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A Dataset Description

A.1 Yearbook

A.1.1 Setup

Problem Setting. The task is classifying the gender of an American high schooler from a yearbook
photo. The input x is a 32× 32 grayscale image, and the label y is male or female.

Data. Yearbook is based on the Portraits dataset [16] (MIT license), which collected and processed
37,921 frontal-facing yearbook portraits from 1905− 2013 from 128 American high schools in 27
states. The Portraits dataset reflects changing fashion styles and social norms over the decades.

The original Portraits dataset did not evaluate models under a distribution shift setting. We use a
subset of the Portraits dataset, consisting of data from 1930− 2013. Our fixed time split (Eval-Fix)
uses the first 41 years (1930− 1970) for ID, and the remaining 43 years for OOD (1971− 2013). For
streaming evaluation (Eval-Stream), we treat each year as a single timestamp. For each timestamp,
we randomly allocate 10% of the data to training, and the remaining 90% for validation. For OOD
testing, all samples in each year are used. We provide the number of examples allocated to ID Train,
ID Test, and OOD Test for each timestamp in Table 1.

The original Portraits dataset is provided as a set of hierarchical directories, organized by year, with
PNG images of size 96× 96 pixels. To reduce download times and I/O usage, we downsample the
images from [16] to 32× 32 pixels. We exclude the first 25 years (1905− 1929) due to few samples
in these years.

Evaluation Metrics. We evaluate models by their average and worst-time OOD accuracies. The
former measures the model’s ability to generalize across time, while the latter additionally measures
model robustness to trends in time-specific visual patterns.

Eval-Stream evaluates performance across the next 10 years to test on visual trend changes over
the decade without resulting in an unreasonably long evaluation time, due to the large number of
timestamps in this dataset.

A.1.2 Broader Context

Facial recognition has been widely adopted in recent years. Employed by governments and private
companies, facial recognition models are used in smartphones, robotics, advanced human-computer
interaction systems. However, human appearance shifts over time due to changing social norms (e.g.,
the practice of smiling to the camera) and fashion trends (e.g., hair styles, popularity of eyewear).
To remain reliable and effective, facial recognition models must be robust to changes in human
appearance over time.
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Table 1: Data subset sizes for the Yearbook task.
Years ID Train ID Test OOD Test

1930 - 1934 1,051 120 1,171
1935 - 1939 1,361 154 1,515
1940 - 1944 2,047 230 2,277
1945 - 1949 1,979 222 2,201
1950 - 1954 1,604 181 1,785
1955 - 1959 1,820 205 2,025
1960 - 1964 1,482 167 1,649
1965 - 1969 2,812 315 3,127

1970 - 1974 2,326 260 2,586
1975 - 1979 2,329 261 2,590
1980 - 1984 2,654 298 2,952
1985 - 1989 2,239 251 2,490
1990 - 1994 2,207 249 2,456
1995 - 1999 2,564 287 2,851
2000 - 2004 2,447 274 2,721
2005 - 2009 1,407 159 1,566
2010 - 2013 1,102 125 1,227

Fixed-time split 14,901 1,677 21,439

While Yearbook is not a facial recognition task, the Yearbook dataset can be used to train facial image
analysis models that are robust to changes in appearance over time.

A.2 FMoW-Time

A.2.1 Setup

Problem Setting. The task in the FMoW-Time dataset is to classify the functional purpose of a
region inside a satellite image. The input x is an 224× 224 RGB satellite image, and the label y is
one of 62 categories of building or land use. The data was collected from 16 different years. Our
fixed time split (Eval-Fix) allocates the first 12 years for training and the last 4 years for testing. For
streaming evaluation (Eval-Stream), we treat each year as a single timestamp.

Data. FMoW-Time is based on the Functional Map of the World dataset (license:
https://github.com/fMoW/dataset/blob/master/LICENSE) [11], a dataset of satellite images taken
from 2002−2018, from over 200 countries. Each satellite image is labeled according to the functional
purpose of the buildings or land depicted in the image.

We adapt the version of the FMoW dataset from the WILDS benchmark [30], which consists of
141,696 RGB satellite images resized to 224× 224 pixels. The train/val/test data splits in FMoW-
WILDS contain images from disjoint location coordinates, and all splits contain data from all 5
geographic regions. For FMoW-Time, we partition each year’s data into train/validation as follows.
For 2002 − 2013, we use the FMoW-WILDS Training (ID) split for training, and the Validation
(ID) and Test (ID) splits for validation. For 2013− 2015, we use data in the Validation (OOD) split
and allocate 90% of the data from each year to train, and the remaining 10% to validation. For
2015− 2017, we allocate 90% of the data from each year in the Test (OOD) split to train, and the
remaining 10% to validation. Our fixed time split (Eval-Fix) uses the first 11 years (2002− 2013) for
training, and the remaining 5 years (2013−2018) for testing. For streaming evaluation (Eval-Stream),
we treat each year as a single timestamp. We provide the number of examples allocated to ID Train,
ID Test, and OOD Test at each timestamp in Table 2.

