
Table 1: Major notation
symbol definition
K number of the arms
T number of the rounds
B number of the batches
TB = T/(B +K − 1)
T ′ = T − (B +K − 1)K
I(t) arm selected at round t
X(t) reward at round t
J(T ) recommendation arm at the end of round T
P hypothesis class of P
Q distribution of estimated parameter of Q
P ∈ PK true parameters
Pi ∈ P i-th component of P
I∗ = I∗(P ) set of best arms under parameter P
i∗(P ) one arm in I∗(P ) (taken arbitrary in a deterministic way)
Q ∈ QK estimated parameters of P
Qi ∈ Q i-th component of Q
Qb ∈ QK estimated parameters of b-th batch
Qb,i ∈ Q i-th component of Qb

Qb ∈ QKb = (Q1,Q2, . . . ,Qb)
Q′

b ∈ QK stored parameters (in Algorithm 2)
Q′

b,i ∈ Q i-th component of Q′
b

D(Q∥P ) KL divergence between Q and P
∆K probability simplex in K dimensions
r ∈ ∆K allocation (proportion of arm draws)
ri i-th component of r
rb ∈ ∆K allocation at b-th batch
rb,i i-th component of rb
rb = (r1, r2, . . . , rb)
nb numbers of draws of Algorithm 2 at b-th batch
nb,i i-th component of nb. Note that nb,i ≥ rb,i(TB −K) holds.
J(QB) recommendation arm given QB

(rB,∗, J∗) ϵ-optimal allocation
H(·) complexity measure of instances
R({πT }) worst-case rate of PoE of sequence of algorithms {πT } in (1)
Rgo best possible R({πT }) for oracle algorithms in (2)
Rgo

B best possible R({πT }) for B-batch oracle algorithms in (3)
Rgo

∞ limB→∞ Rgo
B . Limit exists (Theorem 7)

θ model parameter of the neural network
rθ allocation by a neural network with model parameters θ
rθ,i i-th component of rθ

A Notation table

Table 1 summarizes our notation.

B Uniform optimality in the fixed-confidence setting

For sufficiently small δ > 0, the asymptotic sample complexity for the FC setting is known.

13



Namely, any fixed-confidence δ-PAC algorithm require at least Cconf(P ) log δ−1 + o(log δ−1)
samples, where

Cconf(P ) =

(
sup

r(P )∈∆K

inf
P ′:i∗(P ′)/∈I∗(P )

K∑
i=1

riD(Pi∥P ′
i )

)−1

. (8)

Garivier and Kaufmann (2016) proposed C-Tracking and D-Tracking algorithms that have
a sample complexity bound that matches Eq. (8). This achievability bound implies that
there is no tradeoff between the performances for different instances P , and sacrificing
the performance for some P never improves the performance for another P ′. To be more
specific, for example, even if we consider a (δ-correct) algorithm that has a suboptimal
sample complexity of 2Cconf(P ) log δ−1+o(log δ−1) for some instance P , it is still impossible
to achieve sample complexity better than Cconf(Q) log δ−1 + o(log δ−1) for another instance
P ′ as far as the algorithm is δ-PAC.

C Suboptimal performance of fixed-confidence algorithms in view
of fixed-budget setting

This section shows that an optimal algorithm for the FC-BAI can be arbitrarily bad for the
FB-BAI.
For a small ϵ ∈ (0, 0.1), consider a three-armed Bernoulli bandit instance with P (1) =
(0.6, 0.5, 0.5− ϵ) and P (2) = (0.4, 0.5, 0.5− ϵ). Here, the best arm is arm 1 (resp. arm 2) in
the instance P (1) (resp. P (2)).
Let rconf(P ) = (rconf1 (P ), rconf2 (P ), rconf3 (P )) be the optimal FC allocation of Eq. (8). The
following characterizes the optimal allocation for P (1),P (2):
Lemma 8. The optimal solution of Eq. (8) for instance P (1) satisfies the following:

rconf1 (P (1)), rconf2 (P (1)), rconf3 (P (1)) ≥ 0.07 = Θ(1).

Lemma 9. The optimal solution of Eq. (8) for instance P (2) satisfies the following:

rconf1 (P (2)), rconf2 (P (2)), rconf3 (P (2)) = Θ(ϵ2),Θ(1),Θ(1).

These two lemmas are derived in Section C.1.
Assume that we run an FC algorithm that draws arms according to allocation rconf(·) in an
FB problem with T rounds. Under the parameters P (2), it draws arm 1 for O(ϵ2) + o(T )
times. Letting δ = P (1)[J(T ) = 2], Lemma 1 in Kaufmann et al. (2016) implies that

(TO(ϵ2) + o(T ))D(0.4∥0.6) ≥ d(P (2)[J(T ) = 2],P (1)[J(T ) = 2])

≥ d(1/2,P (1)[J(T ) = 2]) (assuming the consistency of algorithm)

=
1

2

(
log

(
1

2δ

)
+ log

(
1

2(1− δ)

))
≥ 1

2
log

(
1

2δ

)
,

which implies

P (1)[J(T ) = 2] = δ ≥ 1

2
exp

(
−2
(
TO(ϵ2) + o(T )

)
D(0.4∥0.6)

)
. (9)

The exponent of Eq.(9) can be arbitrarily small as ϵ→ +0. In other words, the rate of this
algorithm can be arbitrarily close to 0, while the complexity is H1(P

(1)) = Θ(1). This fact
implies that the optimal algorithm for the FC-BAI has an arbitrarily bad performance in
terms of the minimax rate of the FB-BAI.

