
A Equivalence of G-BOX and Dasgupta et al. [4]

In our notation, the model in Dasgupta et al. [4] would have score function

FD-BOX((x
�
, x

+), (y�, y+); (⌧, ⌫)) :=
LSE⌫ (�LSE⌧ (�x

+
,�y

+)� LSE⌧ (x�
, y

�)� 2⌫�, 0)

LSE⌫(y+ � y� � 2⌫�, 0)

where � is the Euler-Mascheroni constant.

As presented in Dasgupta et al. [4], D-BOX used a single temperature � = ⌧ = ⌫, and derived this
score function as an approximation to a ratio of expected volumes of intervals whose endpoints were
modeled by Gumbel random variables. Gumbel random variables are typically parameterized by a
location and scale, and Dasgupta et al. [4] interpreted the parameters x�

, y
� (resp. x+

, y
+) as the

location parameters for GumbelMax (resp. GumbelMin) distributions with scale �.
Remark 1. Although the model was proposed and analyzed in Dasgupta et al. [4] using a single

temperature parameter �, the authors do use separate ⌧ and ⌫ parameters when implementing the

model, and so we adopt that formulation when defining FD-BOX above.

We claim D-BOX and G-BOX are equivalent, in the following sense.
Proposition 2. Given any ⌫ � 0 there exists a bijection  on the set of functions {V ! R2d

} such

that

EG-BOX(u, v; (�), (⌧, ⌫)) = ED-BOX(u, v;�, (⌧, ⌫)), (11)
and, being a bijection,

EG-BOX(u, v;�, (⌧, ⌫)) = ED-BOX(u, v; 
�1(�), (⌧, ⌫)). (12)

Proof. Observe that for any a, b, c 2 R and t � 0,

LSEt(a+ c, b+ c) = LSEt(a, b) + c.

Then

FG-BOX((x
� + ⌫�, x

+
� ⌫�), (y� + ⌫�, y

+
� ⌫�); (⌧, ⌫))

=
LSE⌫ (�LSE⌧ (�x

+ + ⌫�,�y
+ + ⌫�)� LSE⌧ (x� + ⌫�, y

� + ⌫�), 0)

LSE⌫(y+ � ⌫� � y� � ⌫�, 0)

=
LSE⌫ (�LSE⌧ (�x

+
,�y

+)� LSE⌧ (x�
, y

�)� 2⌫�, 0)

LSE⌫(y+ � y� � 2⌫�, 0)

= FD-BOX((x
�
, x

+), (y�, y+); (⌧, ⌫)).

Therefore, as introduced in Section 2, if we label the output of � using d pairs �(u)i =
(�(u)�i ,�(u)

+
i ) and define  (�) to be a mapping from V ! R2d such that

 (�)(u)i = (�(u)�i + ⌫�, �(u)+i � ⌫�), (13)

the calculations above prove (11), and the proof of (12) is similar.

Remark 2. Note that the mean of X ⇠ GumbelMax(µ,�) is µ + ��, and similarly the mean

of X ⇠ GumbelMin(µ,�) is µ � ��. As mentioned above, in the setting where � = ⌧ = ⌫ the

parameters of D-BOX can be interpreted as the location parameters for Gumbel distributions, and

thus (13) simply takes the location parameters to their mean. Hence, in the case where ⌧ = ⌫, the

G-BOX model can simply be interpreted as using the mean of the Gumbel distributions as opposed to

the location parameter. This leads to a slight simplification in the score function by removing the 2⌫�,

which has minor computational and mathematical benefits. The more conceptual benefit, however, is

that it unifies BOX, G-BOX, and T-BOX.

B Representational Capacity of G-BOX

In this section we prove any graph capable of being represented by BOX is also capable of being
represented by G-BOX, regardless of the temperature hyperparameters. The proof involves two
components:
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1. The representational capacity of G-BOX depends not on the absolute values of ⌧ and ⌫, but
rather their ratio.

