Table 1: Major notation

symbol	definition	
K	number of the arms	
T	number of the rounds	
B	number of the batches	
T_{B}	$=T /(B+K-1)$	
T^{\prime}	$=T-(B+K-1) K$	
$I(t)$	arm selected at round t	
$X(t)$	reward at round t	
$J(T)$	recommendation arm at the end of round T	
\mathcal{P}	hypothesis class of \boldsymbol{P}	
\mathcal{Q}	distribution of estimated parameter of \boldsymbol{Q}	
$\boldsymbol{P} \in \mathcal{P}^{K}$	true parameters	
$P_{i} \in \mathcal{P}$	i-th component of \boldsymbol{P}	
$\mathcal{I}^{*}=\mathcal{I}^{*}(\boldsymbol{P})$	set of best arms under parameter \boldsymbol{P}	
$i^{*}(\boldsymbol{P})$	one arm in $\mathcal{I}^{*}(\boldsymbol{P})$ (taken arbitrary in a deterministic way)	
$\boldsymbol{Q} \in \mathcal{Q}^{K}$	estimated parameters of \boldsymbol{P}	
$Q_{i} \in \mathcal{Q}$	i-th component of \boldsymbol{Q}	
$\boldsymbol{Q}_{b} \in \mathcal{Q}^{K}$	estimated parameters of b-th batch	
$Q_{b, i} \in \mathcal{Q}$	i-th component of \boldsymbol{Q}_{b}	
$\boldsymbol{Q}^{b} \in \mathcal{Q}^{K b}$	$=\left(\boldsymbol{Q}_{1}, \boldsymbol{Q}_{2}, \ldots, \boldsymbol{Q}_{b}\right)$	
$\boldsymbol{Q}_{b}^{\prime} \in \mathcal{Q}^{K}$	stored parameters (in Algorithm 2)	
$Q_{b, i}^{\prime} \in \mathcal{Q}$	i-th component of $\boldsymbol{Q}_{b}^{\prime}$	
$D(Q \\| P)$	KL divergence between Q and P	
Δ_{K}	probability simplex in K dimensions	
$\boldsymbol{r} \in \Delta_{K}$	allocation (proportion of arm draws)	
r_{i}	i-th component of \boldsymbol{r}	
$\boldsymbol{r}_{b} \in \Delta_{K}$	allocation at b-th batch	
$r_{b, i}$	i-th component of \boldsymbol{r}_{b}	
$\boldsymbol{r}^{\text {b }}$	$=\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}, \ldots, \boldsymbol{r}_{b}\right)$	
$\boldsymbol{n}_{\text {b }}$	numbers of draws of Algorithm 2 at b-th batch	
$n_{b, i}$	i-th component of \boldsymbol{n}_{b}. Note that $n_{b, i} \geq r_{b, i}\left(T_{B}-K\right)$ holds.	
$J\left(\boldsymbol{Q}^{B}\right)$	recommendation arm given \boldsymbol{Q}^{B}	
$\left(\boldsymbol{r}^{B, *}, J^{*}\right)$	ϵ-optimal allocation	
$H(\cdot)$	complexity measure of instances	
$R\left(\left\{\pi_{T}\right\}\right)$	worst-case rate of PoE of sequence of algorithms $\left\{\pi_{T}\right\}$ in (1)	
$R^{\text {go }}$	best possible $R\left(\left\{\pi_{T}\right\}\right)$ for oracle algorithms in (2)	
$R_{B}^{\text {go }}$	best possible $R\left(\left\{\pi_{T}\right\}\right)$ for B-batch oracle algorithms in (3)	
$R_{\infty}^{\text {go }}$	$\lim _{B \rightarrow \infty} R_{B}^{\mathrm{go}}$. Limit exists (Theorem 7)	
θ	model parameter of the neural network	
$\boldsymbol{r}_{\boldsymbol{\theta}}$	allocation by a neural network with model parameters $\boldsymbol{\theta}$	
$r_{\boldsymbol{\theta}, i}$	i-th component of $\boldsymbol{r}_{\boldsymbol{\theta}}$	

A Notation table

Table 1 summarizes our notation.

B Uniform optimality in the fixed-confidence setting

For sufficiently small $\delta>0$, the asymptotic sample complexity for the FC setting is known.

Namely, any fixed-confidence δ-PAC algorithm require at least $C^{\text {conf }}(\boldsymbol{P}) \log \delta^{-1}+o\left(\log \delta^{-1}\right)$ samples, where

$$
\begin{equation*}
C^{\mathrm{conf}}(\boldsymbol{P})=\left(\sup _{\boldsymbol{r}(\boldsymbol{P}) \in \Delta_{K}} \inf _{\boldsymbol{P}^{\prime}: i^{*}\left(\boldsymbol{P}^{\prime}\right) \notin \mathcal{I}^{*}(\boldsymbol{P})} \sum_{i=1}^{K} r_{i} D\left(P_{i} \| P_{i}^{\prime}\right)\right)^{-1} \tag{8}
\end{equation*}
$$

Garivier and Kaufmann (2016) proposed C-Tracking and D-Tracking algorithms that have a sample complexity bound that matches Eq. (8). This achievability bound implies that there is no tradeoff between the performances for different instances \boldsymbol{P}, and sacrificing the performance for some \boldsymbol{P} never improves the performance for another \boldsymbol{P}^{\prime}. To be more specific, for example, even if we consider a (δ-correct) algorithm that has a suboptimal sample complexity of $2 C^{\operatorname{conf}}(\boldsymbol{P}) \log \delta^{-1}+o\left(\log \delta^{-1}\right)$ for some instance \boldsymbol{P}, it is still impossible to achieve sample complexity better than $C^{\text {conf }}(\boldsymbol{Q}) \log \delta^{-1}+o\left(\log \delta^{-1}\right)$ for another instance \boldsymbol{P}^{\prime} as far as the algorithm is δ-PAC.

C Suboptimal performance of fixed-confidence algorithms in view of fixed-budget setting

This section shows that an optimal algorithm for the FC-BAI can be arbitrarily bad for the FB-BAI.
For a small $\epsilon \in(0,0.1)$, consider a three-armed Bernoulli bandit instance with $\boldsymbol{P}^{(1)}=$ $(0.6,0.5,0.5-\epsilon)$ and $\boldsymbol{P}^{(2)}=(0.4,0.5,0.5-\epsilon)$. Here, the best arm is arm 1 (resp. arm 2) in the instance $\boldsymbol{P}^{(1)}$ (resp. $\boldsymbol{P}^{(2)}$).
Let $\boldsymbol{r}^{\text {conf }}(\boldsymbol{P})=\left(r_{1}^{\text {conf }}(\boldsymbol{P}), r_{2}^{\text {conf }}(\boldsymbol{P}), r_{3}^{\text {conf }}(\boldsymbol{P})\right)$ be the optimal FC allocation of Eq. (8). The following characterizes the optimal allocation for $\boldsymbol{P}^{(1)}, \boldsymbol{P}^{(2)}$:
Lemma 8. The optimal solution of Eq. (8) for instance $\boldsymbol{P}^{(1)}$ satisfies the following:

$$
r_{1}^{\mathrm{conf}}\left(\boldsymbol{P}^{(1)}\right), r_{2}^{\mathrm{conf}}\left(\boldsymbol{P}^{(1)}\right), r_{3}^{\mathrm{conf}}\left(\boldsymbol{P}^{(1)}\right) \geq 0.07=\Theta(1)
$$

Lemma 9. The optimal solution of Eq. (8) for instance $\boldsymbol{P}^{(2)}$ satisfies the following:

$$
r_{1}^{\mathrm{conf}}\left(\boldsymbol{P}^{(2)}\right), r_{2}^{\mathrm{conf}}\left(\boldsymbol{P}^{(2)}\right), r_{3}^{\mathrm{conf}}\left(\boldsymbol{P}^{(2)}\right)=\Theta\left(\epsilon^{2}\right), \Theta(1), \Theta(1)
$$

These two lemmas are derived in Section C.1.
Assume that we run an FC algorithm that draws arms according to allocation $\boldsymbol{r}^{\text {conf }}(\cdot)$ in an FB problem with T rounds. Under the parameters $\boldsymbol{P}^{(2)}$, it draws arm 1 for $O\left(\epsilon^{2}\right)+o(T)$ times. Letting $\delta=\boldsymbol{P}^{(1)}[J(T)=2]$, Lemma 1 in Kaufmann et al. (2016) implies that

$$
\begin{aligned}
\left(T O\left(\epsilon^{2}\right)+o(T)\right) D(0.4 \| 0.6) & \geq d\left(\boldsymbol{P}^{(2)}[J(T)=2], \boldsymbol{P}^{(1)}[J(T)=2]\right) \\
& \geq d\left(1 / 2, \boldsymbol{P}^{(1)}[J(T)=2]\right) \quad \text { (assuming the consistency of algorithm) } \\
& =\frac{1}{2}\left(\log \left(\frac{1}{2 \delta}\right)+\log \left(\frac{1}{2(1-\delta)}\right)\right) \\
& \geq \frac{1}{2} \log \left(\frac{1}{2 \delta}\right)
\end{aligned}
$$

which implies

$$
\begin{equation*}
\boldsymbol{P}^{(1)}[J(T)=2]=\delta \geq \frac{1}{2} \exp \left(-2\left(T O\left(\epsilon^{2}\right)+o(T)\right) D(0.4 \| 0.6)\right) \tag{9}
\end{equation*}
$$

The exponent of Eq.(9) can be arbitrarily small as $\epsilon \rightarrow+0$. In other words, the rate of this algorithm can be arbitrarily close to 0 , while the complexity is $H_{1}\left(\boldsymbol{P}^{(1)}\right)=\Theta(1)$. This fact implies that the optimal algorithm for the FC-BAI has an arbitrarily bad performance in terms of the minimax rate of the FB-BAI.