14



C.1 Proofs of Lemmas 8 and 9

Proof of Lemma 8. For r = (1/3, 1/3, 1/3), we have

inf
P ′:i∗(P ′)/∈I∗(P (1))

K∑
i=1

riD(P
(1)
i ∥P

′
i ) >

1

3
min (D(0.6∥0.55), D(0.5∥0.55))

(by i∗(P ′) /∈ I∗(P (1)) implies P ′
1 < 0.55 or P ′

2 > 0.55 or P ′
3 > 0.55)

≥ 1/600.

We have

inf
P ′:i∗(P ′)/∈I∗(P )

K∑
i=1

rconf1 (P (1))D(Pi∥P ′
i ) ≤ rconf1 (P (1))D(0.6∥0.5)

(on instance P ′ = (0.5, 0.5, 0.5− ϵ))
≤ 0.021r1,

which implies rconf1 (P (1)) ≥ (1/600)×(1/0.021) ≥ 0.07 for the optimal allocation rconf1 (P (1)).
Similar discussion yields r2, r3 ≥ 0.07.

Proof of Lemma 9. For r = (1/3, 1/3, 1/3), we have

inf
P ′:i∗(P ′)/∈I∗(P (2))

K∑
i=1

riD(P
(2)
i ∥P

′
i )

>
1

3
min (D(0.5∥0.5− ϵ/2), D(0.5− ϵ∥0.5− ϵ/2)) ,

(by P ′ /∈ I∗(P (2)) implies P ′
2 < 0.5− ϵ/2 or P ′

1 > 0.5− ϵ/2 or P ′
3 > 0.5− ϵ/2)

≥ ϵ2

6
.

(by Pinsker’s inequality)

We have

inf
P ′:i∗(P ′)/∈I∗(P (2))

K∑
i=1

rconfi (P (2))D(P
(2)
i ∥P

′
i ) ≤ rconf2 (P (2))D(0.5∥0.5− ϵ/2),

(on instance P ′ = (0.4, 0.5− ϵ/2, 0.5− ϵ/2))

which implies rconfi (P (2)) = Ω(1) for the optimal allocation. Similar discussion yields
rconf3 (P (2)) = Ω(1).

In the rest of this proof, we show rconf1 (P (2)) = O(ϵ2). For the ease of exposition, we drop
(P (2)) to denote rconf = (rconf1 , rconf2 , rconf3 ). Lemma 4 in Garivier and Kaufmann (2016)
states that the optimal solution satisfies:

(rconf2 + rconf1 )I rconf
2

rconf
2 +rconf

1

(P
(2)
2 , P

(2)
1 ) = (rconf2 + rconf3 )I rconf2

rconf2 +rconf3

(P
(2)
2 , P

(2)
3 ), (10)

where

Iα(P
(2)
2 , P

(2)
i ) = αD

(
P

(2)
2 , αP

(2)
2 + (1− α)P

(2)
i

)
+ (1− α)D

(
P

(2)
i , αP

(2)
2 + (1− α)P

(2)
i

)
.

We can confirm that

(rconf2 + rconf3 )I rconf2
rconf2 +rconf3

(P
(2)
2 , P

(2)
3 ) = Θ(1)×Θ(ϵ2),
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and
(rconf2 + rconf1 ) ≥ rconf2 = Θ(1),

which, combined with Eq.(10), implies that

I rconf2
rconf
2 +rconf1

(P
(2)
2 , P

(2)
1 ) = Θ(ϵ2),

which implies rconf1 = Θ(ϵ2).

D Extension to wider models

In the main body of the paper, we assumed that P ∈ P and Q ∈ Q are Bernoulli or Gaussian
distributions. Many parts of the results of the paper can be extended to exponential families
or distributions over a support set S ⊂ R.
Let us consider an exponential family of form

dP (x|θ) = exp(θ⊤T (x)−A(θ)) dF (x),

where F is a base measure and θ ∈ Θ ⊂ Rd is a natural parameter. We assume that
A′(θ) = EX∼F (·|θ)[T (X)] has the inverse (A′)−1 : im(T )→ Θ, where im(T ) is the image of
T .
Let P be a class of reward distributions. P can be the family of distributions over a known
support S ⊂ R. We can also consider the case where P is the above exponential family with
a possibly restricted parameter set Θ′ ⊂ Θ. For example, P can be the set of Gaussian
distributions with mean parameters in [0, 1] and variances in (0,∞).
When we derive the lower bounds and construct algorithms, we introduce Q as a class of
distributions corresponding to the estimated reward distributions of the arms. We set Q = P
when P is a family of distributions over a known support S ⊂ R. When we consider a natural
exponential family with parameter set Θ′ ⊂ Θ, we set Q as this exponential family with
parameter set Θ, so that the estimator of Pi is always within Q. For example, if we consider
P as a class of Gaussians with means in [0, 1] and variances in (0,∞), Q is the class of all
Gaussians with means in (−∞,∞) and variances in (0,∞).
In Algorithm 2, we use a convex combination of distributions Q and Q′. The key property
used in the analysis is the convexity of KL divergence between distributions. When we
consider the family P of distributions over support set S, the convexity

