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Abstract

Modeling directed graphs with differentiable representations is a fundamental
requirement for performing machine learning on graph-structured data. Geometric
embedding models (e.g. hyperbolic, cone, and box embeddings) excel at this task,
exhibiting useful inductive biases for directed graphs. However, modeling directed
graphs that both contain cycles and some element of transitivity, two properties
common in real-world settings, is challenging. Box embeddings, which can be
thought of as representing the graph as an intersection over some learned super-
graphs, have a natural inductive bias toward modeling transitivity, but (as we prove)
cannot model cycles. To this end, we propose binary code box embeddings, where
a learned binary code selects a subset of graphs for intersection. We explore several
variants, including global binary codes (amounting to a union over intersections)
and per-vertex binary codes (allowing greater flexibility) as well as methods of
regularization. Theoretical and empirical results show that the proposed models
not only preserve a useful inductive bias of transitivity but also have sufficient
representational capacity to model arbitrary graphs, including graphs with cycles.

1 Introduction

Many real-world networks, such as social media interactions, paper citations, web links, and ontolo-
gies, are naturally represented as directed graphs [14, 6]. Two common properties of these graphs
are transitivity and cyclicity. A cycle in a directed graph is a directed path starting from a vertex and
traversing back to itself. For example, “organic matter” ! “worm” ! “fish” ! “cat” ! “organic
matter” is a food cycle. Transitivity in a directed graph is the property that if there exists a directed
path from u to v, then edge (u, v) also exists. For example, if “cat is mammal” and “mammal is
animal” are true, “cat is animal” is true.

In the age of deep learning, it is necessary to determine a way to capture the salient information from
a graph via some differentiable parameterization. To this end, various graph embedding methods have
been proposed. Some work, such as DeepWalk [17] and Node2vec [8], maps each vertex to a vector
in Euclidean space. These methods perform a low-rank factorization of the adjacency matrix or the
graph Laplacian [18] and are designed to model undirected graphs. These can be extended to capture
edge asymmetry in directed graphs by using two separate representations - one for source, and one
for target - either unconstrained or related with one another via some function. It has been proven
that using a dot product or distance-based energy function, separate source and target vectors can
encode any graph (given sufficient dimension) [1], including graphs with cycles. When the source
and target representations live in separate spaces, however, relationships which result from following
directed paths (e.g., transitivity) are harder to encode. For example, given edge (i, j) and (j, k), a
vector model can learn to make |si � tj |2 ⇡ 0 and |sj � tk|2 ⇡ 0, where si, sj are source vectors and
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Figure 1: Demonstration of using GBC-BOX to represent a directed graph. Firstly, the model learns
d(= 3) interval embeddings, each representing a directed graph. Then, there are k(= 2) binary code
vectors, each of which selects a subset of the interval embeddings to combine into a box embedding
(in this case, 2-D and 1-D) subspace. In each subspace, box embeddings can represent a DAG as
shown in the bottom of the diagram. Finally, the target graph can be reconstructed as a union over
DAGs from all subspaces.

tj , tk are target vectors. However, the condition |si � tk|2 ⇡ 0 which would represent the transitive
edge (i, k) has no encouragement to hold, as the source and target spaces are entirely disconnected.

Transitivity cannot be trivially injected via symbolic rules, e.g., adding all transitive edges to a directed
graph. This is because most real world edges are not strictly transitive: the degree of transitivity is
“soft”, and may hold locally but not globally, or vary for different edge types or sets of nodes in the
graph. Some work, such as HOPE [15] and APP [29], attempts to capture transitivity by factorizing
high-order proximity signals instead of the graph Laplacian. This branch of work is limited by the
imperfection of high-order proximity scores (for example, these scores do not model cycles well).
ATP [25] resolves this by breaking cycles in the graph, accepting a loss of graph information.

An alternative approach is to represent nodes in an embedding space with additional geometric
structure. For example, hyperbolic embeddings leverage the negative curvature of hyperbolic space to
provably model trees with less distortion [22]. Region-based embeddings such as box embeddings [28,
11, 3] and hyperbolic entailment cones [13, 7, 21, 9] have a natural bias toward modeling transitivity.
These region-based embeddings can capture the transitivity in a directed graph without relying
on high-order proximity scores, using only the original adjacency matrix as supervision. Previous
work [2] proved that box embeddings can model any directed acyclic graph (DAG). A natural question,
therefore, is whether box embeddings can capture graphs with cycles. As we will show in Section 2,
this is not the case.