C. 1 Proofs of Lemmas 8 and 9

Proof of Lemma 8. For $\boldsymbol{r}=(1 / 3,1 / 3,1 / 3)$, we have

$$
\begin{aligned}
\inf _{\boldsymbol{P}^{\prime}: i^{*}\left(\boldsymbol{P}^{\prime}\right) \notin \mathcal{I}^{*}\left(\boldsymbol{P}^{(1)}\right)} \sum_{i=1}^{K} r_{i} D\left(P_{i}^{(1)} \| P_{i}^{\prime}\right)> & \frac{1}{3} \min (D(0.6 \| 0.55), D(0.5 \| 0.55)) \\
& \left(\text { by } i^{*}\left(\boldsymbol{P}^{\prime}\right) \notin \mathcal{I}^{*}\left(\boldsymbol{P}^{(1)}\right) \text { implies } P_{1}^{\prime}<0.55 \text { or } P_{2}^{\prime}>0.55 \text { or } P_{3}^{\prime}>0.55\right) \\
\geq & 1 / 600
\end{aligned}
$$

We have

$$
\begin{aligned}
\inf _{\boldsymbol{P}^{\prime}: i^{*}\left(\boldsymbol{P}^{\prime}\right) \notin \mathcal{I}^{*}(\boldsymbol{P})} \sum_{i=1}^{K} r_{1}^{\mathrm{conf}}\left(\boldsymbol{P}^{(1)}\right) D\left(P_{i} \| P_{i}^{\prime}\right) \leq & r_{1}^{\text {conf }}\left(\boldsymbol{P}^{(1)}\right) D(0.6 \| 0.5) \\
& \left(\text { on instance } \boldsymbol{P}^{\prime}=(0.5,0.5,0.5-\epsilon)\right) \\
\leq & 0.021 r_{1}
\end{aligned}
$$

which implies $r_{1}^{\text {conf }}\left(\boldsymbol{P}^{(1)}\right) \geq(1 / 600) \times(1 / 0.021) \geq 0.07$ for the optimal allocation $r_{1}^{\text {conf }}\left(\boldsymbol{P}^{(1)}\right)$. Similar discussion yields $r_{2}, r_{3} \geq 0.07$.

Proof of Lemma 9. For $\boldsymbol{r}=(1 / 3,1 / 3,1 / 3)$, we have

$$
\begin{aligned}
& \inf _{\boldsymbol{P}^{\prime}: i^{*}\left(\boldsymbol{P}^{\prime}\right) \notin \mathcal{I}^{*}\left(\boldsymbol{P}^{(2)}\right)} \sum_{i=1}^{K} r_{i} D\left(P_{i}^{(2)} \| P_{i}^{\prime}\right) \\
> & \frac{1}{3} \min (D(0.5 \| 0.5-\epsilon / 2), D(0.5-\epsilon \| 0.5-\epsilon / 2)), \\
& \left(\text { by } \boldsymbol{P}^{\prime} \notin \mathcal{I}^{*}\left(\boldsymbol{P}^{(2)}\right) \text { implies } P_{2}^{\prime}<0.5-\epsilon / 2 \text { or } P_{1}^{\prime}>0.5-\epsilon / 2 \text { or } P_{3}^{\prime}>0.5-\epsilon / 2\right) \\
\geq & \frac{\epsilon^{2}}{6} . \\
& \quad \text { (by Pinsker's inequality) }
\end{aligned}
$$

We have
$\inf _{\boldsymbol{P}^{\prime}: i^{*}\left(\boldsymbol{P}^{\prime}\right) \notin \mathcal{I}^{*}\left(\boldsymbol{P}^{(2)}\right)} \sum_{i=1}^{K} r_{i}^{\operatorname{conf}}\left(\boldsymbol{P}^{(2)}\right) D\left(P_{i}^{(2)} \| P_{i}^{\prime}\right) \leq r_{2}^{\operatorname{conf}}\left(\boldsymbol{P}^{(2)}\right) D(0.5 \| 0.5-\epsilon / 2)$,
(on instance $\boldsymbol{P}^{\prime}=(0.4,0.5-\epsilon / 2,0.5-\epsilon / 2)$)
which implies $r_{i}^{\text {conf }}\left(\boldsymbol{P}^{(2)}\right)=\Omega(1)$ for the optimal allocation. Similar discussion yields $r_{3}^{\mathrm{conf}}\left(\boldsymbol{P}^{(2)}\right)=\Omega(1)$.
In the rest of this proof, we show $r_{1}^{\text {conf }}\left(\boldsymbol{P}^{(2)}\right)=O\left(\epsilon^{2}\right)$. For the ease of exposition, we drop $\left(\boldsymbol{P}^{(2)}\right)$ to denote $\boldsymbol{r}^{\text {conf }}=\left(r_{1}^{\text {conf }}, r_{2}^{\text {conf }}, r_{3}^{\text {conf }}\right)$. Lemma 4 in Garivier and Kaufmann (2016) states that the optimal solution satisfies:

$$
\begin{equation*}
\left(r_{2}^{\mathrm{conf}}+r_{1}^{\mathrm{conf}}\right) I_{\frac{r_{2}^{\mathrm{conf}}}{r_{2}^{\mathrm{conf}}+r_{1}^{\mathrm{conf}}}}\left(P_{2}^{(2)}, P_{1}^{(2)}\right)=\left(r_{2}^{\mathrm{conf}}+r_{3}^{\mathrm{conf}}\right) I_{\frac{r_{2}^{\mathrm{conf}}}{r_{2}^{\text {conf }}+r_{3}^{\text {conf }}}}\left(P_{2}^{(2)}, P_{3}^{(2)}\right) \tag{10}
\end{equation*}
$$

where

$$
I_{\alpha}\left(P_{2}^{(2)}, P_{i}^{(2)}\right)=\alpha D\left(P_{2}^{(2)}, \alpha P_{2}^{(2)}+(1-\alpha) P_{i}^{(2)}\right)+(1-\alpha) D\left(P_{i}^{(2)}, \alpha P_{2}^{(2)}+(1-\alpha) P_{i}^{(2)}\right)
$$

We can confirm that

$$
\left(r_{2}^{\mathrm{conf}}+r_{3}^{\mathrm{conf}}\right) I_{\frac{r_{2}^{\mathrm{conf}}}{r_{2}^{\mathrm{conf}}+r_{3}^{\mathrm{conf}}}}\left(P_{2}^{(2)}, P_{3}^{(2)}\right)=\Theta(1) \times \Theta\left(\epsilon^{2}\right)
$$

and

$$
\left(r_{2}^{\mathrm{conf}}+r_{1}^{\mathrm{conf}}\right) \geq r_{2}^{\mathrm{conf}}=\Theta(1)
$$

which, combined with Eq.(10), implies that

$$
I_{\frac{r_{2}^{\text {conf }}}{r_{2}^{\text {conf }}+r_{1}^{\text {conf }}}}\left(P_{2}^{(2)}, P_{1}^{(2)}\right)=\Theta\left(\epsilon^{2}\right),
$$

which implies $r_{1}^{\text {conf }}=\Theta\left(\epsilon^{2}\right)$.

D Extension to wider models

In the main body of the paper, we assumed that $P \in \mathcal{P}$ and $Q \in \mathcal{Q}$ are Bernoulli or Gaussian distributions. Many parts of the results of the paper can be extended to exponential families or distributions over a support set $\mathcal{S} \subset \mathbb{R}$.

Let us consider an exponential family of form

$$
\mathrm{d} P(x \mid \theta)=\exp \left(\theta^{\top} T(x)-A(\theta)\right) \mathrm{d} F(x)
$$

where F is a base measure and $\theta \in \Theta \subset \mathbb{R}^{d}$ is a natural parameter. We assume that $A^{\prime}(\theta)=\mathbb{E}_{X \sim F(\cdot \mid \theta)}[T(X)]$ has the inverse $\left(A^{\prime}\right)^{-1}: \operatorname{im}(T) \rightarrow \Theta$, where $\operatorname{im}(T)$ is the image of T.

Let \mathcal{P} be a class of reward distributions. \mathcal{P} can be the family of distributions over a known support $\mathcal{S} \subset \mathbb{R}$. We can also consider the case where \mathcal{P} is the above exponential family with a possibly restricted parameter set $\Theta^{\prime} \subset \Theta$. For example, \mathcal{P} can be the set of Gaussian distributions with mean parameters in $[0,1]$ and variances in $(0, \infty)$.

When we derive the lower bounds and construct algorithms, we introduce \mathcal{Q} as a class of distributions corresponding to the estimated reward distributions of the arms. We set $\mathcal{Q}=\mathcal{P}$ when \mathcal{P} is a family of distributions over a known support $\mathcal{S} \subset \mathbb{R}$. When we consider a natural exponential family with parameter set $\Theta^{\prime} \subset \Theta$, we set \mathcal{Q} as this exponential family with parameter set Θ, so that the estimator of P_{i} is always within \mathcal{Q}. For example, if we consider \mathcal{P} as a class of Gaussians with means in $[0,1]$ and variances in $(0, \infty), \mathcal{Q}$ is the class of all Gaussians with means in $(-\infty, \infty)$ and variances in $(0, \infty)$.

In Algorithm 2, we use a convex combination of distributions Q and Q^{\prime}. The key property used in the analysis is the convexity of KL divergence between distributions. When we consider the family \mathcal{P} of distributions over support set \mathcal{S}, the convexity

$$
D\left(\alpha Q+(1-\alpha) Q^{\prime} \| P\right) \leq \alpha D(Q \| P)+(1-\alpha) D\left(Q^{\prime} \| P\right)
$$

holds for any $P, Q, Q^{\prime} \in \mathcal{Q}$ when we define $\alpha Q+(1-\alpha) Q^{\prime}$ as the mixture of Q and Q^{\prime} with weight $(\alpha, 1-\alpha)$. When \mathcal{P} is the exponential family, the convexity of the KL divergence holds when $\alpha Q+(1-\alpha) Q^{\prime}$ is defined as the distribution in this family such that the expectation of the sufficient statistics $T(X)$ is equal to $\alpha \mathbb{E}_{X \sim Q}[T(X)]+(1-\alpha) \mathbb{E}_{X \sim Q^{\prime}}[T(X)]$. Note that this corresponds to taking the convex combination of the empirical means when we consider Bernoulli distributions or Gaussian distributions with a known variance.
By the convexity of the KL divergence, most parts of the analysis apply to \mathcal{P} in this section and we straightforwardly obtain the following result.
Proposition 10. Theorems 1 and 2, Corollary 3, and Lemma 4 hold under the models \mathcal{P} with the definition of the convex combination in this section.

The only part where the analysis is limited to Bernoulli or Gaussian is Theorem 5 on the PoE upper bound of the DOT algorithm. The subsequent results immediately follow if Theorem 5 is extended to the models in this section. Since the key property of the DOT algorithm in Lemma 4 on the trackability of the empirical divergence is still valid for these models, we expect that Theorem 5 can also be extended though it remains as an open question.