D(αQ+ (1− α)Q′ ∥P ) ≤ αD(Q∥P ) + (1− α)D(Q′∥P )

holds for any P,Q,Q′ ∈ Q when we define αQ+ (1− α)Q′ as the mixture of Q and Q′ with
weight (α, 1−α). When P is the exponential family, the convexity of the KL divergence holds
when αQ+ (1− α)Q′ is defined as the distribution in this family such that the expectation
of the sufficient statistics T (X) is equal to αEX∼Q[T (X)] + (1− α)EX∼Q′ [T (X)]. Note that
this corresponds to taking the convex combination of the empirical means when we consider
Bernoulli distributions or Gaussian distributions with a known variance.
By the convexity of the KL divergence, most parts of the analysis apply to P in this section
and we straightforwardly obtain the following result.
Proposition 10. Theorems 1 and 2, Corollary 3, and Lemma 4 hold under the models P
with the definition of the convex combination in this section.

The only part where the analysis is limited to Bernoulli or Gaussian is Theorem 5 on the PoE
upper bound of the DOT algorithm. The subsequent results immediately follow if Theorem 5
is extended to the models in this section. Since the key property of the DOT algorithm in
Lemma 4 on the trackability of the empirical divergence is still valid for these models, we
expect that Theorem 5 can also be extended though it remains as an open question.

E Computational resources

We used a modern laptop (Macbook Pro) for learning θ. It took less than one hour to learn
θ. For conducting a large number of simulations (i.e., Run TNN and existing algorithms for
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105 times), we used a 2-CPU Xeon server of sixteen cores. It took less than twelve hours to
complete simulations. We did not use a GPU for computation.

F Implementation details

To speed up computation, the same Q was used for each P with the same optimal arm i∗(P )
in the mini-batches.
The final model θ of the neural network is chosen as follows. We stored sequence of models
θ(1),θ(2), . . . during training (Algorithm 3). Among these models, we chose the one with
the maximum objective function argmaxl min(P ,Q)∈(Pemp,Qemp) E(P ,Q;θ(l)). Here, the
minimum is taken over a finite dataset of size |Pemp| = 32 and |Qemp| = 105.
The black lines in Figure 1 (a)–(c) representing exp(−t infQ

∑
i rθ,i(Q)D(Qi∥Pi)) are com-

puted by the grid search of Q with each Qi separated by intervals of 5.0× 10−3.

G Proofs

G.1 Proofs of Theorems 1

In this section, we prove Theorem 1. This theorem as well as its proof is a special case of
Theorem 2, but we solely prove Theorem 1 here since it is easier to follow.
In this proof, we write candidates of the true distributions and empirical distributions by
P = (P1, P2, . . . , PK) and Q = (Q1, Q2, . . . , QK), respectively. In this Sections G.1 and
G.2, we write P [A] and Q[A] to denote the probability of the event A when the reward
of each arm i follows Pi and Qi, respectively. The entire history of the drawn arms and
observed rewards is denoted by H = ((I(1), X(1)), (I(2), X(2)), . . . , (I(T ), X(T ))). We write
Xi,n to denote the reward of the n-th draw of arm i. We define n = (n1, n2, . . . , nK)
and r = (r1, r2, . . . , rK) = n/T as the numbers of draws of K arms and their fractions,
respectively, for which we write n(H) and r(H) when we emphasize the dependence on the
history H.
We adopt the formulation of random rewards such that every Xi,m, the m-th reward of arm
i is randomly generated before the game begins, and if an arm is drawn, then this reward is
revealed to the player. Then Xi,m is well defined even if the arm i is not drawn m times.
Fix an arbitrary ϵ > 0. We define sets of “typical” rewards under Q: we write Tϵ(Q) to
denote the event such that the rewards (some of which might not be revealed as noted above)
satisfy

K∑
i=1

∣∣∣∣∣
(
niD(Qi∥Pi)−

ni∑
m=1

log
dQi

dPi
(Xi,m)

)∣∣∣∣∣ ≤ ϵT. (11)

By the strong law of large numbers, limT→∞ Q[Tϵ(Q)] = 1.
Let RT ⊂ ∆K be the set of all possible r = n/T . Since ni ∈ {0, 1, . . . , T} we have

|RT | ≤ (T + 1)K ,

which is polynomial in T .
Consider an arbitrary algorithm π and define the “typical” allocation r(Q;π, ϵ) and decision
J(Q;π, ϵ) of the algorithm for distributions Q as

r(Q;π, ϵ) = argmax
r∈RT

Q
[
r(H) = r

∣∣Tϵ(Q)
]
,

J(Q;π, ϵ) = argmax
i∈[K]

Q
[
J(T ) = i

∣∣∣r(H) = r(Q;π, ϵ), Tϵ(Q)
]
.

