along all directed paths from X to Y’.
We extend the identifiability result of Kuroki & Pearl [22] to handle vector-valued confounders Ū ,
and hence we require one additional view of the confounder for a total of three independent views.
Concretely, we consider the following setup.

Ū : hidden confounder

X: binary treatment variable
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Y : univariate outcome variable

W̄ , Z̄, V̄ : proxies for Ū

Assume causal graph as

V̄ W̄ Z̄ X Y

U

Figure 4: Causal graph for Theorem 4.

Assume linear structural equations

W̄ = �W̄ Ū Ū + ✏̄W

Z̄ = �Z̄Ū Ū + ✏̄Z

V̄ = �V̄ Ū Ū + ✏̄V

X = �XŪ Ū + ✏X

Y = �Y Ū Ū + �Y XX + ✏Y

Note that the three views of Ū are independent given Ū , i.e. W̄ ? Z̄ ? V̄ |Ū .
Theorem 4. Given the above setup, the causal effect of X on Y , i.e. P (y|do(x)), is identifiable if

the dependency matrices �⇧Ū for ⇧ 2 {V̄ , W̄ , Z̄} have rank |Ū |.

Proof Sketch First, we analyze what happens when we know the � matrices a priori, i.e. treatment
effect estimation with external information. Then, we analyze how to leverage the three independent
views of the confounder to recover enough information about the matrices for treatment effect
estimation, i.e. treatment effect estimation without external information. In this second step, we use
the rank constraint so that each proxy has enough information about the confounder.

Treatment effect estimation with external information:

If any one � matrix corresponding to a proxy is known (i.e. we know the causal mechanism Ū ! W̄ ,
Ū ! Z̄ or Ū ! V̄ ), then the treatment effect is identifiable given that the � matrix is invertible. In
principle, we need any one proxy and the � matrix corresponding to it for computing the treatment
effect. The following derivation is done using the matrix �W̄ Ū .

We define �AB = Covariance(A,B) where A and B are univariate. We define ⌃ĀB̄ to be the
covariance matrix between sets of variables in the vectors Ā and B̄.

For the above causal graph Figure 4 with linear dependencies, the total treatment effect ⌧Y X of
variable X on output Y can be derived using backdoor adjustment [22] as

⌧Y X =
�XY �⌃XŪ⌃�1

ŪŪ
⌃T

Y Ū

�XX�⌃XŪ⌃�1
ŪŪ

⌃T
XŪ

.

Using formula of covariance and owing to the linear nature of structural equations, we know that

⌃XW̄ = ⌃XŪ�
T
W̄ Ū

,⌃Y W̄ = ⌃Y Ū�
T
W̄ Ū

.

Thus, if the matrix �W̄ Ū is a square and invertible, we get

⌧Y X =
�XY �⌃XW̄ (�W̄ Ū⌃ŪŪ�T

W̄Ū )�1⌃T
Y W̄

�XX�⌃XW̄ (�W̄ Ū⌃ŪŪ�T
W̄Ū

)�1⌃T
XW̄

.

Note: If the matrix �W̄ Ū is not square, it needs to have rank |Ū | at the least. In case |W̄ | > |Ū |, but
rank(�W̄ Ū ) = |Ū |, we can still work with a modified system of equations such that W̄ is replaced
with W̄ 0 where |W̄ 0| = |Ū | = rank(�W̄ 0Ū ). To obtain this modified system, we apply elementary
row transformations on the equation W̄ = �W̄ Ū Ū + ✏̄W such that �W̄ Ū is an upper triangular matrix.
After that, we drop the bottom |W̄ |� |Ū | rows from matrices on both sides of equation to obtain W̄ 0

and �W̄ 0Ū .
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Consider the case where rank(�W̄ Ū ) < |Ū | and rank(�Z̄Ū ) < |Ū |. In this case, if we can concatenate
the two proxies W̄ and Z̄ to a new proxy V̄ = W̄ : Z̄ such that rank(�V̄ Ū ) = |Ū |, we can estimate
treatment effects using �V̄ Ū .

Treatment effect estimation without external information:

In this case, we need three independent views of hidden confounder U. As we are working with
multivariate confounders, the univariate treatment variable X cannot serve as the third view of U
anymore.