E Computational resources

We used a modern laptop (Macbook Pro) for learning $\boldsymbol{\theta}$. It took less than one hour to learn $\boldsymbol{\theta}$. For conducting a large number of simulations (i.e., Run TNN and existing algorithms for
10^{5} times), we used a 2-CPU Xeon server of sixteen cores. It took less than twelve hours to complete simulations. We did not use a GPU for computation.

F Implementation details

To speed up computation, the same \boldsymbol{Q} was used for each \boldsymbol{P} with the same optimal arm $i^{*}(\boldsymbol{P})$ in the mini-batches.

The final model $\boldsymbol{\theta}$ of the neural network is chosen as follows. We stored sequence of models $\boldsymbol{\theta}^{(1)}, \boldsymbol{\theta}^{(2)}, \ldots$ during training (Algorithm 3). Among these models, we chose the one with the maximum objective function $\arg \max _{l} \min _{(\boldsymbol{P}, \boldsymbol{Q}) \in\left(\mathcal{P}^{\mathrm{emp}}, \mathcal{Q}^{\text {emp }}\right)} E\left(\boldsymbol{P}, \boldsymbol{Q} ; \boldsymbol{\theta}^{(l)}\right)$. Here, the minimum is taken over a finite dataset of size $\left|\mathcal{P}^{\text {emp }}\right|=32$ and $\left|\mathcal{Q}^{\text {emp }}\right|=10^{5}$.
The black lines in Figure 1 (a)-(c) representing $\exp \left(-t \inf _{\boldsymbol{Q}} \sum_{i} r_{\boldsymbol{\theta}, i}(\boldsymbol{Q}) D\left(Q_{i} \| P_{i}\right)\right)$ are computed by the grid search of \boldsymbol{Q} with each Q_{i} separated by intervals of 5.0×10^{-3}.

G Proofs

G. 1 Proofs of Theorems 1

In this section, we prove Theorem 1. This theorem as well as its proof is a special case of Theorem 2 , but we solely prove Theorem 1 here since it is easier to follow.

In this proof, we write candidates of the true distributions and empirical distributions by $\boldsymbol{P}=\left(P_{1}, P_{2}, \ldots, P_{K}\right)$ and $\boldsymbol{Q}=\left(Q_{1}, Q_{2}, \ldots, Q_{K}\right)$, respectively. In this Sections G. 1 and G.2, we write $\boldsymbol{P}[\mathcal{A}]$ and $\boldsymbol{Q}[\mathcal{A}]$ to denote the probability of the event \mathcal{A} when the reward of each arm i follows P_{i} and Q_{i}, respectively. The entire history of the drawn arms and observed rewards is denoted by $\mathcal{H}=((I(1), X(1)),(I(2), X(2)), \ldots,(I(T), X(T)))$. We write $X_{i, n}$ to denote the reward of the n-th draw of arm i. We define $\boldsymbol{n}=\left(n_{1}, n_{2}, \ldots, n_{K}\right)$ and $\boldsymbol{r}=\left(r_{1}, r_{2}, \ldots, r_{K}\right)=\boldsymbol{n} / T$ as the numbers of draws of K arms and their fractions, respectively, for which we write $\boldsymbol{n}(\mathcal{H})$ and $\boldsymbol{r}(\mathcal{H})$ when we emphasize the dependence on the history \mathcal{H}.
We adopt the formulation of random rewards such that every $X_{i, m}$, the m-th reward of arm i is randomly generated before the game begins, and if an arm is drawn, then this reward is revealed to the player. Then $X_{i, m}$ is well defined even if the arm i is not drawn m times.

Fix an arbitrary $\epsilon>0$. We define sets of "typical" rewards under \boldsymbol{Q} : we write $\mathcal{T}_{\epsilon}(\boldsymbol{Q})$ to denote the event such that the rewards (some of which might not be revealed as noted above) satisfy

$$
\begin{equation*}
\sum_{i=1}^{K}\left|\left(n_{i} D\left(Q_{i} \| P_{i}\right)-\sum_{m=1}^{n_{i}} \log \frac{\mathrm{~d} Q_{i}}{\mathrm{~d} P_{i}}\left(X_{i, m}\right)\right)\right| \leq \epsilon T . \tag{11}
\end{equation*}
$$

By the strong law of large numbers, $\lim _{T \rightarrow \infty} \boldsymbol{Q}\left[\mathcal{T}_{\epsilon}(\boldsymbol{Q})\right]=1$.
Let $\mathcal{R}_{T} \subset \Delta_{K}$ be the set of all possible $\boldsymbol{r}=\boldsymbol{n} / T$. Since $n_{i} \in\{0,1, \ldots, T\}$ we have

$$
\left|\mathcal{R}_{T}\right| \leq(T+1)^{K}
$$

which is polynomial in T.
Consider an arbitrary algorithm π and define the "typical" allocation $\boldsymbol{r}(\boldsymbol{Q} ; \pi, \epsilon)$ and decision $J(\boldsymbol{Q} ; \pi, \epsilon)$ of the algorithm for distributions \boldsymbol{Q} as

$$
\begin{aligned}
& \boldsymbol{r}(\boldsymbol{Q} ; \pi, \epsilon)=\underset{\boldsymbol{r} \in \mathcal{R}_{T}}{\arg \max } \boldsymbol{Q}\left[\boldsymbol{r}(\mathcal{H})=\boldsymbol{r} \mid \mathcal{T}_{\epsilon}(\boldsymbol{Q})\right] \\
& J(\boldsymbol{Q} ; \pi, \epsilon)=\underset{i \in[K]}{\arg \max } \boldsymbol{Q}\left[J(T)=i \mid \boldsymbol{r}(\mathcal{H})=\boldsymbol{r}(\boldsymbol{Q} ; \pi, \epsilon), \mathcal{T}_{\epsilon}(\boldsymbol{Q})\right] .
\end{aligned}
$$

Then we have

$$
\begin{equation*}
\boldsymbol{Q}\left[\boldsymbol{r}(\mathcal{H})=\boldsymbol{r}(\boldsymbol{Q} ; \pi, \epsilon) \mid \mathcal{T}_{\epsilon}(\boldsymbol{Q})\right] \geq \frac{1}{\left|\mathcal{R}_{T}\right|} \tag{12}
\end{equation*}
$$

$$
\begin{equation*}
\boldsymbol{Q}\left[J(T)=J(\boldsymbol{Q} ; \pi, \epsilon) \mid \boldsymbol{r}(\mathcal{H})=\boldsymbol{r}(\boldsymbol{Q} ; \pi, \epsilon), \mathcal{T}_{\epsilon}(\boldsymbol{Q})\right] \geq \frac{1}{K} \tag{13}
\end{equation*}
$$

Lemma 11. Let $\epsilon>0$ and algorithm π be arbitrary. Then, for any $\boldsymbol{P}, \boldsymbol{Q}$ such that $J(\boldsymbol{Q} ; \pi, \epsilon) \neq \mathcal{I}^{*}(\boldsymbol{P})$ it holds that

$$
\frac{1}{T} \log \boldsymbol{P}\left[J(T) \notin \mathcal{I}^{*}(\boldsymbol{P})\right] \geq-\sum_{i=1}^{K} r_{i}(\boldsymbol{Q} ; \pi, \epsilon) D\left(Q_{i} \| P_{i}\right)-\epsilon-\delta_{\boldsymbol{P}, \boldsymbol{Q}, \epsilon}(T)
$$

for a function $\delta_{\boldsymbol{P}, \boldsymbol{Q}, \epsilon}(T)$ satisfying $\lim _{T \rightarrow \infty} \delta_{\boldsymbol{P}, \boldsymbol{Q}, \epsilon}(T)=0$.
Proof. For arbitrary \boldsymbol{Q} we obtain by a standard argument of a change of measures that

$$
\begin{align*}
& \boldsymbol{P}\left[J(T) \notin \mathcal{I}^{*}(\boldsymbol{P})\right] \\
& \geq \boldsymbol{P}\left[\mathcal{T}_{\epsilon}(\boldsymbol{Q}), \boldsymbol{r}(\mathcal{H})=\boldsymbol{r}(\boldsymbol{Q} ; \pi, \epsilon), J(T)=J(\boldsymbol{Q} ; \pi, \epsilon)\right] \\
& =\boldsymbol{P}\left[\mathcal{T}_{\epsilon}(\boldsymbol{Q}), \boldsymbol{r}(\mathcal{H})=\boldsymbol{r}(\boldsymbol{Q} ; \pi, \epsilon)\right] \boldsymbol{P}\left[J(T)=J(\boldsymbol{Q} ; \pi, \epsilon) \mid \mathcal{T}_{\epsilon}(\boldsymbol{Q}), \boldsymbol{r}(\mathcal{H})=\boldsymbol{r}(\boldsymbol{Q} ; \pi, \epsilon)\right] \\
& =\boldsymbol{P}\left[\mathcal{T}_{\epsilon}(\boldsymbol{Q}), \boldsymbol{r}(\mathcal{H})=\boldsymbol{r}(\boldsymbol{Q} ; \pi, \epsilon)\right] \boldsymbol{Q}\left[J(T)=J(\boldsymbol{Q} ; \pi, \epsilon) \mid \mathcal{T}_{\epsilon}(\boldsymbol{Q}), \boldsymbol{r}(\mathcal{H})=\boldsymbol{r}(\boldsymbol{Q} ; \pi, \epsilon)\right] \\
& \geq \frac{1}{K} \boldsymbol{P}\left[\mathcal{T}_{\epsilon}(\boldsymbol{Q}), \boldsymbol{r}(\mathcal{H})=\boldsymbol{r}(\boldsymbol{Q} ; \pi, \epsilon)\right] \tag{13}\\
& =\frac{1}{K} \mathbb{E}_{\boldsymbol{P}}\left[\mathbf{1}\left[\mathcal{H} \in \mathcal{T}_{\epsilon}(\boldsymbol{Q}), \boldsymbol{r}(\mathcal{H})=\boldsymbol{r}(\boldsymbol{Q} ; \pi, \epsilon)\right]\right] \\
& =\frac{1}{K} \mathbb{E}_{\boldsymbol{Q}}\left[\mathbf{1}\left[\mathcal{T}_{\epsilon}(\boldsymbol{Q}), \boldsymbol{r}(\mathcal{H})=\boldsymbol{r}(\boldsymbol{Q} ; \pi, \epsilon)\right] \prod_{t=1}^{T} \frac{\mathrm{~d} P_{I(t)}}{\mathrm{d} Q_{I(t)}}(X(t))\right] \\
& \geq \frac{1}{K} \mathbb{E}_{\boldsymbol{Q}}\left[\mathbf{1}\left[\mathcal{H} \in \mathcal{T}_{\epsilon}(\boldsymbol{Q}), \boldsymbol{r}(\mathcal{H})=\boldsymbol{r}(\boldsymbol{Q} ; \pi, \epsilon)\right]\right] \exp \left(-T \sum_{i=1}^{K} r_{b, i}(\boldsymbol{Q} ; \pi, \epsilon) D\left(Q_{i} \| P_{i}\right)-\epsilon T\right) \tag{11}
\end{align*}
$$