Evaluation Metrics. We evaluate models with the top-1 accuracy, both in terms of the average across
all OOD timestamps and the accuracy on the worst timestamp. The former measures the model’s
ability to reliably generalize across time and the latter more specifically tests the robustness at the
most severe shifts. For Eval-Stream, we evaluate performance across the next 6 years.
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Table 2: Data subset sizes for the FMoW-Time task.
Year ID Train ID Test OOD Test

2002 1,455 448 1,903
2003 1,985 570 2,555
2004 1,545 450 1,995
2005 2,207 629 2,836
2006 2,765 796 3,561
2007 1,338 349 1,687
2008 1,975 584 2,559
2009 6,454 1,920 8,374
2010 16,498 4,915 21,413
2011 19,237 5,711 24,948
2012 21,404 6,438 27,842

2013 3,465 385 3,850
2014 5,572 620 6,192
2015 8,885 988 9,873
2016 14,363 1,596 15,959
2017 5,534 615 6,149

Eval-Fix split 76,863 22,810 42,023

A.2.2 Broader Context

ML models for satellite imagery can automate applications such as deforestation tracking, population
density prediction, crop yield prediction [19, 44, 47]. Visual features in satellite data change over
time due to both human and environmental activity, requiring a model that makes predictions for
recent images using labeled data from the past. Through such applications, policy and humanitarian
efforts would greatly benefit from temporally robust models which can reliably monitor global-scale
satellite imagery even when conditions change over time.

A.3 MIMIC-IV

A.3.1 Setup

Problem Setting. The MIMIC-IV dataset contains two tasks: MIMIC-Readmission and MIMIC-
Mortality. For both of these tasks, the input x is the concatenated ICD9 codes of diagnosis and
treatment for a single patient.

• MIMIC-Readmission: the task is predicting hospital readmission for a patient. The label y is
whether the patient was readmitted to the hospital within 15 days.

• MIMIC-Mortality: the task is predicting in-hospital mortality for each patient. The label y is
whether the patient passed away during their hospital stay.

Data. The MIMIC-IV database [27] contains deidentified EHRs of 382,278 patients admitted to
the emergency department or intensive care unit (ICU) at the Beth Israel Deaconess Medical Center
(BIDMC) from 2008− 2019. To protect patient privacy, the reported admission year is in a three year
long date range. Hence, our timestamps are groups of three years: 2008−−2010, 2011−−2013,
2014−−2016, 2017−−2019. We considered ICU patient data sourced from the clinical information
system MetaVision at the BIDMC, released in the MIMIC-IV v1.0 dataset, which contains 53,150
patient records. MIMIC-IV requires PhysioNet credentialing for use of human subject data.

We use a subset of the original MIMIC-IV dataset, where we regard each admission as one entry.
For each admission, we collect the ICD9 codes of diagnosis and treatment. For each record, we
concatenate the corresponding ICD9 codes [38] of diagnosis and treatment. We use the concatenated
diagnosis and treatment ICD9 codes as the input feature. Our fixed time split (Eval-Fix) uses the
first 6 years (2008 − 2013) for training, and the remaining 6 years for testing (2014 − 2019). For
streaming evaluation (Eval-Stream), we treat each three-year block as a single timestamp. We allocate
20% of the data at each timestamp for test, and the rest for training. For OOD testing, all samples in
each three-year block are used. We provide the number of examples allocated to ID Train, ID Test,
and OOD Test for each timestamp in Table 3.
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Table 3: Data subset sizes for the two MIMIC-IV tasks, MIMIC-Mortality and MIMIC-Readmission.
3-Year Block ID Train ID Test OOD Test

2008 - 2010 60,851 15,215 76,066
2011 - 2013 55,714 13,930 69,644

2014 - 2016 53,932 13,485 67,417
2017 - 2019 45,990 11,500 57,490

Eval-Fix split 116,565 29,145 124,907

Evaluation Metrics. For MIMIC-Readmission, we evaluate models by their average and worst-time
OOD accuracies. For MIMIC-Mortality, we evaluate models by their average and worst-time ROC-
AUC due to label imbalance. The average metric measures the model’s ability to generalize across
time, while the worst-time metric additionally measures model robustness to temporal distribution
shifts in patient data. Eval-Stream evaluates performance across the next 3 years, which represents
25% of all timestamps in the entire dataset.

A.3.2 Broader Context

Many applications of machine learning to clinical healthcare have emerged in the last decade, such
as predicting disease risk [32], medication changes [48], patient subtyping [3], in-hospital mortality
[18], and length of hospital stay [14]. However, a key obstacle in deploying machine learning-based
clinical decision support systems is distribution shift associated with changes in healthcare over time
[18]. Existing domain generalization and unsupervised domain adaptation algorithms have been
shown to produce less robust models compared to ERM in a variety of tasks (e.g., mortality, length
of stay, sepsis, and invasive ventilation prediction) on the MIMIC-IV dataset [18], underscoring the
need for better approaches.

The MIMIC-IV Mortality and Readmission tasks evaluate model robustness to temporal shifts in
clinical medicine.

A.4 Huffpost

A.4.1 Setup

Problem Setting. The task is classifying the news category of an article from the headline. The input
x is a news headline, and the label y is one of 11 news categories.

Data. Huffpost is based on the Kaggle News Category Dataset [36] (license: CC0: Public Domain),
which contains approximately 200,000 news headlines and their corresponding news categories from
the Huffington Post from 2012 − 2018. The Kaggle News Category Dataset contains 41 different
news categories.