Now using the properties of covariance matrix and the linearity of structural equations, we can write
the following

⌃V̄ W̄ = �V̄ Ū⌃ŪŪ�
T
W̄ Ū

, ⌃W̄ Z̄ = �W̄ Ū⌃ŪŪ�
T
Z̄Ū

, ⌃V̄ Z̄ = �V̄ Ū⌃ŪŪ�
T
Z̄Ū

.

Assuming that the matrices ⌃ŪŪ ,�V̄ Ū ,�Z̄Ū are square and invertible, we get ⌃W̄ Z̄⌃
�1
V̄ Z̄

⌃V̄ W̄ =

�W̄ Ū⌃ŪŪ�
T
W̄ Ū

Hence, if �W̄ Ū is invertible additionally, then the treatment effect can be identified using the following
equation

⌧Y X =
�XY �⌃XW̄ (⌃W̄ Z̄⌃�1

V̄ Z̄
⌃V̄ W̄ )�1⌃T

Y W̄

�XX�⌃XW̄ (⌃W̄ Z̄⌃�1
V̄ Z̄

⌃V̄ W̄ )�1⌃T
XW̄

What happens when the dimensionality of proxies is greater than dimensionality of true
confounder?
We are interested in high-dimensional, unstructured proxies. In this case, our matrices
�V̄ Ū ,�Z̄Ū ,�W̄ Ū will need to have rank |Ū |. In essence, we still need three views for our vec-
tor Ū . When we have access to external information in the form of � matrices, verifying the rank
is possible. We can then apply appropriate row transformations on the corresponding structural
equations (as mentioned in I) to obtain modified proxies with same length as the confounder Ū .

In absence of external information, rank of � matrices is not verifiable. Assuming that we have
�V̄ Ū ,�Z̄Ū ,�W̄ Ū with rank |Ū |, we apply a dimensionality reduction procedure to map the proxies
V̄ , Z̄, W̄ to modified proxies V̄ 0, Z̄ 0, W̄ 0 such that |V̄ 0| = |Z̄ 0| = |W̄ 0| = |Ū | and �V̄ 0Ū ,�Z̄0Ū ,�W̄ 0Ū
have rank |Ū |. In practice, this dimensionality reduction can be a technique like PCA or the result of
applying pre-trained neural network layer to obtain an embedding of unstructured data.

J Additional Details on Mathematical Proofs

J.1 Evidence Lower Bound for Deep Structural Equations

We discuss the evidence lower bound (ELBO), presented in Section 4.2.

The left-hand-side of the ELBO can be written as
nX

i=1

Eq

2

4
mX

j=1

log p(xj
i |z) + log p(yi|z) + log p(yi, ti, z)� log q(z|xi, ti, yi)

3

5 . (10)

Due to the causal graph structure we can factorize the following distribution as
p(yi, ti, z) = log p(yi|ti, z) + log p(ti|z) + log p(z). (11)

Thus, we can rewrite (10) as
nX

i=1

Eq

2

4
mX

j=1

log p(xj
i |z) + log p(yi|z) + log p(yi|ti, z) + log p(ti|z) + log p(z)� log q(z|xi, ti, yi)

3

5

(12)

Note that the first four terms in the expectation over the posterior distribution q make up a reconstruc-
tion loss of the original data x, y, t in terms of the latent variable z, while the last two terms form
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the negative KL divergence �DKL (q(z|xi, ti, yi)kp(z)) between the posterior q and the prior p(z).
Thus, we can write our ELBO as

nX

i=1

Lreconstruction(xi, yi, ti, z)�DKL (q(z|xi, ti, yi)kp(z)) , (13)

which is exactly our variational objective. We can sum or take the average over the number of
datapoints n to form our empirical objective.

J.2 Derivation of posterior

Here we show why the true posterior factorizes as

p(z | x, t, y) / (p(z | t, y)
mY

j=1

p(z | xj))/
m�1Y

j=1

p(z).

p(z | x, t, y) = p(x, t, y, z)/p(x, t, y)

=

0

@
mY

j=1

p(xj | z)

1

A p(t, y | z)p(z)/p(x, t, y) (by cond. indep. of causal graph)

=

0

@
mY

j=1

p(z | xj)p(xj)/p(z)

1

A · (p(z | t, y)p(t, y)p(z)/p(x, t, y))

/

0

@
mY

j=1

p(z | xj)/p(z)

1

A · (p(z | t, y)p(z)) . (removing terms independent of z)
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