Then we have

Q
[
r(H) = r(Q;π, ϵ)

∣∣∣Tϵ(Q)
]
≥ 1

|RT |
, (12)
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Q
[
J(T ) = J(Q;π, ϵ)

∣∣∣r(H) = r(Q;π, ϵ), Tϵ(Q)
]
≥ 1

K
. (13)

Lemma 11. Let ϵ > 0 and algorithm π be arbitrary. Then, for any P ,Q such that
J(Q;π, ϵ) ̸= I∗(P ) it holds that

1

T
logP [J(T ) /∈ I∗(P )] ≥ −

K∑
i=1

ri(Q;π, ϵ)D(Qi∥Pi)− ϵ− δP ,Q,ϵ(T )

for a function δP ,Q,ϵ(T ) satisfying limT→∞ δP ,Q,ϵ(T ) = 0.

Proof. For arbitrary Q we obtain by a standard argument of a change of measures that
P [J(T ) /∈ I∗(P )]

≥ P [Tϵ(Q), r(H) = r(Q;π, ϵ), J(T ) = J(Q;π, ϵ)]

= P [Tϵ(Q), r(H) = r(Q;π, ϵ)]P [J(T ) = J(Q;π, ϵ) | Tϵ(Q), r(H) = r(Q;π, ϵ)]

= P [Tϵ(Q), r(H) = r(Q;π, ϵ)]Q[J(T ) = J(Q;π, ϵ) | Tϵ(Q), r(H) = r(Q;π, ϵ)] (14)

≥ 1

K
P [Tϵ(Q), r(H) = r(Q;π, ϵ)] (by (13))

=
1

K
EP [1[H ∈ Tϵ(Q), r(H) = r(Q;π, ϵ)]]

=
1

K
EQ

[
1[Tϵ(Q), r(H) = r(Q;π, ϵ)]

T∏
t=1

dPI(t)

dQI(t)
(X(t))

]

≥ 1

K
EQ [1[H ∈ Tϵ(Q), r(H) = r(Q;π, ϵ)]] exp

(
−T

K∑
i=1

rb,i(Q;π, ϵ)D(Qi∥Pi)− ϵT

)
(by (11))

=
1

K
Q [Tϵ(Q), r(H) = r(Q;π, ϵ)] exp

(
−T

K∑
i=1

ri(Q;π, ϵ)D(Qi∥Pi)− ϵT

)

≥ Q[Tϵ(Q)]

K|RT |
exp

(
−T

K∑
i=1

ri(Q;π, ϵ)D(Qi∥Pi)− ϵT

)
, (by (12))

where (14) holds since J(T ) does not depend on the true distribution P given the history H.
The proof is completed by letting δP ,Q,ϵ = log Q[H∈Tϵ(Q)]

K|RT | .

Proof of Theorem 1. For each Q, let r(Q; {πT }, ϵ), J(Q; {πT }, ϵ) be such that there exists
a subsequence {Tn}n ⊂ N satisfying

lim
n→∞

r(Q;πTn , ϵ) = r(Q; {πT }, ϵ),

J(Q;πTn
, ϵ) = J(Q; {πT }, ϵ), ∀n.

Such r(Q; {πT }, ϵ) ∈ ∆K and J(Q; {πT }, ϵ) ∈ [K] exist since ∆K and [K] are compact. By
Lemma 11, for any J(Q; {πT }, ϵ) /∈ I∗(P ) we have

lim inf
T→∞

1

T
log 1/P [J(T ) /∈ I∗(P )] ≤ lim inf

n→∞

1

Tn
log 1/P [J(Tn) /∈ I∗(P )]

≤
K∑
i=1

ri(Q; {πT }, ϵ)D(Qi∥Pi) + ϵ. (15)

By taking the worst case we have

R({πT }) = inf
P

H(P ) lim inf
T→∞

1

T
log 1/P [J(T ) /∈ I∗(P )]

≤ inf
P∈PK ,Q∈QK :J(Q;{πT },ϵ)/∈I∗(P )

H(P )

K∑
i=1

ri(Q; {πT }, ϵ)D(Qi∥Pi) + ϵ.
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By optimizing {πT } we have

R({πT }) ≤ sup
{πT }

inf
P∈PK

H(P ) lim inf
T→∞

1

T
log 1/P [J(T ) /∈ I∗(P )]

= sup
r(·),J(·)

sup
{πT }:r(·;{πT },ϵ)=r(·)

inf
P∈PK

H(P ) lim inf
T→∞

1

T
log 1/P [J(T ) /∈ I∗(P )]

≤ sup
r(·),J(·)

sup
{πT }:r(·;{πT },ϵ)=r(·)

inf
P∈PK ,Q∈QK :J(Q)/∈I∗(P )

H(P )

K∑
i=1

ri(Q)D(Qi∥Pi) + ϵ

(by (15))

≤ sup
r(·),J(·)

inf
P∈PK ,Q∈QK :J(Q)/∈I∗(P )

H(P )

K∑
i=1

ri(Q)D(Qi∥Pi) + ϵ.

We obtain the desired result since ϵ > 0 is arbitrary.

