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Abstract
Recent advances in TCP congestion control (CC) have achieved tremendous success
with deep reinforcement learning (RL) approaches, which use feedforward neural
networks (NN) to learn complex environment conditions and make better decisions.
However, such “black-box” policies lack interpretability and reliability, and often,
they need to operate outside the traditional TCP datapath due to the use of complex
NNs. This paper proposes a novel two-stage solution to achieve the best of both
worlds: first to train a deep RL agent, then distill its (over-)parameterized NN
policy into white-box, light-weight rules in the form of symbolic expressions that
are much easier to understand and to implement in constrained environments. At
the core of our proposal is a novel symbolic branching algorithm that enables the
rule to be aware of the context in terms of various network conditions, eventually
converting the NN policy into a symbolic tree. The distilled symbolic rules preserve
and often improve performance over state-of-the-art NN policies while being faster
and simpler than a standard neural network. We validate the performance of our
distilled symbolic rules on both simulation and emulation environments. Our code
is available at https://github.com/VITA-Group/SymbolicPCC.

1 Introduction
Congestion control (CC) is fundamental to Transmission Control Protocol (TCP) communication.
Congestion occurs when the data volume sent to a network reaches or exceeds its maximal capacity,
in which case the network drops excess traffic, and the performance unavoidably declines. CC
mitigates this problem by carefully adjusting the data transmission rate based on the inferred network
capacities, aiming to send data as fast as possible without creating congestion. For instance, a classic
and best-known strategy, Additive-Increase/Multiplicative-Decrease (AIMD) [1], gradually increases
the sending rate when there is no congestion but exponentially reduces the rate when the network is
congested. It ensures that TCP connections fairly share the network capacity in the converged state.

Figure 1 shows an example where two TCP connections share a link between routers 1 and 2. When
the shared link becomes a bottleneck, the CC algorithms running on sources A and B will alter the
traffic rate based on the feedback to avoid congestion. Efficient CC algorithms have been the bedrock
for network services such as DASH video streaming, VoIP (voice-over-IP), VR/AR games, and IoT
(Internet of Things), which ride atop the TCP protocol.

However, it is nontrivial to design a high-performance CC algorithm. Over the years, tens of CC
proposals have been made, all with different metrics and strategies to infer and address congestion,
and new designs are still emerging even today [2, 3]. There are two main challenges when designing
a CC algorithm. 1 it needs to precisely infer whether the network is congested, and if so, how
to adjust the sending rate, based on only partial or indirect observations. Note that CC runs on
end hosts while congestion happens in the network, so CC algorithms cannot observe congestion
directly. Instead, it can only rely on specific signals to infer the network status. For instance, TCP
Cubic [4] uses packet loss as a congestion signal, and TCP Vegas [5] opts for delay increase. 2 CC
algorithms operate within the OS kernel, where the computing and memory resources are limited,
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and they need to make real-time decisions to adjust the traffic rates frequently (e.g., per round-trip
time). Therefore, the algorithm must be very efficient. Spending a long time to compute an action
will significantly offset network performance. Over the long history of congestion control, most
algorithms are implemented with manually-designed heuristics, including New Reno [6] Vegas
[5], Cubic [4], and BBR [2]. In TCP New Reno, for example, the sender doubles the number of
transmitted packets every RTT before reaching a predefined threshold, after which it sends one more
packet every RTT. If there is a timeout caused by packet loss, it halves the sending rate immediately.

Bottleneck link
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User spaceApp App App
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Figure 1: Overview of a congestion control agent’s
role in the network. Multiple senders and receivers
share a single network link controlled by the agent,
which dynamically modulates the sending rates
conditioned on feedback from receivers.

Unfortunately, manually crafted CCs have been
shown to be sub-optimal and cannot support
cases that escape the heuristics [7]. For exam-
ple, packet loss-based CCs like Cubic [4] can-
not distinguish packet drops caused by conges-
tion or non-congestion-related events [7]. Re-
searchers have tried to construct CC algorithms
with machine learning approaches to address
these limitations [7–11]. The insight is that the
CC decisions are dependent on traffic patterns
and network circumstances, which can be ex-
ploited by deep reinforcement learning (RL) to
learn a policy for each scenario. The learned
policy can perform more flexible and accurate
rate adjustments by discovering a mapping from
experience, which can adapt to different network
conditions and reduce manual tuning efforts.