$=\frac{1}{K} \boldsymbol{Q}\left[\mathcal{T}_{\epsilon}(\boldsymbol{Q}), \boldsymbol{r}(\mathcal{H})=\boldsymbol{r}(\boldsymbol{Q} ; \pi, \epsilon)\right] \exp \left(-T \sum_{i=1}^{K} r_{i}(\boldsymbol{Q} ; \pi, \epsilon) D\left(Q_{i} \| P_{i}\right)-\epsilon T\right)$

$$
\begin{equation*}
\geq \frac{\boldsymbol{Q}\left[\mathcal{\mathcal { T }}_{\epsilon}(\boldsymbol{Q})\right]}{K\left|\mathcal{R}_{T}\right|} \exp \left(-T \sum_{i=1}^{K} r_{i}(\boldsymbol{Q} ; \pi, \epsilon) D\left(Q_{i} \| P_{i}\right)-\epsilon T\right) \tag{12}
\end{equation*}
$$

where (14) holds since $J(T)$ does not depend on the true distribution \boldsymbol{P} given the history \mathcal{H}. The proof is completed by letting $\delta_{\boldsymbol{P}, \boldsymbol{Q}, \epsilon}=\log \frac{\boldsymbol{Q}\left[\mathcal{H} \in \mathcal{T}_{\epsilon}(\boldsymbol{Q})\right]}{K\left|\mathcal{R}_{T}\right|}$.

Proof of Theorem 1. For each \boldsymbol{Q}, let $\boldsymbol{r}\left(\boldsymbol{Q} ;\left\{\pi_{T}\right\}, \epsilon\right), J\left(\boldsymbol{Q} ;\left\{\pi_{T}\right\}, \epsilon\right)$ be such that there exists a subsequence $\left\{T_{n}\right\}_{n} \subset \mathbb{N}$ satisfying

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \boldsymbol{r}\left(\boldsymbol{Q} ; \pi_{T_{n}}, \epsilon\right) & =\boldsymbol{r}\left(\boldsymbol{Q} ;\left\{\pi_{T}\right\}, \epsilon\right), \\
J\left(\boldsymbol{Q} ; \pi_{T_{n}}, \epsilon\right) & =J\left(\boldsymbol{Q} ;\left\{\pi_{T}\right\}, \epsilon\right), \quad \forall n .
\end{aligned}
$$

Such $\boldsymbol{r}\left(\boldsymbol{Q} ;\left\{\pi_{T}\right\}, \epsilon\right) \in \Delta_{K}$ and $J\left(\boldsymbol{Q} ;\left\{\pi_{T}\right\}, \epsilon\right) \in[K]$ exist since Δ_{K} and $[K]$ are compact. By Lemma 11, for any $J\left(\boldsymbol{Q} ;\left\{\pi_{T}\right\}, \epsilon\right) \notin \mathcal{I}^{*}(\boldsymbol{P})$ we have

$$
\begin{align*}
\liminf _{T \rightarrow \infty} \frac{1}{T} \log 1 / \boldsymbol{P}\left[J(T) \notin \mathcal{I}^{*}(\boldsymbol{P})\right] & \leq \liminf _{n \rightarrow \infty} \frac{1}{T_{n}} \log 1 / \boldsymbol{P}\left[J\left(T_{n}\right) \notin \mathcal{I}^{*}(\boldsymbol{P})\right] \\
& \leq \sum_{i=1}^{K} r_{i}\left(\boldsymbol{Q} ;\left\{\pi_{T}\right\}, \epsilon\right) D\left(Q_{i} \| P_{i}\right)+\epsilon \tag{15}
\end{align*}
$$

By taking the worst case we have

$$
\begin{aligned}
R\left(\left\{\pi_{T}\right\}\right) & =\inf _{\boldsymbol{P}} H(\boldsymbol{P}) \liminf _{T \rightarrow \infty} \frac{1}{T} \log 1 / \boldsymbol{P}\left[J(T) \notin \mathcal{I}^{*}(\boldsymbol{P})\right] \\
& \leq \inf _{\boldsymbol{P} \in \mathcal{P}^{K}, \boldsymbol{Q} \in \mathcal{Q}^{K}: J\left(\boldsymbol{Q} ;\left\{\pi_{T}\right\}, \epsilon\right) \notin \mathcal{I}^{*}(\boldsymbol{P})} H(\boldsymbol{P}) \sum_{i=1}^{K} r_{i}\left(\boldsymbol{Q} ;\left\{\pi_{T}\right\}, \epsilon\right) D\left(Q_{i} \| P_{i}\right)+\epsilon .
\end{aligned}
$$

By optimizing $\left\{\pi^{T}\right\}$ we have

$$
\begin{align*}
& R\left(\left\{\pi_{T}\right\}\right) \leq \sup _{\left\{\pi_{T}\right\}} \inf _{\boldsymbol{P} \in \mathcal{P} K} H(\boldsymbol{P}) \liminf _{T \rightarrow \infty} \frac{1}{T} \log 1 / \boldsymbol{P}\left[J(T) \notin \mathcal{I}^{*}(\boldsymbol{P})\right] \\
&=\sup _{\boldsymbol{r}(\cdot), J(\cdot)} \sup _{\left\{\pi_{T}\right\}: \boldsymbol{r}\left(\cdot ;\left\{\pi_{T}\right\}, \epsilon\right)=\boldsymbol{r}(\cdot)} \inf _{\boldsymbol{P} \in \mathcal{P}_{K}} H(\boldsymbol{P}) \liminf _{T \rightarrow \infty} \frac{1}{T} \log 1 / \boldsymbol{P}\left[J(T) \notin \mathcal{I}^{*}(\boldsymbol{P})\right] \\
& \leq \sup _{\boldsymbol{r}(\cdot), J(\cdot)}\left\{\pi_{T}\right\}: \boldsymbol{r}\left(\cdot ;\left\{\pi_{T}\right\}, \epsilon\right)=\boldsymbol{r}(\cdot) \boldsymbol{P} \in \mathcal{P}^{K}, \boldsymbol{Q} \in \mathcal{Q}^{K}: J(\boldsymbol{Q}) \notin \mathcal{I}^{*}(\boldsymbol{P}) \tag{15}\\
& \sup H(\boldsymbol{P}) \sum_{i=1}^{K} r_{i}(\boldsymbol{Q}) D\left(Q_{i} \| P_{i}\right)+\epsilon
\end{align*}
$$

$$
\leq \sup _{\boldsymbol{r}(\cdot), J(\cdot)} \inf _{\boldsymbol{P} \in \mathcal{P}^{K}, \boldsymbol{Q} \in \mathcal{Q}^{K}: J(\boldsymbol{Q}) \notin \mathcal{I}^{*}(\boldsymbol{P})} H(\boldsymbol{P}) \sum_{i=1}^{K} r_{i}(\boldsymbol{Q}) D\left(Q_{i} \| P_{i}\right)+\epsilon
$$

We obtain the desired result since $\epsilon>0$ is arbitrary.

G. 2 Proof of Theorem 2

Theorem 2 is a generalization of Theorem 1, and we consider different candidates of empirical distributions depending on the batch.

As in the case of the proof of Theorem 1, we write $\boldsymbol{P}=\left(P_{1}, P_{2}, \ldots, P_{i}\right)$ and $\boldsymbol{P}[A]$ to denote a candidate of the true distributions and the probability of the event under \boldsymbol{P}. We divide T rounds into B batches, and the b-th batch corresponds to $\left(t_{b}, t_{b}+1, \ldots, t_{b+1}-1\right)$-th rounds for $b \in[B]$ and $t_{b}=\lfloor(b-1) T / B\rfloor+1$. The entire history of the drawn arms and observed rewards is denoted by $\mathcal{H}=((I(1), X(1)),(I(2), X(2)), \ldots,(I(T), X(T)))$. We write $X_{b, i, n}$ to denote the reward of the n-th draw of arm i in the b-th batch. We define $\boldsymbol{n}_{b}=\left(n_{b, 1}, n_{b, 2}, \ldots, n_{b, K}\right)$ and $\boldsymbol{r}=\left(r_{b, 1}, r_{b, 2}, \ldots, r_{b, K}\right)=\boldsymbol{n}_{b} / T$ as the numbers of draws of K arms and their fractions in the b-th batch, respectively, for which we write $\boldsymbol{n}_{b}(\mathcal{H})$ and $\boldsymbol{r}_{b}(\mathcal{H})$ when we emphasize the dependence on the history \mathcal{H}.
We adopt the formulation of the random rewards such that every $X_{b, i, m}$, the m-th reward of arm i in the b-th batch, is randomly generated before the game begins, and if an arm is drawn then this reward is revealed to the player. Then $X_{b, i, m}$ is well-defined even if arm i is not drawn m times in the b-th batch.
Fix an arbitrary $\epsilon>0$. We define sets of "typical" rewards under \boldsymbol{Q}^{B} : we write $\mathcal{T}_{\epsilon}\left(\boldsymbol{Q}^{B}\right)$ to denote the event such that the rewards (a part of which might be unrevealed as noted above) satisfy

$$
\begin{equation*}
\sum_{i=1}^{K}\left|\left(n_{b, i} D\left(Q_{b, i} \| P_{i}\right)-\sum_{m=1}^{n_{b, i}} \log \frac{\mathrm{~d} Q_{b, i}}{\mathrm{~d} P_{i}}\left(X_{b, i, m}\right)\right)\right| \leq \epsilon T / B \tag{16}
\end{equation*}
$$