In this work, we propose binary code box embeddings
1, a generalization of box embeddings to

represent arbitrary directed graphs. The model is motivated by the intuition that a given directed graph
can be regarded as a union of multiple sub-graphs, where each sub-graph is acyclic, and therefore
can be represented using boxes. We introduce the concept of a “binary code” which selects these
sub-graphs.

Our contributions lie in three folds:

• We propose global (GBC-BOX) and per-vertex (VBC-BOX) binary code box models, a
generalization of box embeddings capable of representing arbitrary directed graphs.

1Our code is available at https://github.com/iesl/geometric_graph_embedding.
2
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• We analyze theoretically the limitations of existing box embedding models when represent-
ing cycles. We also prove that, given sufficient dimensions, both binary code box models
can model any directed graph. This establishes that, in theory, the representational capacity
of these models is not limited.

• We evaluate our model on graph reconstruction and link prediction tasks with various
synthetic graphs and real world graphs, and observe that our proposed methods perform the
best in almost all scenarios, especially when a graph has strong cyclicity and transitivity.

2 Background

Given a simple2 directed graph G with vertices and edges (V, E), we seek to represent the vertices
using some mapping � : V ! Rd, and an energy function E : V ⇥ V ! R+ providing a score (based
on � and, perhaps, some hyperparameters �) which is interpreted as the negative log probability of
edge existence, E(u, v;�,�) = � logP ((u, v) 2 E). We can view these probabilities as a weighted
graph, however in practice it is often necessary to make a hard decision on edge existence, which is
done by choosing a (global) threshold T and binarizing the output. We denote the energy function
for a particular model M with a subscript, i.e. EM, and say that M is capable of modeling a graph
G = (V, E) if there is some �, �, and T such that E = {(u, v) | EM(u, v;�,�) < T}.

2.1 Boxicity

Let I be the set of closed and bounded intervals in R. An interval graph is an undirected graph
G = (V, E) such that there exists a mapping ' : V ! I for which

{u, v} 2 E () '(u) \ '(v) 6= ;.

More generally, we can consider Bd, the set of d-dimensional “boxes”, which are Cartesian products
of intervals,

dY
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where x
�
i and x

+
i are min and max coordinates in dimension i. As defined by Roberts [20], the

boxicity of an undirected graph G is the smallest dimension d such that there exists a mapping
' : V ! Bd for which {u, v} 2 E if and only if '(u) \ '(v) 6= ;. Equivalently, the boxicity is the
minimal number of interval graphs whose intersection is G.

2.2 Box Embeddings

Vilnis et al. [28] provide a way of using boxes to represent directed graphs by defining an asymmetric
energy function based on box volumes, and subsequent work has introduced various improvements
and extensions of this idea Dasgupta et al. [4], Boratko et al. [2]. In this section we will define the
energy function of box embedding models under a common framework, in preparation to motivate
our extension to binary code box embeddings.

The energy function for all box embedding variants has the form

E(u, v;�,�) = � log
dY

i=1

F (�(u)i,�(v)i;�), (2)

where �(u)i are the parameters associated with node u in dimension i and F (�(u)i,�(v)i;�) 2 [0, 1]
is a per-dimension score representing the probability of edge existence. 3 The model originally defined
in Vilnis et al. [28] represented each node using a box, as in (1). The per-dimension parameters are
the endpoints of an interval, �(u)i = [�(u)�i ,�(u)

+
i ], and the score function is defined as

FBox([x
�
, x

+], [y�, y+]) =
|[x�

, x
+] \ [y�, y+]|

|[y�, y+]|
=

max(min(x+
, y

+)�max(x�
, y

�), 0)

max(y+ � y�, 0)
.

2A simple directed graph is one without multiple edges or self-loops, i.e. the adjacency matrix contains only
0s and 1s, with 0s on the diagonal. We also synthetically remove self-loops from the graph modeled by the
learned representations.