2. The energy of BOX can be approximated by G-BOX using small enough ⌧ and ⌫.
Proposition 3. Let ⌧1, ⌫1 > 0 and � : V ! R2d

be given. Then for any ⌧2, ⌫2 > 0 such that
⌧2
⌫2

= ⌧1
⌫1

the function  (�) : V ! R2d
for which  (�)(u)±i = ⌫2

⌫1
�(u)±i is such that

EG-BOX(u, v;�, (⌧1, ⌫1)) = EG-BOX(u, v; (�), (⌧2, ⌫2)). (14)

Proof. The proof is by direct calculation. First, note that for any t, c > 0 we have for any vector
x 2 Rn

LSEt(cx) = t log

 
nX

i=1

exp
�
cxi
t

�
!

= c(t/c) log

 
nX

i=1

exp
⇣

xi
t/c

⌘!
= cLSEt/c(x).

In particular, for c = ⌫2
⌫1

= ⌧2
⌧1

(where the latter equality follows from the premise of the proposition)
we have for any a, b 2 R

LSE⌧2(ca, cb) = cLSE⌧1(a, b) and LSE⌫2(ca� cb, 0) = cLSE⌫1(a� b, 0).

Thus

FG-BOX((cx
�
, cx

+), (cy�, cy+); (⌧2, ⌫2))

=
LSE⌫2 (�LSE⌧2(�cx

+
,�cy

+)� LSE⌧2(cx
�
, cy

�), 0)

LSE⌫2(cy
+ � cy�, 0)

=
LSE⌫2 (�cLSE⌧1(�x

+
,�y

+)� cLSE⌧1(x
�
, y

�), 0)

LSE⌫2(cy
+ � cy�, 0)

=
cLSE⌫1(�LSE⌧1(�x

+
,�y

+)� LSE⌧1(x
�
, y

�), 0)

cLSE⌫1(y
+ � y�, 0)

= FG-BOX((x
�
, x

+), (y�, y+); (⌧1, ⌫1)),

which proves (14).

The following lemma will be helpful in proving the next part.

Lemma 1. For all y > 0, given " > 0 and some M 2 R, there exists � > 0 such that for all

0 < ⌫ < �, for all x < M we have

����
LSE⌫(x, 0)

LSE⌫(y, 0)
�

max(x, 0)

y

���� < ".

Proof. Note that LSE⌫(x, 0) is monotonically increasing in x for any ⌫ � 0, and is always greater
than max(x, 0). Furthermore,

|LSE⌫(x, 0)�max(x, 0)| = LSE⌫(x, 0)�max(x, 0)  ⌫ log 2

as it obtains it’s maximum when x = 0 (which can be observed by inspection of the signs of the
derivative). Then for all x < M we have
����
LSE⌫(x, 0)

LSE⌫(y, 0)
�

max(x, 0)

y

���� <
����
LSE⌫(x, 0)

LSE⌫(y, 0)
�

LSE⌫(x, 0)

y

����+
����
LSE⌫(x, 0)

y
�

max(x, 0)

y

���� .

< LSE⌫(M, 0)

����
1

LSE⌫(y, 0)
�

1

y

����+
⌫ log 2

y
. (15)

Now (15) does not depend on x, and tends to 0 as ⌫ ! 0, which completes the proof.

Proposition 4. Given a mapping � : V ! R2d
where �(u)+i > �(u)�i for each u 2 V , i 2

{1, . . . , d}, we have that for all u, v 2 V ,

lim
(⌧,⌫)!(0,0)

EG-BOX(u, v;�, (⌧, ⌫)) = EBOX(u, v;�). (16)
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Proof. Given fixed x
�

< x
+
, y

�
< y

+, let f(⌧) = �LSE⌧ (�x
+
,�y

+) � LSE(x�
, y

�), and
z = min(x+

, y
+)�max(x�

, y
�) = lim⌧!0 f(⌧). Then

��FG-BOX((x
�
, x

+), (y�, y+); (⌧, ⌫))� FBOX((x
�
, x

+), (y�, y+))
��

=

����
LSE⌫(f(⌧), 0)

LSE⌫(y+ � y�, 0)
�

max(z, 0)

y+ � y�

����

<

����
LSE⌫(f(⌧), 0)

LSE⌫(y+ � y�, 0)
�

max(f(⌧), 0)

y+ � y�

����+
����
max(f(⌧), 0)

y+ � y�
�

max(z, 0)

y+ � y�

���� . (17)

Given " > 0, choose �1 such that 0 < ⌧ < �1 implies the second summand in (17) is bounded by
"/2. Then f(⌧) is bounded, and we can apply Lemma 1 to choose �2 such that 0 < ⌫ < �2 implies
the first summand is less than "/2. Thus taking � = min(�1, �2) completes the proof on the level of
the per-dimension score functions, and thus (16) follows by continuity.