for any $b \in[B]$. By the strong law of large numbers, $\lim _{T \rightarrow \infty} \boldsymbol{Q}^{B}\left[\mathcal{T}_{\epsilon}^{B}\left(\boldsymbol{Q}^{B}\right)\right]=1$, where $\boldsymbol{Q}^{B}[\cdot]$ denotes the probability under which $X_{k}(t)$ follows distribution $Q_{b, i}$ for $t \in\left\{t_{b}, t_{b}+\right.$ $\left.1, \ldots, t_{b+1}-1\right\}$.
Let $\mathcal{R}_{T, B} \subset\left(\Delta_{K}\right)^{B}$ be the set of all possible $\boldsymbol{r}^{B}(\mathcal{H})$. Since $n_{b, i} \in\left\{0,1, \ldots, t_{b+1}-t_{b}\right\}$ and $t_{b+1}-t_{b} \leq T / B+1$, we see that

$$
\left|\mathcal{R}_{T, B}\right| \leq(T / B+2)^{K B}
$$

which is polynomial in T.
Consider an arbitrary algorithm π and define the "typical" allocation $\boldsymbol{r}^{b}\left(\boldsymbol{Q}^{b} ; \pi, \epsilon\right)$ and decision $J\left(\boldsymbol{Q}^{B} ; \pi, \epsilon\right)$ of the algorithm for distributions $\boldsymbol{Q}^{b}=\left(\boldsymbol{Q}_{1}, \boldsymbol{Q}_{2}, \ldots, \boldsymbol{Q}_{b}\right)$ as

$$
\begin{aligned}
& \boldsymbol{r}_{1}\left(\boldsymbol{Q}^{1} ; \pi, \epsilon\right)=\underset{\boldsymbol{r} \in \mathcal{R}_{T, 1}}{\arg \max } \boldsymbol{Q}^{1}\left[\boldsymbol{r}_{1}(\mathcal{H})=\boldsymbol{r} \mid \mathcal{T}_{\epsilon}\left(\boldsymbol{Q}^{B}\right)\right] \\
& \boldsymbol{r}_{b}\left(\boldsymbol{Q}^{b} ; \pi, \epsilon\right)=\underset{\boldsymbol{r} \in \mathcal{R}_{T, b}}{\arg \max } \boldsymbol{Q}^{b}\left[\boldsymbol{r}_{b}(\mathcal{H})=\boldsymbol{r} \mid \boldsymbol{r}^{b-1}\left(\mathcal{H}^{b-1}\right)=\boldsymbol{r}^{b-1}\left(\boldsymbol{Q}^{b-1} ; \pi, \epsilon\right), \mathcal{T}_{\epsilon}\left(\boldsymbol{Q}^{B}\right)\right]
\end{aligned}
$$

$$
b=2,3, \ldots, B
$$

$$
J\left(\boldsymbol{Q}^{B} ; \pi, \epsilon\right)=\underset{i \in[K]}{\arg \max } \boldsymbol{Q}^{B}\left[J(T)=i \mid \boldsymbol{r}^{B}(\mathcal{H})=\boldsymbol{r}^{B}\left(\boldsymbol{Q}^{B} ; \pi, \epsilon\right), \mathcal{T}_{\epsilon}\left(\boldsymbol{Q}^{B}\right)\right]
$$

Then we have

$$
\begin{align*}
& \boldsymbol{Q}^{B}\left[\boldsymbol{r}^{B}(\mathcal{H})=\boldsymbol{r}^{B}\left(\boldsymbol{Q}^{B} ; \pi, \epsilon\right) \mid \mathcal{T}_{\epsilon}\left(\boldsymbol{Q}^{B}\right)\right] \geq \frac{1}{\left|\mathcal{R}_{T, B}\right|}, \tag{17}\\
& \boldsymbol{Q}^{B}\left[J(T)=J\left(\boldsymbol{Q}^{B} ; \pi, \epsilon\right) \mid \boldsymbol{r}^{B}(\mathcal{H})=\boldsymbol{r}^{B}\left(\boldsymbol{Q}^{B} ; \pi, \epsilon\right), \mathcal{T}_{\epsilon}\left(\boldsymbol{Q}^{B}\right)\right] \geq \frac{1}{K} \tag{18}
\end{align*}
$$

Lemma 12. Let $\epsilon>0$ and algorithm π be arbitrary. Then, for any $\boldsymbol{P}, \boldsymbol{Q}^{B}$ such that $J\left(\boldsymbol{Q}^{B} ; \pi, \epsilon\right) \neq \mathcal{I}^{*}(\boldsymbol{P})$ it holds that

$$
\frac{1}{T} \log \boldsymbol{P}\left[J(T) \notin \mathcal{I}^{*}(\boldsymbol{P})\right] \geq-\frac{1}{B} \sum_{b=1}^{B} \sum_{i=1}^{K} r_{b, i}\left(\boldsymbol{Q}^{b} ; \pi, \epsilon\right) D\left(Q_{b, i} \| P_{i}\right)-\epsilon-\delta_{\boldsymbol{P}, \boldsymbol{Q}^{B}, \epsilon}(T)
$$

for a function $\delta_{\boldsymbol{P}, \boldsymbol{Q}^{B}, \epsilon}(T)$ satisfying $\lim _{T \rightarrow \infty} \delta_{\boldsymbol{P}, \boldsymbol{Q}^{B}, \epsilon}(T)=0$.
Proof. For arbitrary \boldsymbol{Q}^{B} we obtain by a standard argument of a change of measures that

$$
\begin{align*}
& \boldsymbol{P}\left[J(T) \notin \mathcal{I}^{*}(\boldsymbol{P})\right] \\
& \geq \boldsymbol{P}\left[\mathcal{T}_{\epsilon}\left(\boldsymbol{Q}^{B}\right), \boldsymbol{r}^{B}(\mathcal{H})=\boldsymbol{r}^{B}\left(\boldsymbol{Q}^{B} ; \pi, \epsilon\right), J(T)=J\left(\boldsymbol{Q}^{B} ; \pi, \epsilon\right)\right] \\
&= \boldsymbol{P}\left[\mathcal{T}_{\epsilon}\left(\boldsymbol{Q}^{B}\right), \boldsymbol{r}^{B}(\mathcal{H})=\boldsymbol{r}^{B}\left(\boldsymbol{Q}^{B} ; \pi, \epsilon\right)\right] \\
& \times \boldsymbol{P}\left[J(T)=J\left(\boldsymbol{Q}^{B} ; \pi, \epsilon\right) \mid \mathcal{T}_{\epsilon}\left(\boldsymbol{Q}^{B}\right), \boldsymbol{r}^{B}(\mathcal{H})=\boldsymbol{r}^{B}\left(\boldsymbol{Q}^{B} ; \pi, \epsilon\right)\right] \\
&= \boldsymbol{P}\left[\mathcal{T}_{\epsilon}\left(\boldsymbol{Q}^{B}\right), \boldsymbol{r}^{B}(\mathcal{H})=\boldsymbol{r}^{B}\left(\boldsymbol{Q}^{B} ; \pi, \epsilon\right)\right] \\
& \times \boldsymbol{Q}^{B}\left[J(T)=J\left(\boldsymbol{Q}^{B} ; \pi, \epsilon\right) \mid \mathcal{T}_{\epsilon}\left(\boldsymbol{Q}^{B}\right), \boldsymbol{r}^{B}(\mathcal{H})=\boldsymbol{r}^{B}\left(\boldsymbol{Q}^{B} ; \pi, \epsilon\right)\right] \tag{19}\\
& \geq \frac{1}{K} \boldsymbol{P}^{\boldsymbol{P}}\left[\mathcal{T}_{\epsilon}\left(\boldsymbol{Q}^{B}\right), \boldsymbol{r}^{B}(\mathcal{H})=\boldsymbol{r}^{B}\left(\boldsymbol{Q}^{B} ; \pi, \epsilon\right)\right] \tag{18}\\
&= \frac{1}{K} \mathbb{E}_{\boldsymbol{P}}\left[\mathbf{1}\left[\mathcal{H} \in \mathcal{T}_{\epsilon}\left(\boldsymbol{Q}^{B}\right), \boldsymbol{r}^{B}(\mathcal{H})=\boldsymbol{r}^{B}\left(\boldsymbol{Q}^{B} ; \pi, \epsilon\right)\right]\right] \\
&= \frac{1}{K} \mathbb{E}_{\boldsymbol{Q}^{B}}\left[\mathbf{1}\left[\mathcal{T}_{\epsilon}\left(\boldsymbol{Q}^{B}\right), \boldsymbol{r}^{B}(\mathcal{H})=\boldsymbol{r}^{B}\left(\boldsymbol{Q}^{B} ; \pi, \epsilon\right)\right] \prod_{b=1}^{B} \prod_{t=t_{b}}^{t_{b+1}-1} \frac{\mathrm{~d} P_{I(t)}}{\mathrm{d} Q_{b, I(t)}}(X(t))\right] \\
& \geq \frac{1}{K} \mathbb{E}_{\boldsymbol{Q}^{B}}\left[\mathbf{1}\left[\mathcal{H} \in \mathcal{T}_{\epsilon}\left(\boldsymbol{Q}^{B}\right), \boldsymbol{r}^{B}\left(\mathcal{H}^{B}\right)=\boldsymbol{r}^{B}\left(\boldsymbol{Q}^{B} ; \pi, \epsilon\right)\right]\right] \\
& \quad \times \exp \left(-\frac{T}{B} \sum_{b=1}^{B} \sum_{i=1}^{K} r_{b, i}\left(\boldsymbol{Q}^{b} ; \pi, \epsilon\right) D\left(Q_{b, i} \| P_{i}\right)-\epsilon T\right) \tag{16}\\
&= \frac{1}{K} \boldsymbol{Q}^{B}\left[\mathcal{T}_{\epsilon}\left(\boldsymbol{Q}^{B}\right), \boldsymbol{r}^{B}\left(\mathcal{H}^{B}\right)=\boldsymbol{r}^{B}\left(\boldsymbol{Q}^{B} ; \pi, \epsilon\right)\right] \\
& \quad \times \exp \left(-\frac{T}{B} \sum_{b=1}^{B} \sum_{i=1}^{K} r_{b, i}\left(\boldsymbol{Q}^{b} ; \pi, \epsilon\right) D\left(Q_{b, i} \| P_{i}\right)-\epsilon T\right) \\
& \geq \frac{\boldsymbol{Q}^{B}}{K}\left[\mathcal{T}_{\epsilon}\left(\boldsymbol{Q}^{B}\right)\right] \\
& K\left|\mathcal{R}_{T, B}\right| \exp \left(-\frac{T}{B} \sum_{b=1}^{B} \sum_{i=1}^{K} r_{b, i}\left(\boldsymbol{Q}^{b} ; \pi, \epsilon\right) D\left(Q_{b, i} \| P_{i}\right)-\epsilon T\right)
\end{align*}
$$

where (19) holds since $J(T)$ does not depend on the true distribution \boldsymbol{P} given the history \mathcal{H}. The proof is completed by letting $\delta_{\boldsymbol{P}, \boldsymbol{Q}^{B}, \epsilon}=\log \frac{\boldsymbol{Q}^{B}\left[\mathcal{T}_{\epsilon}\left(\boldsymbol{Q}^{B}\right)\right]}{K\left|\mathcal{R}_{T, B}\right|}$.