3As in boxicity, we can interpret these box embedding models as representing a graph as an intersection of
interval graphs, one for each dimension.
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This encourages the box for a given vertex to contain (or overlap highly with) the boxes for it’s
children. Boxes which are disjoint or contained in one another can present problems for training,
however. Dasgupta et al. [3] addressed this by modeling the endpoints of intervals using Gumbel
random variables. The per-dimension score can be written as4

FG-BOX((x
�
, x

+), (y�, y+); (⌧, ⌫)) =
LSE⌫ (�LSE⌧ (�x

+
,�y

+)� LSE⌧ (x�
, y

�), 0)

LSE⌫(y+ � y�, 0)
, (3)

where LSEt denotes the following continuous extension of LogSumExp with temperature t � 0:

LSEt(x) =

⇢
t log(

P
i e

xi/t) if t > 0,
max(x) if t = 0.

(4)

In practice, the temperatures ⌧ and ⌫ are tuned separately as global hyperparameters, however
when they are equal the parameters x

�
, y

� (resp. x
+
, y

+) can be interpreted as the mean of the
GumbelMax (resp. GumbelMin) random variables with scale ⌫ = ⌧ , and FG-BOX approximates a
ratio of expected box volumes. Note that for any (x�

, x
+), (y�, y+) 2 R2, FG-BOX is continuous

with respect to ⌧, ⌫ 2 R�0, and FG-BOX((x�
, x

+), (y�, y+); 0, 0) = FBOX([x�
, x

+], [y�, y+]).

Boratko et al. [2] takes this one step further, using a mapping which learns 4 parameters per dimension:
�(u)i = (�(u)�i ,�(u)

+
i ,�(u)i,⌧ ,�(u)i,⌫). The per-dimension score function is then defined as

FT-BOX((x
�
, x

+
, x⌧ , x⌫), (y

�
, y

+
, y⌧ , y⌫)) = FG-BOX((x

�
, x

+), (y�, y+); (x⌧+y⌧

2 ,
x⌫+y⌫

2 )). (5)

3 Existing Representational Capacity and Limitations

3.1 Representational Capacity

We would like to know each model’s representational capacity (the set of graphs capable of being
modeled) as well as how this may change depending on hyperparameter settings. It was proven
in Boratko et al. [2] that BOX can model any DAG, and of course since T-BOX is equivalent to
BOX when �(u)i,⌧ = �(u)i,⌫ = 0 this also holds for T-BOX. As defined in Section 2, we can also
say that G-BOX is capable of modeling any DAG, since it is equivalent to BOX when we set the
temperature hyperparameters to zero (i.e. ⌧ = ⌫ = 0), however this is practically quite different – the
temperatures are not trainable as in T-BOX, and would never be set to 0 in order to avoid the training
difficulties of BOX. Hence, the existing proof of representational capacity in [2] says very little about
the practical representational capacity of G-BOX.5 Thankfully, more can be proven.

Theorem 1. Given a threshold T , temperature hyperparameters ⌧, ⌫, there exists and a bijection  

on the set of parameterizations {V ! R2d
} such that for all u, v 2 V ,

EG-BOX(u, v; (�), (⌧, ⌫)) < T () EBOX(u, v;�) < T.

In other words, for any temperature hyperparameters, G-BOX can represent any graph representable
by BOX. For the proof, see Appendix B. Proposition 3 in Boratko et al. [2] states that any DAG can
be modeled by BOX in O((�+ 2) log |V|) dimensions with O(D(�+ 2) log2 |V|) bits of precision
per box, where D  |V| is the depth of G and � is the maximum degree. Combining this with
Theorem 1 we have the following:

Corollary 2. Let G be any DAG. Given any ⌧, ⌫ 2 R�0, there exists a mapping � : V ! R2d

and a threshold T > 0 such that EG-BOX(u, v;�, (⌧, ⌫)) < T if and only if (u, v) 2 E , where

d = O((�+ 2) log |V|), and � is the maximum degree in G.

In other words, for any setting of temperature hyperparamters, G-BOX can model any DAG.

4In Dasgupta et al. [4] they interpret �(u)±i as the “location” parameters of the distribution, resulting in
a slightly different form of the score function, however as we show in Appendix A our score (3) leads to an
equivalent model.