We use a subset of the Huffpost dataset, consisting of 7 years from 2012− 2018 and samples from
11 news categories (Black Voices, Business, Comedy, Crime, Entertainment, Impact, Queer Voices,
Science, Sports, Tech, Travel). We partition the data by year.

Our fixed time split (Eval-Fix) uses 2016 as the time split, allocating 2012− 2015 (4 years) for ID
and 2016− 2018 (3 years) for OOD. For streaming evaluation (Eval-Stream), we treat each year as a
single timestamp. We allocate 10% of the data at each timestamp for test, and the rest for training.
For OOD testing, all samples are used. Table 4 lists the number of examples allocated to ID Train, ID
Test, and OOD Test for each timestamp.

The News Category Dataset is provided as a CSV file. We exclude news categories which do not
appear in all years 2012− 2018 to obtain the 11 news categories in Huffpost. We shuffle samples in
each year, and randomly select 10% of the samples in each year as ID test and allocate the remaining
90% for training. For OOD testing, all samples in each year are used.

Evaluation Metrics. We evaluate models by their average and worst-time OOD accuracies. The
former measures the model’s ability to generalize across time, while the latter additionally measures
model robustness to trends in time-specific visual patterns.
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Table 4: Data subset sizes for the Huffpost task.
Year ID Train ID Test OOD Test

2012 6,701 744 7,446
2013 7,492 832 8,325
2014 9,539 1,059 10,599
2015 11,826 1,313 13,140

2016 10,548 1,172 11,721
2017 7,907 878 8,786
2018 3,501 388 3,890

Eval-Fix split 35,558 3,948 24,397

Eval-Stream evaluates performance across the next 3 years, which represents 42.9% of the timestamps
in the entire dataset.

A.4.2 Broader Context

Many language models which deal with information correlated with time exhibit performance
degradation in downstream tasks such as Twitter hashtag classification [24] or question answering
systems [31]. These performance drops along the temporal dimension reflect changes in the style or
content of news that change over time. For instance, American politics in 2022 is more polarized
than it was in 2012, according to a study by the Pew Research Center [13]. Models must be robust to
such changes in factual knowledge.

A.5 arXiv

A.5.1 Setup

Problem Setting. The task is classifying the primary classification category of a research paper from
the title. The input x is the paper title, and the label y is one of 172 paper categories.

Data. arXiv is based on the Kaggle arXiv Dataset [12] (license: CC0: Public Domain), which
provides metadata of arXiv preprints from 2007− 2023. These include: arXiv id, submitter, authors,
title, comments, journal-ref, doi, abstract, categories, and versions.

We use a subset of the Kaggle arXiv dataset for arXiv, which consists of paper titles and theirr
corresponding primary categories. Our fixed time split (Eval-Fix) uses 2016 as the time split,
allocating data from 2007− 2016 (10 years) for ID, and data from 2017− 2022 (6 years) for OOD.
For streaming evaluation (Eval-Stream), we treat each year as a single timestamp. We allocate 10%
of the data at each timestamp for test, and the rest for training. For OOD testing, all samples are
used. Table 5 lists the number of examples allocated to ID Train, ID Test, and OOD Test for each
timestamp.

The arXiv Dataset metadata is provided as a JSON file. We store only the primary category and the
preprint title, and sort the data by update date, partitioning by year. We shuffle samples in each year,
and randomly select 10% of the samples in each year as ID test and allocate the remaining 90% for
training. For OOD testing, all samples in each year are used.

Evaluation Metrics. We evaluate models by their average and worst-time OOD accuracies. The
former measures the model’s ability to generalize across time, while the latter additionally measures
model robustness to trends in time-specific visual patterns.

Eval-Stream evaluates performance across the next 6 years, which represents 37.5% of all timestamps
in the dataset.

A.5.2 Broader Context

Similar to changes in news and current events reflected in the Huffpost dataset, the content of arXiv
preprints also change over time as research fields evolve. For example, “neural network attack" was
originally a popular keyword in the security community, but it gradually became more prevalent in
the machine learning community. As a result, primary categories of arXiv preprints shift over time.
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Table 5: Data subset sizes for the arXiv task.
Year ID Train ID Test OOD Test

2007 131,550 14,616 146,167
2008 62,460 6,939 69,400
2009 206,244 22,916 229,161
2010 50,665 5,629 56,295
2011 55,741 6,193 61,935
2012 51,678 5,741 57,420
2013 64,951 7,216 72,168
2014 79,498 8,833 88,332
2015 193,979 21,553 215,533
2016 120,682 13,409 134,092

2017 111,024 12,336 123,361
2018 123,891 13,765 137,657
2019 142,767 15,862 158,630
2020 166,014 18,445 184,460
2021 201,241 22,360 223,602
2022 89,765 9,973 99,739

Eval-Fix split 1,017,448 113,045 927,449

B Algorithm Description

Before introducing all algorithms, we recall that each example is (x, y, t), where x, y, t represent
input feature, label, and timestamp, respectively.