Proof of Theorem 2. For each \boldsymbol{Q}^{B}, let $\boldsymbol{r}^{B}\left(\boldsymbol{Q}^{B} ;\left\{\pi_{T}\right\}, \epsilon\right), J\left(\boldsymbol{Q}^{B} ;\left\{\pi_{T}\right\}, \epsilon\right)$ be such that there exists a subsequence $\left\{T_{n}\right\}_{n} \subset \mathbb{N}$ satisfying

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \boldsymbol{r}^{B}\left(\boldsymbol{Q}^{B} ; \pi_{T_{n}}, \epsilon\right) & =\boldsymbol{r}^{B}\left(\boldsymbol{Q}^{B} ;\left\{\pi_{T}\right\}, \epsilon\right), \\
J\left(\boldsymbol{Q}^{B} ; \pi_{T_{n}}, \epsilon\right) & =J\left(\boldsymbol{Q}^{B} ;\left\{\pi_{T}\right\}, \epsilon\right), \quad \forall n .
\end{aligned}
$$

Such $\boldsymbol{r}^{B}\left(\boldsymbol{Q}^{B} ;\left\{\pi_{T}\right\}, \epsilon\right) \in\left(\Delta_{K}\right)^{B}$ and $J\left(\boldsymbol{Q}^{B} ;\left\{\pi_{T}\right\}, \epsilon\right) \in[K]$ exist since $\left(\Delta_{K}\right)^{B}$ and $[K]$ are compact. By Lemma 12 , for any $J\left(\boldsymbol{Q}^{B} ;\left\{\pi_{T}\right\}, \epsilon\right) \notin \mathcal{I}^{*}(\boldsymbol{P})$ we have

$$
\begin{align*}
\liminf _{T \rightarrow \infty} \frac{1}{T} \log 1 / \boldsymbol{P}\left[J(T) \notin \mathcal{I}^{*}(\boldsymbol{P})\right] & \leq \liminf _{n \rightarrow \infty} \frac{1}{T_{n}} \log 1 / \boldsymbol{P}\left[J\left(T_{n}\right) \notin \mathcal{I}^{*}(\boldsymbol{P})\right] \\
& \leq \frac{1}{B} \sum_{b=1}^{B} \sum_{i=1}^{K} r_{b, i}\left(\boldsymbol{Q}^{b} ;\left\{\pi_{T}\right\}, \epsilon\right) D\left(Q_{b, i} \| P_{i}\right)+\epsilon \tag{20}
\end{align*}
$$

By taking the worst case we have

$$
\begin{aligned}
R\left(\left\{\pi_{T}\right\}\right) & =\inf _{\boldsymbol{P}} H(\boldsymbol{P}) \liminf _{T \rightarrow \infty} \frac{1}{T} \log 1 / \boldsymbol{P}\left[J(T) \notin \mathcal{I}^{*}(\boldsymbol{P})\right] \\
& \leq \inf _{\boldsymbol{P} \in \mathcal{P}^{K}, \boldsymbol{Q}^{B} \in \mathcal{Q}^{K B}: J\left(\boldsymbol{Q}^{B} ;\left\{\pi_{T}\right\}, \epsilon\right) \notin \mathcal{I}^{*}(\boldsymbol{P})} \frac{H(\boldsymbol{P})}{B} \sum_{b=1}^{B} \sum_{i=1}^{K} r_{b, i}\left(\boldsymbol{Q}^{b} ;\left\{\pi_{T}\right\}, \epsilon\right) D\left(Q_{b, i} \| P_{i}\right)+\epsilon .
\end{aligned}
$$

By optimizing $\left\{\pi^{T}\right\}$ we have

$$
\begin{aligned}
R\left(\left\{\pi_{T}\right\}\right) & \leq \sup _{\left\{\pi_{T}\right\}} \inf _{\boldsymbol{P} \in \mathcal{P}^{K}} H(\boldsymbol{P}) \liminf _{T \rightarrow \infty} \frac{1}{T} \log 1 / \boldsymbol{P}\left[J(T) \notin \mathcal{I}^{*}(\boldsymbol{P})\right] \\
& =\sup _{\boldsymbol{r}^{B}(\cdot), J(\cdot)\left\{\pi_{T}\right\}: \boldsymbol{r}^{B}\left(\cdot ;\left\{\pi_{T}\right\}, \epsilon\right)=\boldsymbol{r}^{B}(\cdot)} \sup _{\boldsymbol{P} \in \mathcal{P}^{K}} \frac{H(\boldsymbol{P})}{B} \liminf _{T \rightarrow \infty} \frac{1}{T} \log 1 / \boldsymbol{P}\left[J(T) \notin \mathcal{I}^{*}(\boldsymbol{P})\right] \\
& \leq \sup _{\boldsymbol{r}^{B}(\cdot), J(\cdot)\left\{\pi_{T}\right\}: \boldsymbol{r}^{B}\left(\cdot ;\left\{\pi_{T}\right\}, \epsilon\right)=\boldsymbol{r}^{B}(\cdot)} \sup _{\boldsymbol{P} \in \mathcal{P}^{K}, \boldsymbol{Q}^{B} \in \mathcal{Q}^{K B}: J\left(\boldsymbol{Q}^{B}\right) \notin \mathcal{I}^{*}(\boldsymbol{P})} \frac{H(\boldsymbol{P})}{B} \sum_{b=1}^{B} \sum_{i=1}^{K} r_{b, i}\left(\boldsymbol{Q}^{b}\right) D\left(Q_{b, i} \| P_{i}\right)+\epsilon
\end{aligned}
$$

$$
\text { (by }(20))
$$

$$
\leq \sup _{\boldsymbol{r}^{B}(\cdot), J(\cdot)} \inf _{\boldsymbol{P} \in \mathcal{P}^{K}, \boldsymbol{Q}^{B} \in \mathcal{Q}^{K B}: J\left(\boldsymbol{Q}^{B}\right) \notin \mathcal{I}^{*}(\boldsymbol{P})} \frac{H(\boldsymbol{P})}{B} \sum_{b=1}^{B} \sum_{i=1}^{K} r_{b, i}\left(\boldsymbol{Q}^{b}\right) D\left(Q_{b, i} \| P_{i}\right)+\epsilon
$$

We obtain the desired result since $\epsilon>0$ is arbitrary.

G. 3 Proof of Corollary 3

Proof of Corollary 3. We have
R_{B}^{go}
$:=\sup _{\boldsymbol{r}^{B}\left(\boldsymbol{Q}^{B}\right), J\left(\boldsymbol{Q}^{B}\right)} \inf _{\boldsymbol{Q}^{B}} \inf _{\boldsymbol{P}: J\left(\boldsymbol{Q}^{B}\right) \notin \mathcal{I}^{*}(\boldsymbol{P})} \frac{H(\boldsymbol{P})}{B} \sum_{i \in[K], b \in[B]} r_{b, i} D\left(Q_{b, i} \| P_{i}\right)$
$\leq \sup _{\boldsymbol{r}^{B}\left(\boldsymbol{Q}^{B}\right), J\left(\boldsymbol{Q}^{B}\right)} \inf _{\boldsymbol{Q}^{B}: \boldsymbol{Q}_{1}=\boldsymbol{Q}_{2}=\cdots=\boldsymbol{Q}_{B} \boldsymbol{P}: J\left(\boldsymbol{Q}^{B}\right) \notin \mathcal{I}^{*}(\boldsymbol{P})} \frac{H(\boldsymbol{P})}{B} \sum_{i \in[K], b \in[B]} r_{b, i} D\left(Q_{b, i} \| P_{i}\right) \quad$ (inf over a subset).
$=\sup _{\boldsymbol{r}^{B}(\boldsymbol{Q}), J(\boldsymbol{Q})} \inf _{\boldsymbol{Q}} \inf _{\boldsymbol{P}: J(\boldsymbol{Q}) \notin \mathcal{I}^{*}(\boldsymbol{P})} H(\boldsymbol{P}) \sum_{i \in[K]}\left(\frac{1}{B} \sum_{b \in[B]} r_{b, i}\right) D\left(Q_{i} \| P_{i}\right)$
(by denoting $\boldsymbol{Q}=\boldsymbol{Q}_{1}=\boldsymbol{Q}_{2}=\ldots \boldsymbol{Q}_{B}$)
$=\sup _{\boldsymbol{r}(\boldsymbol{Q}), J(\boldsymbol{Q})} \inf _{\boldsymbol{Q}} \inf _{\boldsymbol{P}: J(\boldsymbol{Q}) \notin \mathcal{I}^{*}(\boldsymbol{P})} H(\boldsymbol{P}) \sum_{i \in[K]} r_{i} D\left(Q_{i} \| P_{i}\right)$
(by letting $\left.r_{i}=(1 / B) \sum_{b} r_{b, i}\right)$
$=R^{\text {go }} \quad$ (by definition).