5This limitation was acknowledged in Boratko et al. [2] just before Section 4.3 as part of the motivation for
the trainable temperatures of T-BOX.
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3.2 Limitation on Modeling Cycles

In this section, we point out that G-BOX cannot model any graph containing a (directed) chordless

cycle, which is a cycle such that no two vertices are connected by an edge which does not belong to
the cycle.
Theorem 3. If E is such that E(u, v)� E(v, u) = g(u)� g(v) for some function g : V ! R then it

cannot model any graph containing a chordless cycle with more than 2 nodes.

Proof. Suppose the vertices 1, 2, ..., N comprise a chordless cycle, the edges of which are D =
{(1, 2), (2, 3), ..., (N � 1, N), (N, 1)}. Suppose further that we can model the graph containing this
cycle using energy E and threshold T . In particular, we have E(u, v) < T and E(v, u) � T for
(u, v) 2 D. This implies that g(u)� g(v) = E(u, v)� E(v, u) < 0, and thus g(u) < g(v) for each
(u, v) 2 D. Hence g(1) < g(2) < · · · < g(N) < g(1), which is a contradiction.

Corollary 4. G-BOX cannot model any graph containing a chordless cycle on more than 2 nodes.

Proof. Theorem 3 applies to EG-BOX with g(u) = � log
Qd

i=1 LSE⌫(�(u)
+
i � �(u)�i , 0).

It is possible to avoid the contradiction in Theorem 3 by the introduction of one reverse edge, and in
this case we observe that it is theoretically possible for G-BOX to represent a graph.
Proposition 1. If G is a graph which is the union of a chordless cycle and one reverse edge, G-BOX
can model G in 2 dimensions.

The proof of this statement is contained in Appendix C.

4 Method

In this section, we will introduce the binary code box embedding concept, which includes a family
of models whose shared feature is the use of learned binary codes to select subsets of dimensions.
Two we will focus on in particular include GBC-BOX, which uses “global” binary code vectors,
and VBC-BOX, which uses per-vertex binary code vectors. The following topics will be covered:
the motivation for binary codes, the definition of GBC-BOX and VBC-BOX, their representational
capacity to model arbitrary directed graphs, our learning objectives and regularization, the models’
inductive biases and strengths, and some discussion about their limitations and alternative variants.

4.1 Motivation

The idea of binary code boxes is to allow more flexibility than simply taking an intersection over
interval graphs, as captured by boxicity (see Section 2.1). Recall, in the undirected case, the boxicity
of a graph G = (V, E) was equivalent to the smallest number d such that for some set of interval
graphs S = {Gi = (V, Ei)}di=1, we have E = \

d
i=1Ei, i.e.

{u, v} 2 E () 8F : (V,F) 2 S, {u, v} 2 F .

There are various ways to increase the flexibility of this representation. For example, we could
consider allowing a union over intersections by specifying k subsets of S, {Si}

k
i=1, for which

E = [
k
i=1 \(V,F)2Sk

F , i.e.

{u, v} 2 E () 9i : 8F : (V,F) 2 Si, {u, v} 2 F . (6)

To allow for even greater flexibility, we could allow each vertex to select a subset of graphs to
intersect. Formally, we allow the specification of a function  : V ! 2S which assigns a subset of
interval graphs to each vertex, for which

{u, v} 2 E () 8F : (V,F) 2  (u) \  (v), {u, v} 2 F . (7)

For the undirected case the advantage is minimal. Increasing the flexibility in these ways may allow
us to represent an undirected graph in smaller dimension (or, equivalently, using a smaller number of
interval graphs), however as mentioned previously we know any undirected graph can be represented
as an intersection of interval graphs. For directed graphs, however, this is not the case, and (as we
prove in Section 4.3) this generalization allows for any directed graph to be represented.
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4.2 Definition

In order to capture the idea of a “union of intersections” specified in (6) we consider learning k

“binary code” vectors bj 2 [0, 1]d. Each binary vector corresponds to a selection of which dimensions
to include - if the i

th component is 0 the scores for edges in this dimension should be ignored, and if
it is 1 they should be included. For convenience, we will represent these as the columns of a d⇥ k

matrix B 2 [0, 1]d⇥k. The energy function in this case is

EGBC-BOX(u, v; (�, B), (⌧, ⌫, k)) := min
j2{1,...,k}

 
� log

dY

i=1

FG-BOX(�(u)i,�(v)i; (⌧, ⌫))
Bi,j

!
(8)

In order to capture the notion of per-vertex subset selection in (7), we learn 3 parameters per
dimension, which we denote as �(u)i = (�(u)�i ,�(u)