Most notably, Aurora [7], a deep RL framework
for Performance-oriented Congestion Control (PCC), trains a well-established PPO [12] agent to
suggest sending rates as actions by observing the network statistics such as latency ratio, send ratio,
and sent latency inflation. It achieves competitive results on emulation environments Mininet [13] and
Pantheon [14], demonstrating the potential of deep learning approaches to outperform algorithmic,
hand-crafted ones. Despite its immense success, Aurora being a neural network based approach, is
essentially a black-box to users or, in other words, lacks explicit declarative knowledge [15]. They
also require exponentially more computation resources than traditional hand-crafted algorithms such
as the widely deployed TCP-CUBIC [4].

1.1 Our Contributions
In this work, we develop a new algorithmic framework for performance-oriented congestion control
(PCC) agents, which can 1 run as fast as classical algorithmic methods; 2 adjust the rate as
accurately as data-driven RL methods; and 3 be simpler than the original neural network [16],
potentially improving practitioners’ understanding of the model in an actionable manner. We solve
this problem by grasping the opportunity enabled by advances in symbolic regression [17–23].
Symbolic regression bridges the gap between the infeasible search directly in the enormous symbolic
algorithms space and the differentiable training of over-parameterized and un-interpretable neural
networks.

At a high level, one can first train an RL agent through gradient descent, then distill the learned
policy to obtain the data-driven optimized yet simpler and easier-to-understand symbolic rules. This
results in a set of symbolic rules through data-driven optimization that meets TCP CC’s extreme
efficiency and reliability demands. However, considering the enormous volume of discrete symbolic
space, it is challenging to learn effective symbolic rules from scratch directly. Therefore, in this
paper, we adopt a two-stage approach: we first train a deep neural network policy with reinforcement
learning mimicking Aurora [7], and then distill the resultant policy into numerical symbolic rules,
using symbolic regression (SR).

As the challenge, directly applying symbolic regression out of the box does not yield a sufficiently
versatile expression that captures diverse networking conditions. We hence propose a novel branching
technique for training and then aggregating a number of SymbolicPCC agents, each of which caters
to a subset of the possible network conditions. Specifically, we have multiple agents, each called
a branch, and employ a light-weight “branch decider” to choose between the branches during
deployment. In order to create the branching conditions we partition the network condition space
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into adjacent non-overlapping contexts, then regress symbolic rules in each context. With this
modification, we enhance the expressiveness of the resulting SR equation and overcome the bias of
traditional SR algorithms to output rules mostly using numerical operators. Our concrete technical
contributions are summarized as follows:

• We propose a symbolic distillation framework for TCP congestion control, which improves
upon the state-of-the-art RL solutions. Our approach, SymbolicPCC, consists of two stages:
first training an RL agent and then distilling its policy network into ultra-compact and simple
rules in the symbolic expression form.

• We propose a novel branching technique that advances existing symbolic regression techniques
for training and aggregating multiple context-dependent symbolic policies, each of which
specializes for its own subset of network conditions. A branch decider driven by light-weight
classification algorithms determines which symbolic policy to use.

• Through our simulation and emulation experiments, we show that SymbolicPCC achieves highly
competitive or even stronger performance results compared to their teacher policy networks
while running orders of magnitude faster. The presented model uses a tree structure that is
light-weight, and could be simpler for practitioners to reason about and improve manually while
narrowing their performance gap.
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Figure 2: Overview of Conventional Baselines

. Some proposals use packet loss
as a signal for network congestion,
e.g., Cubic [4], Reno [24], and
NewReno [6]; while others rely on
the variation of delay, e.g., Vegas [5],
or combine packet loss and delay [25,
26]. Different CC techniques special-
ized for datacenter networks are also
proposed [3, 27].

Researchers have also investigated the
use of machine learning to construct better heuristics. Indigo [10] and Remy [11] use offline learning
to obtain high-performance CC algorithms. PCC [28] and PCC Vivace [9] opt for online learning to
avoid any hardwired mappings between states and actions. Aurora [7] utilizes deep reinforcement
learning to obtain a new CC algorithm running in userspace. Orca [8] improves upon Aurora and
designs a userspace CC agent that infrequently configures kernel-space CC policies. Our proposal
further improves these work.