G.2 Proof of Theorem 2

Theorem 2 is a generalization of Theorem 1, and we consider different candidates of empirical
distributions depending on the batch.
As in the case of the proof of Theorem 1, we write P = (P1, P2, . . . , Pi) and P [A] to denote
a candidate of the true distributions and the probability of the event under P . We divide
T rounds into B batches, and the b-th batch corresponds to (tb, tb + 1, . . . , tb+1 − 1)-th
rounds for b ∈ [B] and tb = ⌊(b − 1)T/B⌋ + 1. The entire history of the drawn arms
and observed rewards is denoted by H = ((I(1), X(1)), (I(2), X(2)), . . . , (I(T ), X(T ))). We
write Xb,i,n to denote the reward of the n-th draw of arm i in the b-th batch. We define
nb = (nb,1, nb,2, . . . , nb,K) and r = (rb,1, rb,2, . . . , rb,K) = nb/T as the numbers of draws of
K arms and their fractions in the b-th batch, respectively, for which we write nb(H) and
rb(H) when we emphasize the dependence on the history H.
We adopt the formulation of the random rewards such that every Xb,i,m, the m-th reward
of arm i in the b-th batch, is randomly generated before the game begins, and if an arm is
drawn then this reward is revealed to the player. Then Xb,i,m is well-defined even if arm i is
not drawn m times in the b-th batch.
Fix an arbitrary ϵ > 0. We define sets of “typical” rewards under QB : we write Tϵ(QB) to
denote the event such that the rewards (a part of which might be unrevealed as noted above)
satisfy

K∑
i=1

∣∣∣∣∣
(
nb,iD(Qb,i∥Pi)−

nb,i∑
m=1

log
dQb,i

dPi
(Xb,i,m)

)∣∣∣∣∣ ≤ ϵT/B (16)

for any b ∈ [B]. By the strong law of large numbers, limT→∞ QB [T B
ϵ (QB)] = 1, where

QB [·] denotes the probability under which Xk(t) follows distribution Qb,i for t ∈ {tb, tb +
1, . . . , tb+1 − 1}.
Let RT,B ⊂ (∆K)B be the set of all possible rB(H). Since nb,i ∈ {0, 1, . . . , tb+1 − tb} and
tb+1 − tb ≤ T/B + 1, we see that

|RT,B | ≤ (T/B + 2)KB ,

which is polynomial in T .
Consider an arbitrary algorithm π and define the “typical” allocation rb(Qb;π, ϵ) and decision
J(QB ;π, ϵ) of the algorithm for distributions Qb = (Q1,Q2, . . . ,Qb) as

r1(Q
1;π, ϵ) = argmax

r∈RT,1

Q1
[
r1(H) = r

∣∣Tϵ(QB)
]
,

rb(Q
b;π, ϵ) = argmax

r∈RT,b

Qb
[
rb(H) = r

∣∣rb−1(Hb−1) = rb−1(Qb−1;π, ϵ), Tϵ(QB)
]
,

b = 2, 3, . . . , B,
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J(QB ;π, ϵ) = argmax
i∈[K]

QB
[
J(T ) = i

∣∣∣rB(H) = rB(QB ;π, ϵ), Tϵ(QB)
]
.

Then we have

QB
[
rB(H) = rB(QB ;π, ϵ)

∣∣∣Tϵ(QB)
]
≥ 1

|RT,B |
, (17)

QB
[
J(T ) = J(QB ;π, ϵ)

∣∣∣rB(H) = rB(QB ;π, ϵ), Tϵ(QB)
]
≥ 1

K
. (18)

Lemma 12. Let ϵ > 0 and algorithm π be arbitrary. Then, for any P ,QB such that
J(QB ;π, ϵ) ̸= I∗(P ) it holds that

1

T
logP [J(T ) /∈ I∗(P )] ≥ − 1

B

B∑
b=1

K∑
i=1

rb,i(Q
b;π, ϵ)D(Qb,i∥Pi)− ϵ− δP ,QB ,ϵ(T )

for a function δP ,QB ,ϵ(T ) satisfying limT→∞ δP ,QB ,ϵ(T ) = 0.

Proof. For arbitrary QB we obtain by a standard argument of a change of measures that
P [J(T ) /∈ I∗(P )]

≥ P [Tϵ(QB), rB(H) = rB(QB ;π, ϵ), J(T ) = J(QB ;π, ϵ)]

= P [Tϵ(QB), rB(H) = rB(QB ;π, ϵ)]

× P [J(T ) = J(QB ;π, ϵ) | Tϵ(QB), rB(H) = rB(QB ;π, ϵ)]

= P [Tϵ(QB), rB(H) = rB(QB ;π, ϵ)]

×QB [J(T ) = J(QB ;π, ϵ) | Tϵ(QB), rB(H) = rB(QB ;π, ϵ)] (19)

≥ 1

K
P [Tϵ(QB), rB(H) = rB(QB ;π, ϵ)] (by (18))

=
1

K
EP

[
1
[
H ∈ Tϵ(QB), rB(H) = rB(QB ;π, ϵ)

]]
=

1

K
EQB

[
1
[
Tϵ(QB), rB(H) = rB(QB ;π, ϵ)

] B∏
b=1

tb+1−1∏
t=tb

dPI(t)

dQb,I(t)
(X(t))

]

≥ 1

K
EQB

[
1
[
H ∈ Tϵ(QB), rB(HB) = rB(QB ;π, ϵ)