G. 4 Additional lemmas

The following lemma is used to derive the regret bound.
Lemma 13. Assume that we run Algorithm 2. Then, for any $B_{C} \in K, K+1, \ldots, B$, it follows that

$$
\begin{equation*}
\sum_{i, b \in\left[B_{C}\right]} r_{b, i} D\left(Q_{b, i} \| P_{i}\right) \geq \sum_{i, a \in\left[B_{C}-K\right]} r_{a, i}^{*} D\left(Q_{a, i}^{\prime} \| P_{i}\right)+\sum_{i \in[K]} D\left(Q_{B_{C}-K+1, i}^{\prime} \| P_{i}\right) \tag{21}
\end{equation*}
$$

Proof of Lemma 13. We use induction over $B_{C} \geq K$. (i) It is trivial to derive Eq. (21) for $B_{C}=K$. (ii) Assume that Eq. (21) holds for B_{C}. In batch $B_{C}+1$, the algorithm draws arms in accordance with allocation $\boldsymbol{r}_{B_{C}+1}=\boldsymbol{r}_{B_{C}-K+1}^{*}$. We have,

$$
\begin{aligned}
& \quad \sum_{i \in[K], b \in\left[B_{C}+1\right]} r_{b, i} D\left(Q_{b, i} \| P_{i}\right) \\
& \geq \sum_{i \in[K], a \in\left[B_{C}-K\right]} r_{a, i}^{*} D\left(Q_{a, i}^{\prime} \| P_{i}\right)+\sum_{i \in[K]} D\left(Q_{B_{C}-K+1, i}^{\prime} \| P_{i}\right)+\underbrace{\sum_{i} r_{B_{C}+1, i} D\left(Q_{B_{C}+1, i} \| P_{i}\right)}_{\text {Batch } B_{C}+1} \\
& \quad \text { (by the assumption of the induction) } \\
& =\sum_{i}\left(\sum_{a \in\left[B_{C}-K\right]} r_{a, i}^{*} D\left(Q_{a, i}^{\prime} \| P_{i}\right)+r_{B_{C}-K+1, i}^{*} D\left(Q_{B_{C}-K+1, i}^{\prime} \| P_{i}\right)\right)+\sum_{i}\left(1-r_{B_{C}-K+1, i}^{*}\right) D\left(Q_{B_{C}-K+1, i}^{\prime} \| P_{i}\right) \\
& \quad+\sum_{i} r_{B_{C}+1, i} D\left(Q_{B_{C}+1, i} \| P_{i}\right) \\
& =\sum_{i}\left(\sum_{a \in\left[B_{C}-K\right]} r_{a, i}^{*} D\left(Q_{a, i}^{\prime} \| P_{i}\right)+r_{B_{C}-K+1, i}^{*} D\left(Q_{B_{C}-K+1, i}^{\prime} \| P_{i}\right)\right)+\sum_{i}\left(1-r_{B_{C}+1, i}\right) D\left(Q_{B_{C}-K+1, i}^{\prime} \| P_{i}\right) \\
& \quad+\sum_{i} r_{B_{C}+1, i} D\left(Q_{B_{C}+1, i} \| P_{i}\right)
\end{aligned}
$$

(by definition)

$$
=\sum_{i}\left(\sum_{a \in\left[B_{C}-K\right]} r_{a, i}^{*} D\left(Q_{a, i}^{\prime} \| P_{i}\right)+r_{B_{C}-K+1, i}^{*} D\left(Q_{B_{C}-K+1, i}^{\prime} \| P_{i}\right)\right)+\sum_{i} D\left(Q_{B_{C}-K+2, i}^{\prime} \| P_{i}\right)
$$

(by Jensen's inequality and $\left.Q_{B_{C}-K+2, i}^{\prime}=r_{B_{C}+1, i} Q_{B_{C}+1, i}+\left(1-r_{B_{C}+1, i}\right) Q_{B_{C}-K+1, i}^{\prime}\right)$

$$
=\sum_{i} \sum_{a \in\left[B_{C}-K+1\right]} r_{a, i}^{*} D\left(Q_{a, i}^{\prime} \| P_{i}\right)+\sum_{i} D\left(Q_{B_{C}-K+2, i}^{\prime} \| P_{i}\right)
$$

G. 5 Proof of Lemma 4

Proof of Lemma 4.

$$
\begin{aligned}
\sum_{i, b \in[B+K-1]} r_{b, i} D\left(Q_{b, i} \| P_{i}\right) & \geq \sum_{i, b \in[B-1]} r_{b, i}^{*} D\left(Q_{b, i}^{\prime} \| P_{i}\right)+\sum_{i} D\left(Q_{B, i}^{\prime} \| P_{i}\right) \\
& \geq \sum_{i, b \in[B]} r_{b, i}^{*} D\left(Q_{b, i}^{\prime} \| P_{i}\right) \\
& \geq \frac{B\left(R_{B}^{\text {go }}-\epsilon\right)}{H(\boldsymbol{P})} \quad \text { (by definition of } \epsilon \text {-optimal solution) }
\end{aligned}
$$

G. 6 Proof of Theorem 5

Proof of Theorem 5, Bernoulli rewards. Since the reward is binary, the possible values that $Q_{b, i}$ lie in a finite set

$$
\mathcal{V}=\left\{\frac{l}{m}: l \in \mathbb{N}, m \in \mathbb{N}^{+}\right\}
$$

where it is easy to prove $|\mathcal{V}| \leq(T /(B+K-1)+2)^{2} \leq(T / B+2)^{2}$. We have

$$
\begin{aligned}
\mathbb{P}\left[J(T) \notin \mathcal{I}^{*}(\boldsymbol{P})\right] & =\sum_{\boldsymbol{V}_{1}, \ldots, \boldsymbol{V}_{B} \in \mathcal{V}^{K}} \mathbb{P}\left[J(T) \notin \mathcal{I}^{*}(\boldsymbol{P}), \bigcap_{b}\left\{\boldsymbol{Q}_{b}=\boldsymbol{V}_{b}\right\}\right] \\
& =\sum_{\boldsymbol{V}_{1}, \ldots, \boldsymbol{V}_{B} \in \mathcal{V}^{K}: J^{*}\left(\boldsymbol{V}_{1}, \ldots, \boldsymbol{V}_{B}\right) \notin \mathcal{I}^{*}(\boldsymbol{P})} \mathbb{P}\left[\bigcap_{b}\left\{\boldsymbol{Q}_{b}=\boldsymbol{V}_{b}\right\}\right] .
\end{aligned}
$$

By using the Chernoff bound, we have

$$
\begin{equation*}
\mathbb{P}\left[Q_{b, i}=\left.V_{b, i}\right|_{b^{\prime} \in[b-1]}\left\{\boldsymbol{Q}_{b^{\prime}}=\boldsymbol{V}_{b^{\prime}}\right\}\right] \leq e^{-\frac{T^{\prime}}{B+K-1} r_{b, i} D\left(V_{b, i} \| P_{i}\right)} \tag{22}
\end{equation*}
$$

and thus

$$
\begin{align*}
& \mathbb{P}\left[\bigcap_{b}\left\{\boldsymbol{Q}_{b}=\boldsymbol{V}_{b}\right\}\right] \\
& =\prod_{b} \mathbb{P}\left[\boldsymbol{Q}_{b}=\left.\boldsymbol{V}_{b}\right|_{b^{\prime}=1} ^{b-1}\left\{\boldsymbol{Q}_{b^{\prime}}=\boldsymbol{V}_{b^{\prime}}\right\}\right] \\
& \leq \prod_{b} e^{-\frac{T^{\prime}}{B+K-1} \sum_{i} r_{b, i} D\left(V_{b, i} \| P_{i}\right)} \quad \text { (by Eq. (22)) } \\
& =e^{-\frac{T^{\prime}}{B+K-1} \sum_{b, i} r_{b, i} D\left(V_{b, i} \| P_{i}\right)} \tag{23}
\end{align*}
$$

Furthermore,

$$
\begin{aligned}
\mathbb{P} & {\left[\bigcap_{b}\left\{\boldsymbol{Q}_{b}=\boldsymbol{V}_{b}\right\}\right] } \\
= & \mathbb{P}\left[\bigcap_{b}\left\{\boldsymbol{Q}_{b}=\boldsymbol{V}_{b}\right\}, \sum_{i, b \in[B+K-1]} r_{b, i} D\left(Q_{b, i} \| P_{i}\right) \geq \frac{B\left(R_{B}^{\mathrm{go}}-\epsilon\right)}{H(\boldsymbol{P})}\right] \\
& (\text { by Lemma } 4) . \\
= & \mathbb{P}\left[\bigcap_{b}\left\{\boldsymbol{Q}_{b}=\boldsymbol{V}_{b}\right\}\right] \mathbb{P}\left[\sum_{i, b \in[B+K-1]} r_{b, i} D\left(Q_{b, i}| | P_{i}\right) \geq\left.\frac{B\left(R_{B}^{\mathrm{go}}-\epsilon\right)}{H(\boldsymbol{P})}\right|_{b}\left\{\boldsymbol{Q}_{b}=\boldsymbol{V}_{b}\right\}\right] \\
= & \mathbb{P}\left[\bigcap_{b}\left\{\boldsymbol{Q}_{b}=\boldsymbol{V}_{b}\right\}\right] \mathbb{P}\left[\sum_{i, b \in[B+K-1]} r_{b, i} D\left(V_{b, i} \| P_{i}\right) \geq \frac{B\left(R_{B}^{\mathrm{go}}-\epsilon\right)}{H(\boldsymbol{P})}\right] \\
= & \mathbb{P}\left[\bigcap_{b}\left\{\boldsymbol{Q}_{b}=\boldsymbol{V}_{b}\right\}\right] \mathbb{E}\left[\mathbf{1}\left[\sum_{i, b \in[B+K-1]} r_{b, i} D\left(V_{b, i} \| P_{i}\right) \geq \frac{B\left(R_{B}^{\mathrm{go}}-\epsilon\right)}{H(\boldsymbol{P})}\right]\right]
\end{aligned}
$$

$$
\begin{align*}
\leq & e^{-\frac{T^{\prime}}{B+K-1} \sum_{b, i} r_{b, i} D\left(V_{b, i} \| P_{i}\right)} \mathbb{E}\left[\mathbf{1}\left[\sum_{i, b \in[B+K-1]} r_{b, i} D\left(V_{b, i} \| P_{i}\right) \geq \frac{B\left(R_{B}^{\mathrm{go}}-\epsilon\right)}{H(\boldsymbol{P})}\right]\right] \\
& (\text { by Eq. }(23)) \\
= & \mathbb{E}\left[e^{-\frac{T^{\prime}}{B+K-1} \sum_{b, i} r_{b, i} D\left(V_{b, i} \| P_{i}\right)} \mathbf{1}\left[\sum_{i, b \in[B+K-1]} r_{b, i} D\left(V_{b, i} \| P_{i}\right) \geq \frac{B\left(R_{B}^{\mathrm{go}}-\epsilon\right)}{H(\boldsymbol{P})}\right]\right] \\
\leq & \mathbb{E}\left[e^{-\frac{T^{\prime}}{B+K-1} \frac{B\left(R_{B}^{\mathrm{go}}-\epsilon\right)}{H(P)}}\right] \\
= & e^{-\frac{T^{\prime}}{B+K-1} \frac{B\left(R_{B}^{\mathrm{g}}-\epsilon\right)}{H(P)}} . \tag{24}
\end{align*}
$$

Therefore, we have

$$
\begin{aligned}
\mathbb{P} & {\left[J(T) \notin \mathcal{I}^{*}(\boldsymbol{P})\right] } \\
\leq & \sum_{\boldsymbol{V}_{1}, \ldots, \boldsymbol{V}_{B} \in \mathcal{V}^{K}} e^{-\frac{B}{B+K-1} \frac{\left(R_{B}^{\mathrm{go}}-\epsilon\right) T^{\prime}}{H(\boldsymbol{P})}} \\
& (\text { by Eq. }(24)) \\
\leq & (T / B+2)^{2 K B} e^{-\frac{B}{B+K-1} \frac{\left(R_{B}^{\mathrm{go}}-\epsilon\right) T^{\prime}}{H(\boldsymbol{P})}}
\end{aligned}
$$

Here, $\log \left((T / B+2)^{2 K B}\right)=o(T)$ to T when we consider K, B as constants.