At the same time, Symbolic regression methods [17–23] have recently emerged for discovering
underlying math equations that govern some observed data. Algorithms with such a property are more
favorable for real-world deployment as they output white-box rules. [18] use genetic programming
based method while [20] uses a recurrent neural network to perform a search in the symbolic space.

We thus propose to synergize such numerical and data-driven approaches using symbolic regression
(SR) in the congestion control domain. We use SR by following a post-hoc method of first training an
RL algorithm then distilling it into its symbolic rules. Earlier methods that follow a similar procedure
do exist, e.g., [29] distills the learned policy as a soft decision tree. They work on visual RL where
the image observations are coarsely quantized into 10× 10 cells, and the soft decision tree policy
is learned over the 100 dimensional space. [30] also aims to learn abstract rules using a common
sense-based approach by modifying Q learning algorithms. Nevertheless, they fail to generalize
beyond the specific simple grid worlds they were trained in. [31] learns from boolean feature sets, [32]
directly approximates value functions based on a state-transition model, [33] optimizes risk-seeking
policy gradients. Other works on abstracting pure symbolic rules from data include attention-based
methods [34], visual summary [35], reward decomposition [36], causal models [37], markov chain
[38], and case-based expert-behaviour retrieval [21, 22, 39].

3 Methodology
Inspired from the idea of “teacher-student knowledge distillation” [40–42], our symbolic distillation
technique is two-staged—first train regular RL agents (as the teacher), then distill the learned policy
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Figure 3: The proposed SymbolicPCC training and evaluation technique: A baseline RL agent is first
trained then evaluated numerous times with the roll-outs being saved. Directly distilling out from this
data provides a baseline symbolic policy. A light-weight clustering algorithm is used to cluster from
the roll-out dataset, non-overlapping subsets of network conditions (aka. branching conditions) that
achieve similar return. Separate RL agents are then trained on each of these network contexts and
distilled into their respective symbolic rules. During the evaluation, the labels from the clustering
algorithm are re-purposed to classify which branch is to be taken given the observation statistics. The
chosen symbolic branch is then queried for the action.

networks into their white-box symbolic counterparts (as the student). In Section 3.1 we follow [7]’s
approach in Aurora and the training of teacher agents on the PCC-RL gym environment. We also
briefly discuss the approach of applying symbolic regression to create a light-weight numerical-driven
expression that approximates a given teacher’s behavior. In Section 3.2 we look at the specifics of
symbol spaces and attach internal attributes to aid long-term planning. Finally, in Section 3.3 we
discuss our novel branching algorithm as a method for training, then ensembling multiple context-
dependent symbolic agents during deployment.

3.1 Preliminaries: The PCC-RL Environment and the Symbolic Distillation Workflow
PCC-RL [7] is an open-source RL testbed for simulation of congestion control agents based on the
popular OpenAI Gym [43] framework. We adopt it as our main playground. It formulates congestion
control as a sequential decision making problem. Time is first divided into multiple periods called
MIs (monitor intervals), following [28]. At the onset of each MI, the environment provides the agent
with the history of statistic vector observations over the network, and the agent responds with adjusted
sending rates for the following MI. The sending rate remains fixed during a single MI.

The network statistics provided as observations to the congestion control agent are 1 the latency
inflation, 2 the latency ratio, and 3 the sending ratio. The agent is guided by reward signals
based on its ability to react appropriately when detecting changes and trends in the vector statistics
of the PCC-RL environment. It is provided with positive return for higher values of throughput
(packets/second) while being penalized for higher values of latency (seconds) and loss (ratio of sent
vs. acknowledged packets).

Training of Teacher Agents: We first proceed to train RL agents using the PPO algorithm [12]
similar to Aurora [7] in the PCC-RL gym environment till convergence. Although they statistically
perform very well [7], the PPO agents are entirely black-boxes; this makes it difficult to explain its
underlying causal rules directly. Also, their over-parameterized neural network forms incur high
latency. Hence, we choose to indirectly learn the symbolic representations using a student-teacher
type knowledge distillation approach based on the teacher’s (in this case, the RL agent) behaviors.