+
i ,�(u)

⇧
i ) 2 R⇥ R⇥ [0, 1]. The binary code

�(u)⇧i indicates whether this dimension should be taken into account when calculating the probability
of edge existence for edges involving this node - if it is 0, the dimension should be ignored, and if it is
1 it may be included. We incorporate this at the level of the per-dimension score function as follows:

FVBC-BOX((x
�
, x

+
, x

⇧), (y�, y+, y⇧); (⌧, ⌫)) := FG-BOX((x
�
, x

+), (y�, y+); (⌧, ⌫))x
⇧y⇧

. (9)

Using the product in the exponent is a relaxation of the intersection  (u) \  (v) from (7). When
computing the probability of an edge (u, v), the binary codes can learn to ignore certain dimensions
by making �(u)⇧i or �(v)⇧i equal to 0.

In the following, we point out two perspectives which provide further intuition behind these models:

Generalization: Both GBC-BOX and VBC-BOX are a generalization of G-BOX, as the energy
function is equivalent when all binary codes are 1, in which case all dimensions are used for volume
calculation. As we will show in Section 4.3 these models are strictly more expressive, as when some
binary codes are less than 1 these models can represent more complex graphs.

Projection: For GBC-BOX, if Bi,j 2 {0, 1} we can think of this defining a set of projections
{Pj}

k
j=1 where Pj projects the boxes parameterized by � into the

Pd
i=1 Bi,j dimensional subspace

where Bi,j = 1. Similarly, for VBC-BOX, if �(u)⇧i 2 {0, 1} we can think of this determining the
dimensions Du := {i : �(u)⇧i = 1} which the box will be projected in. Given an edge (u, v), we
project into dimensions Du \Dv before determining the edge existence.

4.3 Representational Capacity

The energy functions for GBC-BOX and VBC-BOX were constructed such that Theorem 3 would
not apply, thus making it possible that they may be capable of representing some graphs with cycles.
In this section, we prove that both can model any directed graph.
Theorem 5. Given a directed graph G = (V, E) and any ⌧, ⌫ � 0 and k � 2, there exists a threshold

T > 0, parameters � : V ! R2d
, and binary codes B 2 [0, 1]d⇥k

for which

EGBC-BOX(u, v; (�, B), (⌧, ⌫)) < T () (u, v) 2 E .

Proof. Given a directed graph G = (V, E), let (<,V) be an arbitrary strict total order on the vertices.
Then define subgraphs D1 = (V, E1) and D2 = (V, E2) where E1 = {(u, v) | u < v} \ E and
E2 = {(u, v) | u > v} \ E . Observe that D1 and D2 are directed acyclic graphs, and thus Corollary
2 implies that for j 2 {1, 2} there exists a threshold Tj , dimension dj = O((� + 2) log |V|), and
mapping �j : V ! R2dj such that

EG-BOX(u, v;�, (⌧, ⌫)) < Tj () (u, v) 2 Ej .

Let d = d1 + d2, T = min(T1, T2), and define � : V ! R2d and B 2 [0, 1]d⇥k as follows:

8i 2 {1, . . . , d1}, �(u)±i = �1(u)
±
i , Bi,1 = T

T1
, Bi,2 = 0,

8i 2 {d1 + 1, . . . , d1 + d2}, �(u)±i = �2(u)
±
i , Bi,1 = 0, Bi,2 = T

T2
.

Then we have EGBC-BOX(u, v; (�, B), (⌧, ⌫)) = minj2{1,2}
T
Tj

EG-BOX(u, v;�j , (⌧, ⌫)) which com-
pletes the proof with k = 2, and therefore implies the result for all k > 2.

6



While motivated by a similar idea, note that VBC-BOX is not a generalization of GBC-BOX, and
thus an independent proof of representational capacity is required.
Theorem 6. Given a directed graph G = (V, E) and any ⌧, ⌫ � 0, there exists a threshold T > 0 and

parameters � : V ! R2d
⇥ [0, 1]d for which EVBC-BOX(u, v;�, (⌧, ⌫)) < T if and only if (u, v) 2 E .