B.1 Classical Supervised Learning

• Empirical Risk Minimization (ERM). We first consider Empirical Risk Minimization (ERM).
This algorithm ignores the time information (t) and minimizes the average training loss

θ∗ = argmin
θ

ℓ(x, y; fθ) (1)

over the entire training dataset.

B.2 Continual Learning

• Fine-tuning. In fine-tuning, we use the newly observed labeled examples to continuously fine-tune
the learned model without any explicit regularizer between consecutive timestamps.

• Elastic Weight Consolidation (EWC). Inspired by synaptic consolidation, EWC slows down
the learning process for new tasks based on their relevance to previous tasks. Specifically, when
adapting to a new task, EWC’s loss function keeps the post-adaptation network parameters close to
the parameters learned on previous tasks.

• Synaptic Intelligence (SI). Motivated by synaptic dynamics, SI enables deep neural network to
learn sequence of tasks by using synaptic state to track the parameter values and maintain online
estimation of the importance of past learned experience.

• Averaged Gradient Episodic Memory (A-GEM). Gradient Episodic Memory (GEM) leverages
an episodic memory to store a selected set of examples from previous tasks in a continual learning
setting. When adapting to a new task, the algorithm aims to make the updated model simultaneously
perform well on examples in the new task and examples from the episode memory. A-GEM
provides an efficient training strategy for Gradient Episodic Memory that significantly improves its
computation and memory efficiency. Specifically, instead of making the updated model perform
better on each individual previous tasks in the memory, A-GEM aims to produce a model that
shows high average performance across the tasks in the episode memory.

B.3 Temporal Invariant Learning

• CORAL. CORAL penalizes the differences in the mean and covariance of the feature distributions
of each domain. For CORAL, we adapted our implementation from the public repositories for
DomainBed and WILDS [30]. CORAL is applicable to all datasets used in Wild-Time.
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• IRM. Invariant risk minimization aims to learn an invariant predictor that performs well across
all domains. The vanilla IRM objective can be reformulated as a bi-level optimization, which is
challenging to solve. Following the original paper [1], we adopt IRM-v1 in this paper, an efficient
approximation to the original IRM objective for learning invariant predictors.

• Mixup is an interpolation-based approach, which generates new training examples by applying the
same interpolation strategies on the input features and their corresponding labels [53]. The original
training samples are replaced by the newly generated samples for training.

• LISA. Motivated by mixup [53], LISA selectively interpolates examples to cancel out domain
information. LISA has two variants — intra-label LISA and intra-domain LISA. Intra-label
LISA interpolates examples with the same label but from different domains. Intra-domain LISA
interpolates examples with the same domain but different labels. Furthermore, as mentioned in [51],
intra-LISA performs better in domain shifts without considering domain information. We follow
the implementation of Yao et al. [51] and only apply intra-label in Wild-Time.

• GroupDRO. GroupDRO uses distributionally robust optimization to optimize the worst-domain
loss during the training stage. We follow the implementation of Sagawa et al. [41] and apply group
adjustments, strong penalty and early stopping in GroupDRO.

B.4 Self-Supervised Learning

• SimCLR [10] is a simple contrastive learning approach for visual recognition. It uses normalized
temperature-scaled cross entropy as the loss function and introduces a nonlinear transformation
between the learned representation and the contrastive loss. We follow the implementation of Chen
et al. [10].

• SwAV [7] simultaneously clusters the data and encourages the consistency of cluster assignments
generated by different kinds of data augmentations. We follow the implementation of Caron et al.
[7].

B.5 Bayesian Learning

• SWA. Stochastic Weight Averaging [23] averages multiple parameter values along the trajectory
of SGD with almost no computational overhead. This method has been shown to lead to better
in-distribution generalization due to its ability to find a better approximation to the posterior
distribution over parameters. This property is reflected through the flatness of the learned optima.
We follow the official implementation of SWA with the same learning rate as ERM and use default
values for other hyperparameters.

C Experimental Details

All reported results are averaged over 3 random seeds. Experiments are conducted on a GPU-cluster
with 6 GPU nodes. All classification tasks (i.e., Yearbook, FMoW-Time, MIMIC Mortality, MIMIC
Readmission, Precipitation, HuffPost, arXiv) were trained with cross-entropy loss. In our experiments,
we tune hyperparameters of all baselines by applying cross-validation with grid search.

For all methods, we use minibatch stochastic optimizers to train models, sampling uniformly from
the ID set (in the Eval-Fix setting) or from each timestamp (in the Eval-Stream setting).

We report the number of train iterations used to train baselines for each dataset, under both the Eval-Fix
and Eval-Stream settings. A single train iteration corresponds to one update via loss backpropagation.
Under the Eval-Fix setting, the number of train iterations is the number of updates to the model on the
ID train set. Under the Eval-Stream setting, in which models are trained incrementally, the number of
train iterations corresponds to the number of updates to the model at each timestamp.