]]
× exp

(
−T

B

B∑
b=1

K∑
i=1

rb,i(Q
b;π, ϵ)D(Qb,i∥Pi)− ϵT

)
(by (16))

=
1

K
QB

[
Tϵ(QB), rB(HB) = rB(QB ;π, ϵ)

]
× exp

(
−T

B

B∑
b=1

K∑
i=1

rb,i(Q
b;π, ϵ)D(Qb,i∥Pi)− ϵT

)

≥ QB [Tϵ(QB)]

K|RT,B |
exp

(
−T

B

B∑
b=1

K∑
i=1

rb,i(Q
b;π, ϵ)D(Qb,i∥Pi)− ϵT

)
, (by (17))

where (19) holds since J(T ) does not depend on the true distribution P given the history H.
The proof is completed by letting δP ,QB ,ϵ = log QB [Tϵ(Q

B)]
K|RT,B | .

Proof of Theorem 2. For each QB, let rB(QB ; {πT }, ϵ), J(QB ; {πT }, ϵ) be such that there
exists a subsequence {Tn}n ⊂ N satisfying

lim
n→∞

rB(QB ;πTn
, ϵ) = rB(QB ; {πT }, ϵ),

J(QB ;πTn
, ϵ) = J(QB ; {πT }, ϵ), ∀n.
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Such rB(QB ; {πT }, ϵ) ∈ (∆K)B and J(QB ; {πT }, ϵ) ∈ [K] exist since (∆K)B and [K] are
compact. By Lemma 12, for any J(QB ; {πT }, ϵ) /∈ I∗(P ) we have

lim inf
T→∞

1

T
log 1/P [J(T ) /∈ I∗(P )] ≤ lim inf

n→∞

1

Tn
log 1/P [J(Tn) /∈ I∗(P )]

≤ 1

B

B∑
b=1

K∑
i=1

rb,i(Q
b; {πT }, ϵ)D(Qb,i∥Pi) + ϵ. (20)

By taking the worst case we have

R({πT }) = inf
P

H(P ) lim inf
T→∞

1

T
log 1/P [J(T ) /∈ I∗(P )]

≤ inf
P∈PK ,QB∈QKB :J(QB ;{πT },ϵ)/∈I∗(P )

H(P )

B

B∑
b=1

K∑
i=1

rb,i(Q
b; {πT }, ϵ)D(Qb,i∥Pi) + ϵ.

By optimizing {πT } we have

R({πT }) ≤ sup
{πT }

inf
P∈PK

H(P ) lim inf
T→∞

1

T
log 1/P [J(T ) /∈ I∗(P )]

= sup
rB(·),J(·)

sup
{πT }:rB(·;{πT },ϵ)=rB(·)

inf
P∈PK

H(P )

B
lim inf
T→∞

1

T
log 1/P [J(T ) /∈ I∗(P )]

≤ sup
rB(·),J(·)

sup
{πT }:rB(·;{πT },ϵ)=rB(·)

inf
P∈PK ,QB∈QKB :J(QB)/∈I∗(P )

H(P )

B

B∑
b=1

K∑
i=1

rb,i(Q
b)D(Qb,i∥Pi) + ϵ

(by (20))

≤ sup
rB(·),J(·)

inf
P∈PK ,QB∈QKB :J(QB)/∈I∗(P )

H(P )

B

B∑
b=1

K∑
i=1

rb,i(Q
b)D(Qb,i∥Pi) + ϵ.

We obtain the desired result since ϵ > 0 is arbitrary.

G.3 Proof of Corollary 3

Proof of Corollary 3. We have

Rgo
B

:= sup
rB(QB),J(QB)

inf
QB

inf
P :J(QB)/∈I∗(P )

H(P )

B

∑
i∈[K],b∈[B]

rb,iD(Qb,i||Pi)

≤ sup
rB(QB),J(QB)

inf
QB :Q1=Q2=···=QB

inf
P :J(QB)/∈I∗(P )

H(P )

B

∑
i∈[K],b∈[B]

rb,iD(Qb,i||Pi) (inf over a subset).

= sup
rB(Q),J(Q)

inf
Q

inf
P :J(Q)/∈I∗(P )

H(P )
∑
i∈[K]

 1

B

∑
b∈[B]

rb,i

D(Qi||Pi)

(by denoting Q = Q1 = Q2 = . . .QB)

= sup
r(Q),J(Q)

inf
Q

inf
P :J(Q)/∈I∗(P )

H(P )
∑
i∈[K]

riD(Qi||Pi)

(by letting ri = (1/B)
∑
b

rb,i)

= Rgo (by definition).
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G.4 Additional lemmas

The following lemma is used to derive the regret bound.
Lemma 13. Assume that we run Algorithm 2. Then, for any BC ∈ K,K + 1, . . . , B, it
follows that∑

i,b∈[BC ]

rb,iD(Qb,i||Pi) ≥
∑

i,a∈[BC−K]

r∗a,iD(Q′
a,i||Pi) +

∑
i∈[K]

D(Q′
BC−K+1,i||Pi). (21)