We are now ready to prove the main theorem.

Theorem 1. Given a threshold T , temperature hyperparameters ⌧, ⌫, there exists and a bijection  

on the set of parameterizations {V ! R2d
} such that for all u, v 2 V ,

EG-BOX(u, v; (�), (⌧, ⌫)) < T () EBOX(u, v;�) < T.

Proof. Let " > 0 be a number we will specify later. Then by Proposition 4, for each (u, v) 2 V
2 we

have some �(u,v) > 0 such that

⌧, ⌫ 2 (0, �(u,v)) =) |EG-BOX(u, v;�, ⌧, ⌫)� EBOX(u, v;�)| < ". (18)

Let
� = min

(u,v)2V 2
�(u,v), ⌧

0 =
�⌧

2max(⌧, ⌫)
, ⌫

0 =
�⌫

2max(⌧, ⌫)
.

Since ⌧ 0

⌫0 =
⌧
⌫ we can apply Proposition 3, which guarantees the existence of a function  such that

EG-BOX(u, v; (�), (⌧
0
, ⌫

0)) = EBOX(u, v;�, (⌧, ⌫)).

Noting that ⌧ 0, ⌫0 2 (0, �), we can combine this with (18), and find

EBOX(u, v;�)� " < EG-BOX(u, v; (�), (⌧, ⌫)) < EBOX(u, v;�) + ".

Let
T1 = max

(u,v)2E
EBOX(u, v;�), T2 = min

(u,v)/2E
EBOX(u, v;�),

and set " = min(T � T1, T2 � T ). Then if (u, v) 2 E we have

EG-BOX(u, v; (�), (⌧, ⌫)) < T1 + T � T1 = T,

and if (u, v) /2 E we have

EG-BOX(u, v; (�), (⌧, ⌫)) > T2 � (T2 � T ) = T,

which completes the proof.

C Representing Cycles with Box Embeddings

Proposition 1 If G is a directed graph which is the union of a chordless cycle and one reverse edge,

G-BOX can model G in 2 dimensions.

Proof. Given a G = {V, E}, E = {(1, 2), (2, 3), (3, 4), (4, 5), , (N � 1, N), (N, 1)} [ {(1, N)}
When N = 2, it is trivial since two boxes can be equal or overlap with each other largely (as shown
in Fig 3a). When N = 3, we can construct boxes as shown in Fig 3b, where EBOX(1, 2) = � log 0.5,
EBOX(2, 3) = � log 1/3, EBOX(3, 1) = � log 0.375, EBOX(2, 1) = � log 0.25, EBOX(3, 2) =
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Figure 3: Visualization of 2D box to represent a graph with chordless cycles and one reverse edge.
Diagram 3a can represent a 2-node cycle (1 $ 2). Diagram 3b can represent a 3-node cycle with a
reverse edge (1 ! 2 ! 3 $ 1). Diagram 3c is when there are even number of nodes in the graph.
And diagram 3d is is when the number is odd.

� log 0.25, EBOX(1, 3) = � log 1.0. Therefore if T = � log 0.3, they can represent a graph
1 ! 2 ! 3 $ 1.