C.1 Eval-Fix Split Determination

To determine the time splits for the Eval-Fix setting of each dataset, we considered all ID/OOD splits
ranging from 40%-60% ID/OOD to 80%-20% ID/OOD. For each of these time splits, we ran ERM on
the ID and OOD sets, and selected the split with the largest discrepancy between average ID accuracy
and average OOD accuracy.
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C.2 Detailed Set Split Strategy

Suppose we have T timestamps. At each timestamp, we randomly sample 90% of the examples
for training, and allocate the remaining 10% validation examples for ID evaluation. We detail the
difference between the Eval-Fix and Eval-Stream setting as follows:

Eval-Fix Setting. In Eval-Fix, as shown in Figure 1, we have a split timestamp ts. The ID timestamps
are t < ts, and the OOD timestamps are t ≥ ts. The training set consists of all training examples
from the ID timestamps t < ts. The ID validation set consists of all validation examples from the ID
timestamps t < ts. All examples in all test timestamps t ≥ ts are used as the OOD test set.

Time

Split 
Timestamp

Training 
Timestamps

Test 
Timestamps

𝑡! 𝑡" 𝑡# − 1 𝑡# 𝑡# + 1 𝑇… …

90% 10%90% 10% 90% 10% 100% 100%

Training Set ID Test Set OOD Test Set

Figure 1: Data split under Eval-Fix setting.

Eval-Stream Setting. In Eval-Stream, at each evaluation timestamp, we evaluate across the next
K timestamps. Specifically, at each timestamp t ∈ [1, . . . , T ], we evaluate our model across the
timestamps {t+ 1, . . . , t+K}, which is illustrated in Figure 2.

Time

Training 
Timestamps

Test 
Timestamps

𝑡! 𝑡" 𝑡# 𝑡$%! 𝑇…

90% 10% 100%

Training Set ID Test Set OOD Test Set

100% 100%

Time

Training 
Timestamps

Test 
Timestamps

𝑡! 𝑡" 𝑡# 𝑡$%" 𝑇…

90% 10% 100%100%90% 10%

Time

Training 
Timestamps

Test 
Timestamps

𝑡! 𝑡" 𝑡# 𝑡&'( 𝑇…

90% 10% 100%90% 10% 90% 10% 90% 10%

…

Evaluation 
Time 1

Evaluation 
Time 2

Evaluation 
Time T-K

…

…

…

…

Figure 2: Data split under Eval-Stream setting.

Hence, Eval-Fix can be viewed as a single timestamp evaluation within Eval-Stream, where we
evaluate only at ts and set n = T − ts.
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Table 6: Hyperparameters for CORAL, GroupDRO, and IRM baselines on all WildT datasets.
Dataset CORAL Penalty IRM Penalty lr # Substreams Substream Size

Yearbook 0.9 1.0 1e-1 10 5
FMoW-Time 0.9 1.0 1e-4 3 3
MIMIC-IV-Mort 1.0 1.0 5e-4 4 3
MIMIC-IV-Readmit 1.0 1.0 5e-4 3 3
HuffPost 0.9 1.0 2e-5 3 2
arXiv 0.9 1.0 2e-5 4 4

C.3 Hyperparameter Settings and Model Architectures

C.3.1 General Settings

Yearbook. We use a 4-layer convolutional network. Each convolutional layer has kernel size 3× 3,
stride of 1× 1, padding of size 1, 32 output channels, a spatial batch norm layer, ReLU activation,
and a 2D max pool layer with kernel size 2× 2.

We use the Adam optimizer with a fixed learning rate of 10−3 and train with a batch size of 32.
Baselines were trained for 3000 iterations under the Eval-Fix setting and for 100 iterations under the
Eval-Stream setting.

FMoW-Time. Following [30] and [11], we use a DenseNet-121 model [20] pretrained on ImageNet
with no L2 regularization.

We use the Adam optimizer with an initial learning rate of 10−4 that decays by 0.96 per epoch and
a batch size of 64. Baselines were trained for 3000 iterations for the Eval-Fix setting and for 500
iterations for the Eval-Stream setting.

MIMIC-IV. We use a Transformer, consisting of an encoder and an decoder. Here, we collect the
vocabulary based on the ICD9 codes.

We use the Adam optimizer with a learning rate of 5× 10−4 and a batch size of 128. Baselines were
trained for 3000 iterations under the Eval-Fix setting and for 500 iterations under the Eval-Stream
setting.

Huffpost. We use a network backbone comprising of a pretrained DistilBERT base model (uncased)
from [42] and a fully-connected, classification layer.

We use the AdamW optimizer with a learning rate of 2× 10−5, weight decay of 10−2, and train with
a batch size of 32. Baselines were trained for 6000 iterations under the Eval-Fix setting and for 1000
iterations under the Eval-Stream setting.

arXiv. We use the same network backbone, optimizer, learning rate, weight decay, and number of
train iterations as those used for the Huffpost dataset. We train all baselines with a batch size of 64.

C.3.2 Algorithm-Specific Hyperparameters

Temporally Invariant Methods For GroupDRO, CORAL, and IRM, we follow WILDS [30] and
use minibatch stochastic optimizers to train models, sampling uniformly from each substream (i.e.,
the domain in our temporal robustness setting), regardless of the number of training examples in the
substream.

• GroupDRO. We adapted the implementation of GroupDRO from Sagawa et al. [41] and Koh et al.
[30]. Each example in the minibatch is sampled independently with uniform probabilities across
substreams.
We list the hyperparameters used for GroupDRO on all WildT datasets in Table 6; namely, the
number of substreams (e.g., number of groups) and substream size (e.g., group size).