Distillation of Student Agents: Using the teacher agents, we collect complete trajectories, formally
known as roll-outs in RL, in an inference mode—deterministic actions are enforced. The observations
and their corresponding teacher actions are MI-aligned and stored as an offline dataset. Note that
this step is only performed once at the start of the distillation procedure and is reused in each of its
iterative steps. A search space of operators and operands is also initialized (details are discussed
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shortly in Section 3.2). Guesses for possible symbolic relations are taken, composed of random
operators and operands from their respective spaces. The stored observation trajectories are then
re-evaluated based on this rule to output corresponding actions. The cross-entropy loss with respect
to the teacher model’s actions from the same dataset is used as feedback. This feedback drives
the iterative mutation and pruning following a genetic programming technique [44, 45]. The best
candidate policies are collected and forwarded to the next stage. If the tree fails to converge or does
not reach a specific threshold of acceptance, the procedure is restarted from scratch. Our symbolic
distillation method is discussed with further details in our Appendix.

3.2 A Symbolic Framework for Congestion Control
Defining the Symbol Space for CC: Unlike visual RL [46], the PCC observation space is vector-
based, hence we directly plug them into the search space of our numerical-driven symbolic algorithm.
We henceforth call these observations as vector statistic symbols. The distillation procedure
as described earlier learns to chain these vector statistic symbols using a pre-defined operator
space. Specifically, we employ three types of numerical operators. The first type of operators are
arithmetic based which include +,−, ∗, /, sin, cos, tan, cot, (·)2, (·)3,

√
·, exp, log, |·|. The second

type of operators are Boolean logic, such as is(x < y), is(x ≤ y), is(x == y), a | b, a & b, and ¬ a.

We also utilize a third type of high level operators – namely the slope_of (observation history)
which provides the average slope of an array of observations, and get_value_at (observation
history, index). The slope operator is especially useful when trying to detect trends of a specific
statistic vector over the provided monitor interval. For instance, identifying latency increase or
decrease trends serves as one of the crucial indicators for adjusting sending rates. Meanwhile the
index operator is observed from our experiments to be implicitly used for immediate responding—i.e.,
based on the latest observations.

We note that the underlying decision procedure of the policy network could be efficiently represented
in the form of a high-fidelity tree-shaped form similar to Figure 4. This decision tree contains said
condition nodes and action nodes. Each condition node forks into two leaf nodes based on the
Boolean result of its symbolic composition.
Attributes for Long Term CC Planning: In addition to having these operators and operands
as part of the symbolic search space, we also attach a few attributes/flags to the agent which are
shared across consecutive MI processing steps and help with long-term planning. One behavior in
our SymbolicPCC agents is to use this attribute for remembering if the agent is in the process of
recovering from a network overload or if the network is stable. Indeed, a more straightforward option
for such “multi-MI tracking” would be to just provide a longer history of the vector statistics into
the searching algorithms. But this quickly becomes infeasible due to an exponential increase of the
possible symbolic expressions with respect to the length of vector statistic symbols.

3.3 Novel Branching Algorithm: Switching between Context-Dependent Policies
Unlike traditional visual RL environments, congestion control is a more demanding task due to the
variety of possible network conditions. The behavior of the congestion control agent will improve if
its response is conditioned on the specific network context. However, as this context cannot be known
by the congestion control agent, the traditional algorithms such as TCP Cubic [4] are forced to react
in a slow and passive manner to support both slow-paced and fast-paced conditions. Such a notion of
context splitting and branching for training specialized agents can be compared to earlier works in
multi-task RL. Specifically, Divide-and-Conquer [47] learns to separate complex tasks into a set of
local tasks, each of which can be used to learn a separate policy. Distral [48] proposes optimizing a
joint objective function by training a “distilled” policy that captures common behavior across tasks.

Hence, we propose to create n non-overlapping contexts for different network conditions, namely—
bandwidth, latency, queue size, and loss rate. We then train n individual RL agents in the PCC Gym
by exposing them only to their corresponding network conditions. We thus have a diverse set of
teachers which are each highly performant in their individual contexts. Following the same approach
as described in Section 3.1, each of the agents are distilled—each one called a branch. Finally,
during deployment, based on the inference network conditions, the branch with the closest matching
boundary conditions/contexts is selected and the corresponding symbolic policy is used.
Partitioning the Networking Contexts: A crucial point to note in the proposed branching pro-
cedure is to identify the most suitable branching context boundary values. In other words, the best
boundary conditions for grouping need to be statistically valid, and plain hand-crafted boundaries are