Proof. Given a graph G = (V, E) let H = {{u, v} | u, v 2 V, u 6= v}. We will construct a VBC-
BOX model in d = |H| dimensions. For convenience, index the dimensions using h 2 H . Then
let �(u)⇧h = 1 if u 2 h, and 0 otherwise. This means when evaluating the edge (u, v) or (v, u) we
simply need to compare in the 1-d space obtained by projecting the boxes to dimension h = {u, v},
and furthermore that this dimension will not be used when considering any other edges. Any directed
graph on 2 nodes can be embedded using boxes in 1-dimension (observable by direct construction),
which completes the proof.

While Theorem 5 and Theorem 6 are helpful in establishing that, unlike all prior box embedding
models and many other geometric embeddings, GBC-BOX and VBC-BOX are capable of modeling
any directed graph, the implied dimensionality bounds are far from optimal. In general, both models
tend to require fewer dimensions than alternatives, which we analyze theoretically in Appendix D
and observe empirically in Section 5.

4.4 Learning

We fit geometric embeddings by optimizing a binary cross entropy objective. Given some edges in a
training set T , the loss is defined as

LBCE(�;�) =
X

(u,v)2T


E(u, v;�,�)�

X

(u0,v0)2N(u,v)

log
⇣
1� e

�E(u0,v0;�,�)
⌘�

(10)

where N(u, v) is the set of negative samples for each positive edge (u, v) within one batch. We
sample minibatches of positive edges in T , and for each positive edge we sample 32 edges not in
T by randomly corrupting either the source or target node. We also use a self-adversarial negative
weight, as described in [26].

4.5 Limitations and Regularization

There are a few limitations of Binary Code Box Embeddings: 1) Transitivity and Flexibility In
order to model cycles with separate sub-spaces, the inductive bias of asymmetric transitivity might
be weakened. 2) Inefficiency of Parameterization For VBC-BOX, the number of parameters is
increased by 50% compared with a G-BOX model in equal dimension. In addition, during inference,
a large portion of box co-ordinates are “dead” when binary codes are near zero. Here, we introduce a
regularization method and a tunable binary code size to resolve these concerns.

Regularization We can regularize the sparsity of binary codes to penalize dimension drop-off using
the lasso with a regularization weight wr, leading to a loss function L = LBCE + wrk1�Bk`1 .

Restricted Binary Code Size We can constrain the number of trainable binary codes to the last dbin
dimensions, setting the first d� dbin dimensions to 1.

Both wr and dbin can provide a handle on mitigating issues mentioned above. One can increase wr or
decrease dbin to preserve more transitivity and make full use of the model’s parameters.

5 Experiments

5.1 Graph Reconstruction

While GBC-BOX and VBC-BOX can provably model any directed graph, the extent to which they
can be trained to do so via gradient descent is another matter. In this section, we compare the
reconstruction performance of various geometric embedding methods on a number of synthetic
graphs, including simple directed cycles, trees and scale-free networks.

Baselines. We compare our model with different baselines:

7



Vector*: We implement a vector baseline where each node is parameterized by a source and
target vector, and the energy function is measured by E(u, v) = � log �(�(u)source · �(v)target). *
indicates it uses source and target vectors.
Lorentzian: It has been shown that hyperbolic space can embed undirected trees with arbitrarily
low distortion [22], therefore we also compare with the baseline of squared Lorentzian distance on
the hyperboloid [10, 2].
Hyperbolic Entailment Cones: Ganea et al. [7] model vertices as cones in hyperbolic space,
combining the bias of hyperbolic space to represent tree-like graphs with the transitivity bias of
region-based representations.
Box Models: We also compare with G-BOX [4] and T-BOX [2], as defined in Section 2.2.

We use Bayesian hyperparameter tuning based on the optimal F1 score for reconstruction.

Capacity over Cycles. We evaluate each model’s capacity to represent cycles, where simple directed
cycles are generated with an increasing number of vertices (|V| = 22, 24, 28, 212). In addition,
we analyze the effect of adding one reverse edge to the cycle, which conventional box embedding
models can represent. Results are shown in Table 1. For a fair comparison, all methods use 12
parameters per vertex 6. VBC-BOX shows the best reconstruction performance. Most other geometric
baselines cannot model cycles. Surprisingly, VBC-BOX even outperforms the Vector* baseline when
|V| = 212, indicating our model’s high expressivity and surprising ease of training. Results also show
that, in concordance with Proposition 1, G-BOX can model a cycle containing a reverse edge when
|V| is small, though it may struggle to do so. We also see that T-BOX can model certain cycles when
|V| is small, which is not a contradiction of Theorem 3 as the energy function for T-BOX does not
satisfy the premise.