• CORAL. We adapted the implementations of DeepCORAL from Gulrajani and Lopez-Paz [17]
and Koh et al. [30], and compute CORAL penalties between features from all pairs of substreams,
which we treat as groups/domains.
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We list the hyperparameters used for CORAL on all WildT datasets in Table 6, which include
the CORAL penalty λc, number of substreams (e.g., number of groups), and substream size (e.g.,
group size). CORAL was trained with a penalty of λc = 0.1 on the MIMIC-Mortality task, and
λc = 1.0 on the MIMIC-Readmission task. For all remaining datasets, we used a default penalty
of λc = 0.9.

• IRM. We adapted the implementations of IRM from Arjovsky et al. [1] and Koh et al. [30].
We list the hyperparameters used for IRM on all WildT datasets in Table 6, which include the IRM
penalty λi, number of substreams (e.g., number of groups), and substream size (e.g., group size).
IRM was trained with a penalty of λi = 1.0 on all datasets.

• LISA. We adapted the implementation of LISA from Yao et al. [51] and implemented intra-label
LISA, where training samples with the same label are interpolated. For the Yearbook and FMoW-
Time datasets, the input image tensors were interpolated. For the arXiv, Huffpost, and MIMIC-IV
datasets, the learned feature representations were interpolated.
All LISA experiments were conducted with α = 2.0, where the interpolation ratio λ ∈ [0, 1] is
drawn from a Beta(α, α) distribution.

• Mixup. For mixup, we use the same hyperparameters as ERM.

Continual Learning Methods

• A-GEM. We adapted the implementation of A-GEM from Chaudhry et al. [9] and “Mammoth - An
Extendible (General) Continual Learning Framework for Pytorch" [5, 6]. All A-GEM experiments
were conducted with a default buffer size of 1000.

• EWC. We adapted the implementation of EWC from Kirkpatrick et al. [29], van de Ven and Tolias
[45], and van de Ven and Tolias [46].
For the EWC loss regularization strength, we use a default value of 0.5 for the Yearbook, FMoW-
Time, Huffpost, arXiv, and MIMIC-IV-Readmit datasets. For MIMIC-IV-Mortality, we use 1.0.

• SI. We adapted the implementation of SI from Zenke et al. [52], van de Ven and Tolias [45], van de
Ven and Tolias [46].
For the SI loss regularization strength λs, we use a default value of 0.1 for all datasets.

Self-Supervised Methods

• SimCLR. We implement SimCLR using the Lightly framework [22]. We apply SimCLR to learn
representations, and then fine-tune the model with the same (labeled) training data.
For both Yearbook and FMoW-Time, we use the set of image transforms from Chen et al. [10].
Specifically, we sequentially apply the following three random augmentations: random cropping
followed by resize back to the original size, color distortions, and Gaussian blur. We list all
hyperparameters in Table 7.

• SwaV. We implement SwaV using the Lightly framework [22]. We apply SwaV to learn repre-
sentations, and then fine-tune the model with the same training data. We follow the multi-crop
augmentation strategy proposed by Caron et al. [7]. We use 2 views and list all hyperparameters in
Table 8.

Bayesian Methods

• SWA. We follow the official implementation of SWA [23, 2]. We use the same learning rate as
ERM and use default values for other hyperparameters.

D Results Under Eval-Stream Setting

Under Eval-Stream setting, we visualize the average performance and worst-time performance for
every timestamp. For each timestamp, we calculate the average/worst performance over the evaluated
time window. The results of all tasks are shown in Figure 3. The key observations are very close to
the findings under Eval-Fix setting. Additionally, invariant learning approaches performs slightly
better than continual learning approaches in most tasks.
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Table 7: Hyperparameters for SimCLR on
Yearbook and FMoW-Time.

Dataset Yearbook FMoW-Time

Prob. Color Jitter 0.8 0.8
Color Jitter Strength 0.5 0.5
Min. Crop Scale 0.08 0.08
Prob. Grayscale 0.2 0.2
Kernel Size 0.1 × 32 0.1 × 224
Prob. Vertical Flip 0.5 0
Prob. Horizontal Flip 0.5 0.5
Prob. Rotation (+90) 0.0 0.5

Embedding Dim. 128 128

No. SSL Iters. 2700 1500
No. Finetune Iters. 300 1500

Table 8: Hyperparameters for SwaV on Year-
book and FMoW-Time.

Dataset Yearbook FMoW-Time

No. Views 2 2
Crop Sizes 224, 96 224, 96
No. Crops 2, 6 2, 6
Min. Crop Scale 0.08, 0.05 0.08, 0.05
Max. Crop Scale 1.0, 0.14 1.0, 0.14
Prob. Horizontal Flip 0.5 0.5
Prob. Color Jitter 0.8 0.8
Color Jitter Strength 0.8 0.8
Prob. Grayscale 0.2 0.2

Embedding Dim. 128 128
No. Prototypes 32 1024

No. SSL Iters. 2700 1500
No. Finetune Iters. 300 1500

Table 9: Hyperparameters for EWC and SI baselines on all WildT datasets.
Dataset EWC λe SI λs