When N > 3 and N is an even number, we can construct a 2-d BOX as in Figure 3c. Let the
area of �(i) be V (�(i)), the area of intersection box between two nodes that are connected is
�i = V (�(i) \ �(i + 1)), i  N � 1, and let V (�(N) \ �(1)) = C�N�1. We align the boxes as
shown in Figure 3c with constant width and decreasing heights such that V (i+1) = ↵V (i) for some
value ↵. Then for large enough ↵, there exists arrangement of boxes as shown in Figure 3c such that
�i+1 = ↵�i, i  N � 2 and C = 1

↵N�1 . Apart from boxes N/2 and N , this is straightforward, as
their decreased heights will already amount to multiplying the size of the intersection by ↵. For the
boxes on the endpoints, we leverage the fact that we are not constrained to a fixed width to accomplish
this. Then for T = � log �1

V (�(1)) we have

8i 2 {1, . . . , N � 1}, EBOX(i, i+ 1) = � log
�1

↵V (�(1))
< T

EBOX(N, 1) = � log
�1

↵V (�(1))
< T EBOX(1, N) = � log

�1

↵NV (�(1))
< T,

and for (u, v) /2 E , EBOX(u, v) � T . The argument for N odd is similar, using an arrangement as
shown in Figure 3d.

Given Appendix B, this proof also applies to G-BOX.

D Dimensionality Bounds for Binary Code Models

We start by proving the following lemma, which implies that any directed graph on 2 nodes can be
embedded using boxes in 1-dimension with any threshold T > 0.
Lemma 2. Given T > 0, there exist x

�
, x

+
, y

�
, y

+
2 R such that

� logFBOX((x
�
, x

+), (y�, y+)) < T < � logFBOX((y
�
, y

+), (x�
, x

+)).
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Proof. The proof is a direct construction; take

y
� = x

� = 0, x
+ = 1, and y

+ = e
�2T

.

Then
max(min(1, e�2T )�max(0, 0), 0) = e

�2T
,

and thus
FBOX((0, 1), (0, e

�T/2)) = 1, and FBOX((0, e
�2T ), (0, 1)) = e

�2T

which implies the desired result.

We then strengthen the statement of Theorem 6 to apply to an arbitrary threshold.
Theorem 7. Given a directed graph G = (V, E), any temperatures ⌧, ⌫ � 0, and any threshold

T > 0, there exists a parameterization � : V ! R2d
⇥ [0, 1]d with d = O(|V|2) for which

EVBC-BOX(u, v;�, (⌧, ⌫)) < T () (u, v) 2 E .

Proof. Given a graph G = (V, E) let H = {{u, v} | u, v 2 V, u 6= v}. We will construct a
VBC-BOX model in d = |H| dimensions. For convenience, index the dimensions using h 2 H , and
let �(u)⇧h = 0 if u /2 h. Thus when evaluating edge (u, v) or (v, u), dimension h = {u, v} is the
only dimension whose score may not be equal to 1.

Lemma 2 implies any graph on 2 nodes can be embedded using threshold T in one dimension,
and Theorem 1 implies this is also true for G-BOX for any setting of temperatures, completing the
proof.

Theorem 8. Let G = (V, E), and let ⌧, ⌫ � 0 be given temperature hyperparameters. Let VF be the

minimum feedback vertex set, EF = E \ V
2
F , and GF = (VF , EF ). Then for any temperatures ⌧, ⌫

there exists a threshold T > 0 and a parameterization � : V ! R2d
⇥ [0, 1]d such that

EVBC-BOX(u, v;�, (⌧, ⌫)) < T () (u, v) 2 E ,

where d = O((�F + 2) log(|VF |) + |VC |
2), with �F the maximum degree of GF , and

VC = {u | (u, v) 2 E , u /2 VF or v /2 VF }.

Proof. Theorem 2 implies that GF can be embedded using G-BOX with the given temperature
hyperparameters ⌧, ⌫ in dimension at most dF = O((�F + 2) log |VF |). Let �F : VF ! R2dF be
the parameterization for this embedding, and T the threshold on the energy. Now let

E¬F = {(u, v) 2 V
2
| u /2 VF or v /2 VF },

and define E1 = EF [ E¬F and G1 = (V, E1). We can extend �F to a VBC-BOX parameterization
�1 : V ! R2dF ⇥ [0, 1]2dF as follows:

�1(u)i =

⇢
(�F (u)

�
i ,�F (u)

+
i , 1) if u 2 VF ,

(0, 1, 0) otherwise.