5



Yes

 

& 

Yes No

 

& 

Yes

Yes No

No

Yes
No

 

&  
& 

Start

Yes

 

&  
& 

No

Yes

 

& 

No

 

&  
& 

No

Yes

Yes No

No

No

Yes

Key 

      - Latency Ratio 

      - Send Ratio 

  - Sent Latency In�ation 
☐       - Latest Value 

 

& 

Yes No

1

2

3

4

5

6

7

8
9

10
11

Figure 4: A distilled symbolic policy from the baseline RL Agent in the PCC-RL Environment.
Condition nodes are represented as rectangular blocks and action nodes as process blocks.

not optimal. This is because we do not have ground truths of any of the network conditions [49], let
alone four of them together. Therefore, we first use a trained a RL agent on the default (maximal)
bounds of network conditions (hereinafter called the “baseline” agent). We then evaluate the baseline
agent on multiple regularly spaced intervals of bandwidth, latency, queue size, and loss rate and store
their corresponding return as well as observation trajectories. To create the optimal groupings, we
simply use KMeans [50] to cluster the data based on their return. Due to the inherent proportional
relation of difficulty (or in this case the ballpark of return) with respect to a network context, clear
boundaries for the branches can be obtained by inspecting the extremes of each network condition
within a specific cluster. Our experimentally obtained branching conditions are further discussed in
Section 4.2 and Table 1.

Branch Decider: Since the network context is not known during deployment, one needs a branch
decider module. The branch decider reuses cluster labels from the training stage for a K Nearest
Neighbors [51] classification. The light-weight distance-based metric is used to classify the inference-
time observation into one of the training groupings and thereby executing the corresponding branch’s
symbolic policy. Figure 3 illustrates our complete training and deployment techniques.

Lastly, in order to support branching effectively, we have yet another long-term tracking attribute that
stores a history of branches taken in order to smooth over any erratic bouncing between branches
which are in non-adjacent contexts.

4 Experimental Settings and Results
Next, we discuss the abstract rules uncovered by SR, and validate the branching contexts. In Sections
4.3, 4.4, and 4.5 we provide emulation results on Mininet [13], a widely-used network emulator that
can emulate a variety of networking conditions. Lastly in Section 4.6, we compare the compute
requirements and efficiencies of SymbolicPCC with conventional algorithms, RL-driven methods as
well as their pruned and quantized variants. More hyperparameter details are in our Appendix.

4.1 Interpreting the Symbolic Policies
The baseline symbolic policy distilled from the baseline RL agent is represented in its decision tree
form in Figure 4. One typical CC process presented by the tree is increasing the sending rate until the
network starts to “choke” and then balancing around that rate. This process is guided with a series
of conditions regarding to inflation and ratio signals, marked with circled numbers in Figure 4. The
detailed explanation is in the following.

Condition node 1 checks whether the vector statistic symbols are all stable—namely,
whether the latency inflation is close to zero, while latency ratio and send ratio are close to one.
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Table 1: The baseline network conditions and resultant branching boundary values (contexts) for
each branch after clustering. The return centroid refers to the return value at cluster center of that
specific branch.

Branch Return Centroid Bandwidth (pps) Latency (sec) Queue Size (packets) Loss Rate (%)

Baseline - 100 - 500 0.05 - 0.5 2 - 2981 0.00 - 0.05
Branch 1 95.84 100 - 200 0.35 - 0.5 2 - 2981 0.04 - 0.05
Branch 2 576.57 200 - 250 0.25 - 0.35 2 - 2981 0.02 - 0.03
Branch 3 1046.46 250 - 350 0.15 - 0.25 2 - 2981 0.02 - 0.03
Branch 4 1516.70 350 - 500 0.05 - 0.15 2 - 2981 0.00 - 0.02

The sending rate starts to grow if the condition holds. Condition node 2 identifies if the network
is in a over-utilized status slope_of (latency inflation) increasing as the key indicator. It
the condition is true, the acceleration of sending rate will be reduced appropriately. On the other
hand, condition node 3 is activated when the initial sending rate is too low or has been reduced
extensively due to 2 . 4 is evaluated when major network congestion starts to occur due to increased
sending rates from the earlier condition nodes. It checks both latency inflation and latency ratios
in an increasing state. Its child nodes start reducing the sending rates and also flip the internal
state attribute to 1. The latter is used to track if the agent is recovering from network congestion.
On the “False” side of 6 (i.e. internal state = 1), 7 and 8 realize two stages of recovery,
where the latency inflation ratio starts plateauing and then starts reducing. 11 indicates that stable
conditions have been achieved again and the agent is at an optimal sending rate. The internal
state is flipped back again to 0 after this recovery.