Table 1: Reconstruction performance (F1 score) on directed cycles. All embeddings use 12 parameters
per vertex. Different columns show the results as we increase the number of vertices in the cycle.

Methods Simple cycle + One bidirectional edge

|V| = 22 24 28 212 22 24 28 212

Vector* 1.0 1.0 1.0 0.676 1.0 1.0 1.0 0.666
Lorentzian 0.857 0.75 0.679 0.671 1.0 0.839 0.693 0.665
Hyperbolic Entailment Cones 0.75 0.667 0.662 0.635 0.75 0.692 0.654 0.645
G-BOX 0.857 0.762 0.695 0.648 1.0 0.914 0.689 0.630
T-BOX 1.0 1.0 0.996 0.685 1.0 1.0 0.992 0.659
GBC-BOX 1.0 1.0 0.992 0.957 1.0 1.0 0.993 0.967
VBC-BOX (dbin = d) 1.0 1.0 1.0 0.973 1.0 1.0 1.0 0.978

Capacity over Trees. It is known that box models have an inductive bias which makes them more
suited to capturing asymmetric transitivity, whereas hyperbolic space is particularly suitable for
undirected trees. In this experiment, we evaluate whether binary code models maintain the inductive
bias of box embeddings. We generated four balanced (out-)trees, each with 213 vertices and branching
factor of [2, 3, 5, 10]. We also generated another four graphs with full transitive closures. We compare
each method with 12, 24 and 48 parameters per vertex. For each setting, we average the results
over the four trees, and present the results in Table 2. As expected, G-BOX performs the best on
transitively closed trees, while the Lorentzian model performs well on balanced trees. It is shown that
GBC-BOX performs equally well as G-BOX on transitively closed trees, while the performance of
VBC-BOX is slightly lower. In contrast, the latter performs similarly or better than the former on the
transitive reduction of trees. This suggests that more transitive bias is preserved in GBC-BOX, while
per vertex binary codes provide more representational flexibility. In addition, these results confirm a
trend observed in [2], where binary code models and and T-BOX outperform the Lorentzian model
on balanced trees when dimension size is increased, and the performance of other geometric-based
embeddings are not capable of overfitting even as dimension increases.

Capacity over Random Graphs. Finally, we conduct experiments on scale-free networks, a
simulation to real-world graphs, where the edge distribution follows preferential attachment. In order
to analyze how the cyclicity of graphs affects each model’s performance, we randomly sampled

612 is the least common multiple of 2, 3, 4 which are the minimum number of parameters per node for
G-BOX, T-BOX and VBC-BOX
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Table 2: Average reconstruction performance (F1 score) on balanced trees with |V| = 213 and
branching factors of 2, 3, 5, 10 using 12, 24, and 48 parameters per vertex.

Methods Balanced tree w. transitive closures
# Parameters / vertex = 12 24 48 12 24 48

Vector* 0.453 0.992 1.0 0.863 0.999 1.0
Lorentzian 0.929 0.935 0.951 0.975 0.979 0.995
Hyperbolic Entailment Cones 0.828 0.834 0.838 0.977 0.982 0.987
G-BOX 0.832 0.830 0.842 1.0 1.0 1.0
T-BOX 0.800 0.957 1.0 0.952 0.997 1.0
GBC-BOX 0.901 0.961 0.983 1.0 1.0 1.0
VBC-BOX (dbin = d) 0.866 0.994 1.0 0.987 0.999 1.0

nearly three-thousand graphs using a wide range of parameters used for graph generation. Then
we split the generated graphs into five bins by our proposed measure cyclicity: The proportion of
vertices in a given graph involved in at least one cycle. In order to analyze models’ effectiveness
of modeling cycles instead of the density of graphs, we randomly sample 5 graphs from each bin
where the average degree is in the range between 3 and 4. Results are shown in Figure 2. From the
chart, we can see that our proposed model outperforms standard G-BOX in all scenarios. Moreover,
the gap in performance is more significant when cyclicity is high. Figure 2 also clearly shows that
VBC-BOX provides more representational capacity overall, while GBC-BOX is less expressive in
modeling cyclic graphs.