This parameterization is such that

EVBC-BOX(u, v;�F , (⌧, ⌫))

8
<

:

= 0 if (u, v) 2 E¬F ,

< T if (u, v) 2 EF ,

> T otherwise.
(19)

Now let EC = E \ E¬F , and note that these edges are only between nodes in VC . Define GC =
(VC , EC), which, by Theorem 7, can be embedded with threshold T in dC = O(|VC |

2) dimensions.
Let �C : VC ! R2dC be the associated parameterization.

Now let G2 = (V, EC [ (VF ⇥ VF )), then extend �C to a parameterization �2 : V ! R2dC as
follows:

�2(u)i =

⇢
(�C(u)

�
i ,�C(u)

+
i , 1) if u 2 VC ,

(0, 1, 0) otherwise.
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For this parameterization, we have

EVBC-BOX(u, v;�2, (⌧, ⌫))

8
<

:

= 0 if (u, v) 2 VF ⇥ VF ,

< T if (u, v) 2 EC ,

> T otherwise.
(20)

The desired VBC-BOX embedding � for G with d = dF + dC = O((�F + 2) log(|VF |) + |VC |
2)

dimensions now be created by concatenating �1 and �2, for which

EVBC-BOX(u, v;�, (⌧, ⌫)) = EVBC-BOX(u, v;�1, (⌧, ⌫)) + EVBC-BOX(u, v;�2, (⌧, ⌫)). (21)

Since EF \ EC = ;, inspecting (19) and (20) we have that

EVBC-BOX(u, v;�(⌧, ⌫)) < T () (u, v) 2 (EC \ E¬F ) [ (EF \ (VF ⇥ VF )) = E .

E Data Statistics

Google [16] (15,763 nodes and 171,206 edges) is a hyperlink network from pages within Google’s
sites. Nodes represent pages and directed edges represent hyperlink between pages. Epinions [19]
(75,879 nodes and 508,837 edges) is a trust network from the online social network Epinions. Nodes
represent users and directed edges represent trust between users. CORA [24] (23,166 nodes and
91,500 edges) is a citation network of academic papers. Nodes represent papers and directed edges
represent the citation relationships between papers. Twitter [5] (465,017 nodes and 834,797 edges) is
a social network. Nodes represent users and directed edges represent following relationships between
users. DREAM5 [12] is a gene regulatory networks across organisms. In silico network has 1,565
nodes and 4,012 edges. E. Coli network has 1,081 nodes and 2,066 edges. S. cerevisiae network has
1,994 nodes and 3,940 edges. These networks contain a relatively small number number of cycles.

F Link Prediction on DREAM5 Datasets

In Table 4, we compared with a recent work that embeds graphs into pseudo-Riemannian mani-
folds [23], along with other baselines such as Euclidean and Hyperboloid embeddings on DREAM5
datasets. Models are evaluated using Average Precision (AP). Results show that Binary Code Box
significantly out-performs baseline methods on In Silico and S. Cerevisiae datasets, while showing
competitive performance on the E. Coli graph. It can also be observed that Gumbel Box performs
competitively on these graphs, which are almost acyclic.
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Table 4: Link prediction on Experiments on DREAM5 Datasets. Following Sim et al. [23], we
use median Average Precision among 5 test sets with different negative samples as evaluation metric,
and we sample 4 times the negatives by randomly corrupting one of the node in each positive edges
in the test set. We compare our model with other baselines using 10, 50, 100 number of parameters
per vertex. Cyclicity and transitivity of each graph are shown in the table. Bold numbers perform the
best, and underscored numbers perform the best in all non-box models. For more details of baselines
models, please refer to [23].

.

Methods In Silico E. Coli S. Cerevisiae
Cyclicity = 0.01 0.01 0.01

Transitivity = 0.25 0.40 0.17

# parameters / vertex 10 50 100 10 50 100 10 50 100

Euclidean + FD 39.7 39.8 34.8 40.2 44.5 49.0 40.2 44.5 49.0
Hyperboloid + FD 50.8 50.9 52.5 52.7 53.6 50.6 46.5 48.8 47.9
Minkowski + TFD 51.2 57.7 58.0 63.4 67.7 68.2 46.4 52.7 54.0
Anti de-Sitter + TFD 51.9 55.6 56.0 61.8 63.3 63.0 44.9 47.5 49.4
Cylindrical Minkowski + TFD 56.3 58.9 61.0 62.3 65.8 63.2 46.8 53.4 54.6
Vector(Ours)* 56.7 59.2 59.8 56.0 58.1 59.6 51.2 55.2 55.2