Yearbook 0.5 0.1
FMoW-Time 0.5 0.1
MIMIC-IV-Mort 1.0 0.1
MIMIC-IV-Readmit 0.5 0.1
HuffPost 0.5 0.1
arXiv 0.5 0.1

Under the Eval-Stream setting, we further explain why continual learning approaches fail to improve
over other baselines in the Eval-Stream setting from the following two reasons: (1) Most existing
continual learning approaches focus on backward transfer (i.e., catastrophic forgetting). In Wild-
Time, we focus on forward transfer, and evaluate performance on future timestamps (i.e., temporal
robustness); (2) For continual learning approaches that also focus on forward transfer (e.g., A-GEM),
most of these approaches only show improvements on manually delineated sets of tasks with artificial
temporal variations (e.g., Split CUB, Split CIFAR), but are not evaluated on benchmarks with
natural temporal distribution shifts, such as Wild-Time. Analogously, we note that invariant learning
approaches show improvements in artificial datasets (e.g., ColoredMNIST, Waterbirds [41]), but fail
to outperform ERM in benchmarks with natural distribution shifts, e.g., WILDS [30].

E Additional Experiments under Eval-Fix Setting

E.1 Standard Split vs. Mixed Split

We verify that the performance gap between ID and OOD timestamps are not caused by the difficulty
of examples from OOD timestamps. First, we analyze the effect of the difficulty of OOD examples.
We use two kinds of data splits – standard split and mixed split. In the standard split, the model is
trained on timestamps before the split time and then evaluated on examples from future timestamps.
In the mixed split, the training data is merged from all timestamps, and the model is evaluated on
the original OOD examples. We report the results in Table 10 and observe large performance gaps
between standard split and mixed split on all Wild-Time tasks. The observation verifies that the
performance gaps between ID and OOD are not caused by the difficulty.

For each Wild-Time dataset, we plot the label distributions over time in Figure 4. We observe that the
label distributions change over time for all Wild-Time datasets, as this is a naturally-occurring shift
that we aim to tackle with the Wild-Time benchmark.
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Figure 3: Results under Eval-Stream Setting. Note that for MIMIC-Readmission (e) and MIMIC-
Mortality (f), we only report the average timestamp performance as we only evaluate on the next
timestamp, which is a three-year block.

Table 10: Performance drops of ERM with different splits under Eval-Fix setting. In the standard
split, we train the model on timestamps before the split timestamp, and evaluate the model in the
future timestamps. In the mixed split, we merge the training data from all timestamps, and evaluate
the model on the original OOD set. The large gap between standard split and mixed split indicates
that the performance drops between ID and OOD shown in Table 1 in the main paper are not caused
by the difficulty of the examples from OOD timestamps.

Dataset Standard Split Mixed Split
OOD Avg. OOD Worst OOD Avg. OOD Worst

Yearbook 81.98% 69.62% 94.57% 78.57%
FMoW-Time 54.07% 46.00% 57.80% 52.00%
MIMIC-Mortality 72.89% 65.80% 91.00% 88.67%
MIMIC-Readmission 61.33% 59.46% 57.18% 54.84%
Huffpost 70.42% 68.71% 78.11% 76.87%
arXiv 45.94% 44.09% 52.12% 50.57%

E.2 Temporal Adaptation of Invariant Learning Methods

In this section, we provide additional analysis for temporal adaptation, including the analysis of the
effectiveness of temporal adaptation, the effect of time window size, and the comparison between
overlapping and non-overlapping substreams.

E.2.1 Temporal Adaptation Improves Performance

We compare the temporal adapted invariant learning approaches with the original approaches. The re-
sults are listed in Table 11. We observe that temporal adaptation indeed shows improved performance
over vanilla invariant learning approaches, verifying the efficacy of the proposed strategy.

E.2.2 Effect of Time Window Size

We include an ablation in which we report the performance of CORAL-T, GroupDRO-T, and IRM-T
when the time window size L (defined in Section 4 of the main paper) is reduced. We report baseline
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Figure 4: Label distributions of all Wild-Time classification datasets over time. Note that we include
legends for datasets with less than 8 classes due to space limitations.

Table 11: The vanilla versus temporal adapted invariant learning performance of each method
evaluated on Wild-Time under the Eval-Fix setting.

Yearbook FMoW-Time MIMIC-Readmission
(Accuracy (%) ↑) (Accuracy (%) ↑) (Accuracy (%) ↑)

OOD Avg. OOD Worst OOD Avg. OOD Worst OOD Avg. OOD Worst

GroupDRO 76.19 (1.58) 59.61 (1.09) 42.54 (0.39) 35.17 (1.08) 55.69 (3.53) 54.18 (2.79)
GroupDRO-T 77.06 (1.67) 60.96 (1.83) 43.87 (0.55) 36.60 (1.25) 56.12 (4.35) 53.12 (4.41)

CORAL 76.29 (1.75) 58.54 (2.91) 48.96 (0.23) 40.17 (0.89) 56.62 (3.21) 54.08 (3.50)
CORAL-T 77.53 (2.15) 59.34 (1.46) 49.43 (0.38) 41.23 (0.78) 57.31 (4.45) 54.69 (4.36)