Figure 2: Reconstruction performance on Scale-free networks with |V| = 213. We plot the F1 scores
for G-BOX, GBC-BOX and VBC-BOX using 24, 48, 96 parameters per vertex.

5.2 Link Prediction

Finally, we apply our binary code box models on link prediction tasks to evaluate the models’
generalization ability. We evaluate on the following real world graphs: Google hyperlink network,
Epinions trust network, CORA citation network, Twitter network, and DREAM5 gene regulatory
networks. For more data statistics, see Appendix E. During training, all hyperparameters are tuned
via 10% cross-validation and the test set results are averaged over 10 models of different random
seeds, which were trained on the full training set with the best hyper-parameters found during cross-
validation. We also tune the weight of the sparsity regularization wr for all BC-Box models (see
Section 4.5).

In Table 3, we follow [30] and compare with several baselines including vector-based baselines
such as DeepWalk [17], LINE [27], node2vec [8], HOPE [15], APP [29], DGGAN [30] and our
own implementation of a vector-based model with separate source and target parameters, as well
as region-based baselines such as G-BOX [3] and T-BOX [2]. Models are evaluated using the Area
Under ROC Curve (AUC). For fair comparison, we follow [30] and use 128 parameters per vertex
for all our models. Results show that our binary code box models out-perform other baselines in
most cases. Furthermore, there is an clear trend that VBC-BOX performs the best when graphs are
highly cyclic (on the left side of the table), whereas VBC-BOX with fewer binary code dimensions
and GBC-BOX model start to perform better when graphs are less cyclic. In the case where a graph
is mostly acyclic (on the right side of the table), G-BOX performs equally well.

We also observe that box geometry is superior than vector-based models in all scenarios, even if
graphs are less transitive, or have a lot of cycles, showing the strength of box geometry in modeling
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directed graphs. In addition, we also compare with another recent work from Sim et al. [23] over
DREAM5 datasets, where we observe that box embedding models out-performs their baselines
significantly in most cases. (On In Silico dataset, our model has an average precision of 68.8%,
out-performs their best result 61.0%.) Detailed results are in Appendix F.

Table 3: Link prediction on real-world graphs We use AUC as evaluation metric. Vector-based
methods (upper), and box embedding variants (bottom). Most vector baseline results are provided
by [30]. We evaluated over two negative sampling strategies for testing, unif.: uniformly sampled
negatives; corr.: randomly corrupting source or target node in each positive edge in the test set. All
methods use 128 parameters per vertex. Bold numbers perform the best, and underscored numbers
perform the best in all non-box models

.

Methods Google Epinions CORA Twitter
Cyclicity = 0.96 0.88 0.23 0.01

Transitivity = 0.40 0.09 0.22 0.01

unif. corr. unif. corr. unif. corr. unif. corr.

DeepWalk [30] 83.6 - 76.6 - 84.9 - 50.4 -
LINE-1 [30] 89.7 - 78.8 - 84.7 - 53.1 -
node2vec [30] 84.3 - 89.7 - 85.3 - 50.6 -
HOPE* [30] 87.5 - 79.6 - 77.6 - 98.0 -
APP* [30] 92.1 - 70.5 - 76.6 - 71.6 -
DGGAN [30] 92.3 - 96.1 - 85.1 - 99.7 -
Vector(Ours)* 94.0 94.2 93.0 88.9 78.9 76.7 99.8 84.1

G-BOX 99.2 98.2 95.1 90.0 93.9 89.6 99.8 86.3
T-BOX 97.1 95.8 96.4 89.6 87.3 79.6 99.8 84.4
GBC-BOX 99.0 98.3 96.8 92.7 92.7 90.3 99.9 86.2
VBC-BOX (0 < dbin < d) 99.3 98.3 97.6 92.2 94.1 89.7 99.9 86.1
VBC-BOX (dbin = d) 99.5 98.6 98.0 92.4 93.2 88.8 99.8 85.7

6 Conclusion

In this paper, we introduced binary code box embeddings, a generalized box embedding method to
model directed graphs. We provide both theoretical and empirical results showing the capacity of our
model for modeling directed graphs. We demonstrated that this model can maintain a useful bias of
transitivity while also modeling graphs with cycles.
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