4.2 Inspecting the Branching Conditions

As discussed in Section 3.3, a light-weight clustering algorithm divides the network conditions into
multiple non-overlapping subsets. Table 1 summarizes the obtained boundary values. The baseline
agent is trained on all possible bandwidth, latency, queue size, and loss rate values, as depicted in
the first row. During the evaluation, bandwidth, latency, and loss rate are tested on linearly spaced
values of step sizes 50, 0.1, and 0.01, while queue sizes are exponentially spaced by powers of
e2 respectively. The return of the saved roll-outs are clustered using K-Means Clustering, and the
optimal cluster number is found to be 4 using the popular elbow curve [52] and silhouette analysis
[53] methods. By observing the maximum and minimum of each network condition individually in
the 4 clusters, respective boundary values are obtained. A clear relation discovered is that higher
bandwidths and lower latencies are directly related to higher baseline return.

Remark 1: Exceptions for non-overlapping contexts. It is also to be noted that no such trend was
found between the queue size and return, and hence all the 4 resultant branches were given the same
queue size. A similar exception was made for the loss rates of Branches 2 and 3.

Remark 2: Interpreting the symbolic policies branches. All the 4 distilled symbolic trees from the
specialized RL agents possess high structural similarity and share similar governing rules as to that
of the baseline agent in Section 4.1. They majorly differ in the numerical thresholds and magnitudes
of action nodes, i.e., by varying their “reaction speeds” and “reaction strengths”, respectively.

4.3 Emulation Performance on Lossy Network Conditions

The ability to differentiate between congestion-induced and random losses is essential to any PCC
agent. Figure 5a1 shows a 25-second trace of throughput on a link where 1% of packets are
randomly dropped [54]. As the link’s bandwidth is set to 30 Mbps, the ideal congestion control
would aim to utilize it fully as depicted by the gray dotted line. Baseline SymbolicPCC shows near-
ideal performance with its branched version pushing boundaries further. In contrast, conventional
algorithms, especially TCP CUBIC [4], repeatedly reduces its sending rates as a response to the
random losses. Quantitative measures of mean square error with respect to the ideal line are provided

1Interestingly, the figure shows that BBR has rate drop around 11th second. This is a limitation of the BBRv1
design—it reduces sending rate if the min_rtt has not been seen in 10s, which is triggered because the RTT in
our setup is very stable.
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in Table 2 as “Lossy ∆2
opt.”. This result proves that SymbolicPCC can effectively differentiate

between packet loss caused by randomness and real network congestion.

4.4 Emulation Performance under Network Dynamics
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Figure 5: Emulation on different conditions.

Unstable network conditions are common
in the real world and this test benchmarks
the agent’s ability to quickly respond to
network dynamics. Figure 5b shows our
symbolic agent’s ability to handle such
conditions. The benefits of our novel
branching algorithm, as well as switching
between agents specializing in their own
network context, is clearly visible from
faster response speeds. In this case, the
link was configured with its bandwidth al-
ternating between 20 Mbps and 40 Mbps
every 5 seconds with no loss. Quantita-
tive results from Table 2 show the mean
square error with respect to the ideal CC
as “Unstable ∆2

opt.”.

4.5 Link
Utilization and Network Sensitivities
Link utilization as measured from the
server side is defined as the ratio of av-
erage throughput over the emulation pe-
riod to the available bandwidth. A sin-
gle link is first configured with defaults
of 30 Mbps capacity, 30 ms of latency, a
1000-packet queue, and 0% random loss.
To measure the sensitivity with respect to
a specific condition, it is independently
varied while keeping the rest of the con-
ditions constant. An ideal CC preserves
high link utilization over the complete range of measurements. From Figure 6, it is observed that our
branched SymbolicPCC provides near-capacity link-utilization at most tests and shows improvement
over any of the other algorithms.