Proof of Theorem 5, Normal rewards. For the ease of discussion, we assume unit variance $\sigma=1$. Extending it to the case of common known variance σ is straightforward. Let

$$
\mathcal{B}=\bigcup_{i, b}\left\{\left|Q_{b, i}\right| \geq T\right\}
$$

Then, it is easy to see

$$
\mathbb{P}[\mathcal{B}]=T^{2 K B} O\left(e^{-T^{2} / 2}\right)
$$

which is negligible because $\log (1 / \mathbb{P}[\mathcal{B}]) / T$ diverges.
The PoE is bounded as

$$
\mathbb{P}\left[J(T) \notin \mathcal{I}^{*}(\boldsymbol{P})\right]=\mathbb{P}\left[J(T) \notin \mathcal{I}^{*}(\boldsymbol{P}), \mathcal{B}^{c}\right]+\mathbb{P}[\mathcal{B}]
$$

We have,

$$
\begin{align*}
& \mathbb{P}\left[J(T) \notin \mathcal{I}^{*}(\boldsymbol{P}), \mathcal{B}^{c}\right] \\
& =\int_{-T}^{T} \ldots \int_{-T}^{T} \mathbf{1}\left[J(T) \notin \mathcal{I}^{*}(\boldsymbol{P})\right] p\left(\boldsymbol{Q}_{B} \mid \boldsymbol{Q}_{B-1} \ldots \boldsymbol{Q}_{1}\right) \mathrm{d} \boldsymbol{Q}_{B} \ldots p\left(\boldsymbol{Q}_{B} \mid \boldsymbol{Q}_{B-1} \ldots \boldsymbol{Q}_{1}\right) \mathrm{d} \boldsymbol{Q}_{b} \ldots p\left(\boldsymbol{Q}_{1}\right) \mathrm{d} \boldsymbol{Q}_{1} . \tag{25}
\end{align*}
$$

Here,

$$
\begin{aligned}
p\left(\boldsymbol{Q}_{b} \mid \boldsymbol{Q}_{b-1} \ldots \boldsymbol{Q}_{1}\right) & =\prod_{i \in[K]} \frac{n_{b, i}}{\sqrt{2 \pi}} \exp \left(-\frac{n_{b, i}\left(Q_{b, i}-P_{i}\right)^{2}}{2}\right) \\
& =\prod_{i \in[K]} \frac{n_{b, i}}{\sqrt{2 \pi}} \exp \left(-n_{b, i} D\left(Q_{b, i}| | P_{i}\right)\right) \\
& \leq \prod_{i \in[K]} T \exp \left(-n_{b, i} D\left(Q_{b, i}| | P_{i}\right)\right)
\end{aligned}
$$

Finally, we have

$$
\begin{aligned}
(25) & \leq T^{B K} \int_{-T}^{T} \cdots \int_{-T}^{T} \mathbf{1}\left[J(T) \notin \mathcal{I}^{*}(\boldsymbol{P})\right] \prod_{i \in[K]} \prod_{b \in[B+K-1]} \exp \left(-n_{b, i} D\left(Q_{b, i} \| P_{i}\right)\right) \mathrm{d} \boldsymbol{Q}_{B} \ldots \mathrm{~d} \boldsymbol{Q}_{1} \\
& \leq T^{B K} \int_{-T}^{T} \cdots \int_{-T}^{T} \mathbf{1}\left[J(T) \notin \mathcal{I}^{*}(\boldsymbol{P})\right] \prod_{i \in[K] b \in[B+K-1]} \prod_{b-1} \exp \left(-\frac{T^{\prime} r^{(b, i)}}{B+K-1} D\left(Q_{b, i} \| P_{i}\right)\right) \mathrm{d} \boldsymbol{Q}_{B} \ldots \mathrm{~d} \boldsymbol{Q}_{1} \\
& \leq T^{B K} \int_{-T}^{T} \cdots \int_{-T}^{T} \mathbf{1}\left[J(T) \notin \mathcal{I}^{*}(\boldsymbol{P})\right] \exp \left(-\frac{B}{B+K-1} \frac{\left(R_{B}^{\text {go }}-\epsilon\right) T^{\prime}}{H(\boldsymbol{P})}\right) \mathrm{d} \boldsymbol{Q}_{B} \ldots \mathrm{~d} \boldsymbol{Q}_{1} \quad \text { (by Lemma 4) } \\
& \leq T^{B K} \int_{-T}^{T} \cdots \int_{-T}^{T} \exp \left(-\frac{B}{B+K-1} \frac{\left(R_{B}^{\text {go }}-\epsilon\right) T^{\prime}}{H(\boldsymbol{P})}\right) \mathrm{d} \boldsymbol{Q}_{B} \ldots \mathrm{~d} \boldsymbol{Q}_{1} \\
& \leq T^{B K}(2 T)^{B K} \exp \left(-\frac{B}{B+K-1} \frac{\left(R_{B}^{\text {go }}-\epsilon\right) T^{\prime}}{H(\boldsymbol{P})}\right) .
\end{aligned}
$$

G. 7 Proof of Theorem 7

Proof of Theorem 7. We first show that the limit

$$
R_{\infty}^{\mathrm{go}}=\lim _{B \rightarrow \infty} R_{B}^{\mathrm{go}}
$$

exists. Namely, for any $\eta>0$ there exists $B_{0} \in \mathbb{N}$ such that for any $B_{1}>B_{0}$ we have

$$
\left|R_{B_{0}}^{\mathrm{go}}-R_{B_{1}}^{\mathrm{go}}\right| \leq \eta .
$$

Theorem 5 implies that Algorithm 2 with $B=B_{0}$ and $\epsilon=\eta / 2$ satisfies 15

$$
\liminf _{T \rightarrow \infty} \frac{\log \left(1 / \mathbb{P}\left[J(T) \notin \mathcal{I}^{*}(\boldsymbol{P})\right]\right)}{T} \geq \frac{B_{0}}{B_{0}+K-1} \frac{R_{B_{0}}^{\mathrm{go}}-\eta / 2}{H(\boldsymbol{P})}
$$

and thus

$$
\begin{equation*}
\inf H(\boldsymbol{P}) \liminf _{T \rightarrow \infty} \frac{\log \left(1 / \mathbb{P}\left[J(T) \notin \mathcal{I}^{*}(\boldsymbol{P})\right]\right)}{T} \geq \frac{B_{0}}{B_{0}+K-1}\left(R_{B_{0}}^{\mathrm{go}}-\frac{\eta}{2}\right) . \tag{26}
\end{equation*}
$$

Moreover, Theorem 2 implies that any algorithm satisfies

$$
\begin{equation*}
\inf H(\boldsymbol{P}) \limsup _{T \rightarrow \infty} \frac{\log \left(1 / \mathbb{P}\left[J(T) \notin \mathcal{I}^{*}(\boldsymbol{P})\right]\right)}{T} \leq R_{B_{1}}^{\text {go }} \tag{27}
\end{equation*}
$$

Combining Eq. (26) and Eq. (27), we have

$$
\frac{B_{0}}{B_{0}+K-1}\left(R_{B_{0}}^{\mathrm{go}}-\eta / 2\right) \leq R_{B_{1}}^{\mathrm{go}}
$$

and thus

$$
\begin{aligned}
R_{B_{0}}^{\mathrm{go}} & \leq R_{B_{1}}^{\mathrm{go}}+\frac{\eta}{2}+\frac{K-1}{B_{0}+K-1} R_{B_{0}}^{\mathrm{go}} \\
& \leq R_{B_{1}}^{\mathrm{go}}+\frac{\eta}{2}+\frac{K-1}{B_{0}+K-1} R^{\mathrm{go}} \quad(\text { by Corollary } 3) \\
& \leq R_{B_{1}}^{\mathrm{go}}+\frac{\eta}{2}+\frac{\eta}{2} \quad\left(\text { by } K \geq 2, \text { by taking } B_{0} \geq 2 K R^{\mathrm{go}} / \eta\right)
\end{aligned}
$$

[^0]$$
\leq R_{B_{1}}^{\mathrm{go}}+\eta
$$

By swapping B_{0}, B_{1}, it is easy to show that

$$
R_{B_{1}}^{\mathrm{go}} \leq R_{B_{0}}^{\mathrm{go}}+\eta
$$

and thus

$$
\left|R_{B_{0}}^{\mathrm{go}}-R_{B_{1}}^{\mathrm{go}}\right| \leq \eta,
$$

which implies that the limit exists. It is easy to confirm that the performance of Algorithm 2 with any $B \geq 2 K R^{\mathrm{go}} / \eta$ and $\epsilon=\eta / 2$ satisfies Eq. (6).

[^0]: ${ }^{15}$ Strictly speaking, Algorithm 2 depends on T, and we take sequence of the algorithm $\left(\pi_{\mathrm{DOT}, T}\right)_{T=1,2, \ldots}$.