Proof of Lemma 13. We use induction over BC ≥ K. (i) It is trivial to derive Eq. (21) for
BC = K. (ii) Assume that Eq. (21) holds for BC . In batch BC + 1, the algorithm draws
arms in accordance with allocation rBC+1 = r∗BC−K+1. We have,∑
i∈[K],b∈[BC+1]

rb,iD(Qb,i||Pi)

≥
∑

i∈[K],a∈[BC−K]

r∗a,iD(Q′
a,i||Pi) +

∑
i∈[K]

D(Q′
BC−K+1,i||Pi) +

∑
i

rBC+1,iD(QBC+1,i||Pi)︸ ︷︷ ︸
Batch BC + 1

(by the assumption of the induction)

=
∑
i

 ∑
a∈[BC−K]

r∗a,iD(Q′
a,i||Pi) + r∗BC−K+1,iD(Q′

BC−K+1,i||Pi)

+
∑
i

(
1− r∗BC−K+1,i

)
D(Q′

BC−K+1,i||Pi)

+
∑
i

rBC+1,iD(QBC+1,i||Pi)

=
∑
i

 ∑
a∈[BC−K]

r∗a,iD(Q′
a,i||Pi) + r∗BC−K+1,iD(Q′

BC−K+1,i||Pi)

+
∑
i

(1− rBC+1,i)D(Q′
BC−K+1,i||Pi)

+
∑
i

rBC+1,iD(QBC+1,i||Pi)

(by definition)

=
∑
i

 ∑
a∈[BC−K]

r∗a,iD(Q′
a,i||Pi) + r∗BC−K+1,iD(Q′

BC−K+1,i||Pi)

+
∑
i

D(Q′
BC−K+2,i||Pi)

(by Jensen’s inequality and Q′
BC−K+2,i = rBC+1,iQBC+1,i + (1− rBC+1,i)Q

′
BC−K+1,i)

=
∑
i

∑
a∈[BC−K+1]

r∗a,iD(Q′
a,i||Pi) +

∑
i

D(Q′
BC−K+2,i||Pi).

G.5 Proof of Lemma 4

Proof of Lemma 4.∑
i,b∈[B+K−1]

rb,iD(Qb,i||Pi) ≥
∑

i,b∈[B−1]

r∗b,iD(Q′
b,i||Pi) +

∑
i

D(Q′
B,i||Pi). (by (21))

≥
∑

i,b∈[B]

r∗b,iD(Q′
b,i||Pi)

≥
B(Rgo

B − ϵ)

H(P )
(by definition of ϵ-optimal solution).
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G.6 Proof of Theorem 5

Proof of Theorem 5, Bernoulli rewards. Since the reward is binary, the possible values that
Qb,i lie in a finite set

V =

{
l

m
: l ∈ N,m ∈ N+

}
,

where it is easy to prove |V| ≤ (T/(B +K − 1) + 2)2 ≤ (T/B + 2)2. We have

P[J(T ) /∈ I∗(P )] =
∑

V1,...,VB∈VK

P

[
J(T ) /∈ I∗(P ),

⋂
b

{Qb = Vb}

]

=
∑

V1,...,VB∈VK :J∗(V1,...,VB)/∈I∗(P )

P

[⋂
b

{Qb = Vb}

]
.

By using the Chernoff bound, we have

P

Qb,i = Vb,i

∣∣∣∣ ⋂
b′∈[b−1]

{Qb′ = Vb′}

 ≤ e−
T ′

B+K−1 rb,iD(Vb,i||Pi), (22)

and thus

P

[⋂
b

{Qb = Vb}

]

=
∏
b

P

[
Qb = Vb

∣∣∣∣ b−1⋂
b′=1

{Qb′ = Vb′}

]
≤
∏
b

e−
T ′

B+K−1

∑
i rb,iD(Vb,i||Pi) (by Eq. (22))

= e−
T ′

B+K−1

∑
b,i rb,iD(Vb,i||Pi). (23)

Furthermore,

P

[⋂
b

{Qb = Vb}

]

= P

⋂
b

{Qb = Vb} ,
∑

i,b∈[B+K−1]

rb,iD(Qb,i||Pi) ≥
B(Rgo

B − ϵ)

H(P )


(by Lemma 4).

= P

[⋂
b

{Qb = Vb}

]
P

 ∑
i,b∈[B+K−1]

rb,iD(Qb,i||Pi) ≥
B(Rgo

B − ϵ)

H(P )

∣∣∣∣⋂
b

{Qb = Vb}


= P

[⋂
b

{Qb = Vb}

]
P

 ∑
i,b∈[B+K−1]

rb,iD(Vb,i||Pi) ≥
B(Rgo

B − ϵ)

H(P )


= P

[⋂
b

{Qb = Vb}

]
E

1
 ∑
i,b∈[B+K−1]

rb,iD(Vb,i||Pi) ≥
B(Rgo

B − ϵ)

H(P )


23



≤ e−
T ′

B+K−1

∑
b,i rb,iD(Vb,i||Pi)E

1
 ∑
i,b∈[B+K−1]

rb,iD(Vb,i||Pi) ≥
B(Rgo

B − ϵ)

H(P )


(by Eq. (23))

= E

e− T ′
B+K−1

∑
b,i rb,iD(Vb,i||Pi)1

 ∑
i,b∈[B+K−1]

rb,iD(Vb,i||Pi) ≥
B(Rgo

B − ϵ)

H(P )


≤ E

[
e−

T ′
B+K−1

B(R
go
B

−ϵ)

H(P )

]
= e−

T ′
B+K−1

B(R
go
B

−ϵ)

H(P ) . (24)

Therefore, we have

P[J(T ) /∈ I∗(P )]

≤
∑

V1,...,VB∈VK

e−
B

B+K−1

(R
go
B

−ϵ)T ′

H(P )

(by Eq. (24))

≤ (T/B + 2)2KBe−
B

B+K−1

(R
go
B

−ϵ)T ′

H(P ) .