4.6 Efficiency and Speed Comparisons
Since TCP congestion control lies on the fast path, efficient responses are needed from the agents.
Due to its GPU compute requirements and slower runtimes, RL-based approaches such as Aurora are
constrained in their deployment settings (e.g., userspace decisions). On the other hand, our symbolic
policies are entirely composed of numerical operators, making them structurally and computationally
minimal. From our results in Table 2, adding the branch decider incurs a slight overhead as compared
to the non-branched counterpart. Nevertheless, it is preferable due to its increased versatility in
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loss rate. Higher values are better.
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Table 2: Efficiency and speed comparison of congestion control agents. Note that the ideal values for
Lossy Thpt. and Lossy ΣThpt. are 30 and 750 respectively (refer Figure 5a).

Algorithm Type FLOPs (↓) Runtime (µs) (↓) Lossy Thpt. (↑) Lossy ΣThpt. (↑) Lossy ∆2
opt. (↓) Oscillating ∆2

opt. (↓)

TCP CUBIC Conventional - < 10 1.27 33.01 823.02 126.07
PCC Vivace Conventional - < 10 8.72 226.68 440.55 186.76
BBR Conventional - < 10 25.76 669.91 92.96 123.82

Aurora (baseline) RL-Based 1488 864 27.55 716.20 26.29 53.22
Aurora (50% pruned) RL-Based 744 781 27.03 709.20 27.37 61.85
Aurora (80% pruned) RL-Based 298 769 26.42 696.86 48.13 79.80
Aurora (95% pruned) RL-Based 74 703 25.97 682.94 83.66 103.53
Aurora (quantized) RL-Based 835 810 22.54 601.78 142.92 88.45

SymbolicPCC (baseline) Symbolic 48 23 28.40 738.46 7.29 85.03
SymbolicPCC (branched) Symbolic 63 37 28.55 742.46 4.14 43.83

different network conditions, as validated by Mininet emulation results. SymbolicPCC achieves 23×
faster execution times over Aurora, being reasonably comparable to PCC Vivace and TCP CUBIC.
We also compare global magnitude pruned and dynamically quantized versions of Aurora. Although
these run faster than their baseline versions, they come at the cost of worse CC performance.

5 Discussions and Potential Impacts of SymbolicPCC
Interpretability – a universal boon for ML? In the PCC domain, the model interpretability is
linked to the wealth of domain knowledge. By distilling a black-box neural network into white-box
symbolic rules, the resulting rules are easier for the network practitioners to digest and improve.

Table 3: Decoupling: symbolic alone helps
generalization.

Model Avg. return (↑)

Aurora 832
Black-box dist. (50%) from Aurora 641
White-box dist. from above model 687

It may be somewhat surprising that the distilled sym-
bolic policy outperforms Aurora. A natural question
arises if it is due to a generalization amplification that
sometimes happens for distillation in general or if
it is due to symbolic representation. We hypothesize
that the performance of a symbolic algorithm boils
down to the nature of the environment it is employed
in. Congestion control is predominantly rule-based,
with deep RL models brought to devise rules more
complex and robust than hand-crafted ones through iterative interaction. It is only natural to observe
that symbolic models outperform such PCC RL models when the distillation is composed of a rich
operator space and dedicated policy denoising and pruning stages to boost their robustness and
compactness further. To justify this, in Table 3 we analyze the performance obtained by decoupling
distillation and symbolic representation: we first distill a black-box NN half the size of Aurora
(“typical KD”) and then further perform symbolic distillation on it.

On possible limitations. We have specifically focused on TCP congestion control as the problem
setting,—e.g., the return clustering and reward design. Specific modifications are needed before the
approach could be applied to other RL domains.

6 Conclusion and Future Work
This work studies the distillation of NN-based deep reinforcement learning agents into symbolic
policies for performance-oriented congestion control in TCP. Our branched symbolic framework has
better simplicity and efficiency while exhibiting comparable and often improved performance over
their black-box teacher counterparts on both simulation and emulation environments. Our results
point towards a fresh direction to make congestion control extremely light-weight, via a symbolic
design. Our future work aims at more integrated neurosymbolic solutions and faster model-free
online training/fine-tuning for performance-oriented congestion control. Exploring the fairness of
neurosymbolic congestion control is also an interesting next step. Besides, we also aim to apply
symbolic distillation to a wider range of systems and networking problems.
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