G-BOX 62.3 66.1 66.6 65.1 66.5 68.0 55.0 58.6 59.5
GBC-BOX 62.0 66.4 68.8 65.4 68.3 65.9 55.1 59.4 59.7
VBC-BOX (dbin < d) 58.4 66.5 66.4 62.6 67.3 66.1 52.1 59.6 58.3
VBC-BOX (dbin = d) 55.3 66.0 64.9 58.1 65.8 65.3 55.3 57.5 57.7

G Hyper-parameter Search

We follow the setting from Boratko et al. [2] for hyper-parameter search strategies in graph re-
construction experiments. Table 5 shows ranges of Bayesian hyper-parameter search for our link
prediction experiments.

Table 5: Hyper-parameter range of Bayesian optimization for link prediction.

Hyper-Parameter Range

learning rate 1e-5 ⇠ 1e-2
batch size 1024 (Table 3), 64 (Table 4)
max epochs 16, 32, 64, 128
⌧ 0.001 ⇠ 0.1
⌫ 0.1 ⇠ 10.0
wr 10�8 ⇠ 1.0
k 1 ⇠ 10
dbin 0 ⇠ d

H Case Study

In this section, we visualize how binary codes work to preserve transitivity and cyclicity together.

As shown in Figure 4, our analysis is over two synthetic graphs. For fair comparison, we embed both
graphs into 3 dimensional G-BOX and 2 dimensional VBC-BOX. The graph on the top is formed by
a 7-node directed chain (vertex 0 to vertex 6) with full transitive closures and one additional node
connecting the chain into a cycle. It shows that Gumbel Box can model transitive closures well,
but cannot model the cycle while Binary Code Box can handle both. The latter models transitive
closures by sharing full box space from node 0 to node 5, and then models the cycle by selecting
sub-dimensions in node 6 and 7. The graph on the bottom is formed by a chain of triangle cycles. It
shows that Gumbel Box cannot handle cycles, and generates an acyclic graph. In contrast, binary
code boxes can handle this graph nicely with much lower errors by alternately switching among
sub-spaces within each triangle cycles.
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Figure 4: Two directed graphs and reconstructed graphs by G-BOX (3D) and VBC-BOX (2D). The
upper graph is a directed cycle with almost all transitive closures. The bottom graph is a chain of
directed triangle cycles. Blue colored vertices have binary codes of [1,0], pink colored vertices have
binary codes of [0,1], and grey colored vertices have binary codes of [1, 1].

In Fig. 5, we visualize how GBC-BOX handles cycles and transitive edges. We compare GBC-BOX
with 2 dimensional G-BOX. Fig. 5a shows that when representing a DAG, GBC-BOX learns to
utilize all dimensions in both binary code vectors and leverages box containment to model edge
directions. Fig. 5b shows that given a pure cycle, GBC-BOX learns “skinny” boxes to model
0 ! 1, 2 ! 3 using the vertical axis, and the rest of the edges in the horizontal axis. Fig. 5c shows a
more complicated graph and our model also learns to split the graph into 0 ! 1, 1 ! 2, 0 ! 2 in the
horizontal axis, and 2 ! 3, 3 ! 0, 2 ! 0 in the vertical axis. In comparison, the original G-BOX
struggles with cycles and cannot reconstruct ground truth graphs from 5b and 5c 7.

7The 0th and 2nd boxes cover almost same regions in the second row of Figure 5c
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(a) (b) (c)

Figure 5: Visualization of graph reconstruction using 2 dimensional G-Box and GBC-Box. In
figure 5a, the ground truth graph is a DAG (an out-tree with transitive closure). In figure 5b, we have
a pure cycle. In figure 5c, we have three cycles nested together, forming two 2-hop transitive closures.
We visualized 2-D boxes trained via gradient descent and binary cross entropy loss with ⌧ = 0.001
and ⌫ = 0.5, and learning rate 0.01.
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