Here, log((T/B + 2)2KB) = o(T ) to T when we consider K,B as constants.

Proof of Theorem 5, Normal rewards. For the ease of discussion, we assume unit variance
σ = 1. Extending it to the case of common known variance σ is straightforward. Let

B =
⋃
i,b

{|Qb,i| ≥ T} .

Then, it is easy to see
P[B] = T 2KBO(e−T 2/2),

which is negligible because log(1/P[B])/T diverges.
The PoE is bounded as

P[J(T ) /∈ I∗(P )] = P [J(T ) /∈ I∗(P ),Bc] + P[B]

We have,

P [J(T ) /∈ I∗(P ),Bc]

=

∫ T

−T

· · ·
∫ T

−T

1[J(T ) /∈ I∗(P )]p(QB |QB−1 . . .Q1) dQB . . . p(QB |QB−1 . . .Q1) dQb . . . p(Q1) dQ1.

(25)

Here,

p(Qb|Qb−1 . . .Q1) =
∏

i∈[K]

nb,i√
2π

exp

(
−nb,i(Qb,i − Pi)

2

2

)
=
∏

i∈[K]

nb,i√
2π

exp (−nb,iD(Qb,i||Pi))

≤
∏

i∈[K]

T exp (−nb,iD(Qb,i||Pi)) .
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Finally, we have

(25) ≤ TBK

∫ T

−T

· · ·
∫ T

−T

1[J(T ) /∈ I∗(P )]
∏

i∈[K]

∏
b∈[B+K−1]

exp (−nb,iD(Qb,i||Pi)) dQB . . . dQ1

≤ TBK

∫ T

−T

· · ·
∫ T

−T

1[J(T ) /∈ I∗(P )]
∏

i∈[K]

∏
b∈[B+K−1]

exp

(
− T ′r(b,i)

B +K − 1
D(Qb,i||Pi)

)
dQB . . . dQ1

≤ TBK

∫ T

−T

· · ·
∫ T

−T

1[J(T ) /∈ I∗(P )] exp

(
− B

B +K − 1

(Rgo
B − ϵ)T ′

H(P )

)
dQB . . . dQ1 (by Lemma 4)

≤ TBK

∫ T

−T

· · ·
∫ T

−T

exp

(
− B

B +K − 1

(Rgo
B − ϵ)T ′

H(P )

)
dQB . . . dQ1

≤ TBK(2T )BK exp

(
− B

B +K − 1

(Rgo
B − ϵ)T ′

H(P )

)
.

G.7 Proof of Theorem 7

Proof of Theorem 7. We first show that the limit

Rgo
∞ = lim

B→∞
Rgo

B

exists. Namely, for any η > 0 there exists B0 ∈ N such that for any B1 > B0 we have

|Rgo
B0
−Rgo

B1
| ≤ η.

Theorem 5 implies that Algorithm 2 with B = B0 and ϵ = η/2 satisfies15

lim inf
T→∞

log(1/P[J(T ) /∈ I∗(P )])

T
≥ B0

B0 +K − 1

Rgo
B0
− η/2

H(P )
,

and thus

infH(P ) lim inf
T→∞

log(1/P[J(T ) /∈ I∗(P )])

T
≥ B0

B0 +K − 1

(
Rgo

B0
− η

2

)
. (26)

Moreover, Theorem 2 implies that any algorithm satisfies

infH(P ) lim sup
T→∞

log(1/P[J(T ) /∈ I∗(P )])

T
≤ Rgo

B1
. (27)

Combining Eq. (26) and Eq. (27), we have
B0

B0 +K − 1

(
Rgo

B0
− η/2

)
≤ Rgo

B1

and thus

Rgo
B0
≤ Rgo

B1
+

η

2
+

K − 1

B0 +K − 1
Rgo

B0

≤ Rgo
B1

+
η

2
+

K − 1

B0 +K − 1
Rgo (by Corollary 3)

≤ Rgo
B1

+
η

2
+

η

2
(by K ≥ 2, by taking B0 ≥ 2KRgo/η)

15Strictly speaking, Algorithm 2 depends on T , and we take sequence of the algorithm
(πDOT,T )T=1,2,....
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≤ Rgo
B1

+ η.

By swapping B0, B1, it is easy to show that

Rgo
B1
≤ Rgo

B0
+ η,

and thus
|Rgo

B0
−Rgo

B1
| ≤ η,

which implies that the limit exists. It is easy to confirm that the performance of Algorithm 2
with any B ≥ 2KRgo/η and ϵ = η/2 satisfies Eq. (6).
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