IRM 77.08 (2.05) 63.79 (1.27) 45.25 (1.01) 38.73 (0.69) 57.89 (2.76) 53.02 (2.53)
IRM-T 80.46 (3.53) 64.42 (4.38) 45.00 (1.18) 37.67 (1.17) 56.53 (3.36) 52.67 (5.17)

MIMIC-Mortality HuffPost arXiv
(AUC (%) ↑) (Accuracy (%) ↑) (Accuracy (%) ↑)

OOD Avg. OOD Worst OOD Avg. OOD Worst OOD Avg. OOD Worst

GroupDRO 74.93 (3.17) 70.58 (3.46) 68.33 (0.88) 67.42 (1.27) 37.37 (1.09) 36.09 (0.93)
GroupDRO-T 76.88 (4.74) 71.40 (6.84) 69.53 (0.54) 67.68 (0.78) 39.06 (0.54) 37.18 (0.52)

CORAL 76.83 (2.70) 64.62 (5.58) 70.64 (0.43) 67.82 (1.16) 40.82 (1.16) 38.16 (0.62)
CORAL-T 77.98 (2.57) 64.81 (10.8) 70.05 (0.63) 68.39 (0.88) 42.32 (0.60) 40.31 (0.61)

IRM 76.25 (5.87) 69.91 (6.02) 71.69 (1.33) 69.49 (1.46) 35.07 (0.55) 34.22 (0.63)
IRM-T 76.16 (6.32) 70.64 (8.99) 70.21 (1.05) 68.71 (1.13) 35.75 (0.90) 33.91 (1.09)

results in Table 12. We found that reducing L marginally worsens the performance of invariant
learning baselines.

E.2.3 Non-Overlapping Time Windows

In the proposed temporal adaptations of the invariant learning methods (CORAL-T, GroupDRO-T,
IRM-T), we use overlapping time windows to capture the gradual temporal distribution shift. Here, we
run all invariant learning baselines using non-overlapping windows, and report the OOD performance
in Table 13. For the Yearbook, Huffpost, arXiv, MIMIC-Mortality, and MIMIC-Readmission,
invariant learning baselines generally obtained better performance using overlapping time windows.

13



Table 12: Performance of the temporally adapted invariant learning baselines when decreasing the
length of the time windows, L. We evaluate under the Eval-Fix setting and report the average
and standard deviation (value in parentheses), computed over three random seeds. For Yearbook,
performance worsens when L is reduced, but improves for FMoW-Time.

Yearbook FMoW-Time
(Accuracy (%) ↑) (Accuracy (%) ↑)

L OOD Avg. OOD Worst L OOD Avg. OOD Worst

GroupDRO-T
5 77.06 (1.67) 60.96 (1.83) 3 43.87 (0.55) 36.60 (1.25)
4 72.84 (3.04) 56.05 (0.75) 2 45.17 (0.83) 36.97 (1.00)
2 73.42 (2.29) 56.99 (2.54) n/a n/a n/a

CORAL-T
5 77.53 (2.15) 59.34 (1.46) 3 49.43 (0.38) 41.23 (0.78)
4 77.09 (1.56) 59.17 (1.89) 2 49.67 (0.49) 41.63 (0.32)
2 76.92 (1.07) 59.26 (1.38) n/a n/a n/a

IRM-T
5 80.46 (3.53) 64.42 (4.38) 3 45.00 (1.18) 37.67 (1.17)
4 79.56 (3.12) 63.70 (3.85) 2 48.50 (0.10) 40.63 (0.59)
2 79.47 (2.69) 63.65 (3.91) n/a n/a n/a

Table 13: Performance of CORAL-T, GroupDRO-T, and IRM-T baselines when trained on non-
overlapping time substreams. OL: Overlapping; NOL: Non-overlapping

Yearbook FMoW-Time MIMIC-Readmission
(Accuracy (%) ↑) (Accuracy (%) ↑) (Accuracy (%) ↑)

OOD Avg. OOD Worst OOD Avg. OOD Worst OOD Avg. OOD Worst

CORAL-T OL 77.53 (2.15) 59.34 (1.46) 49.43 (0.38) 41.23 (0.78) 57.31 (4.45) 54.69 (4.36)
NOL 75.97 (0.63) 57.47 (0.29) 49.93 (0.64) 42.13 (0.96) 54.86 (2.93) 51.44 (4.63)

GroupDRO-T OL 77.06 (1.67) 60.96 (1.83) 43.87 (0.55) 36.60 (1.25) 56.12 (4.35) 53.12 (4.41)
NOL 76.94 (1.87) 58.58 (1.82) 48.67 (0.57) 45.50 (0.62) 53.96 (3.03) 50.47 (4.43)

IRM-T OL 80.46 (3.53) 64.42 (4.38) 45.00 (1.18) 37.67 (1.17) 56.53 (3.36) 52.67 (5.17)
NOL 77.21 (2.34) 59.44 (1.72) 49.67 (0.40) 42.50 (1.08) 54.31 (3.67) 51.08 (5.23)

MIMIC-Mortality HuffPost arXiv
(AUC (%) ↑) (Accuracy (%) ↑) (Accuracy (%) ↑)

OOD Avg. OOD Worst OOD Avg. OOD Worst OOD Avg. OOD Worst

CORAL-T OL 77.98 (2.57) 64.81 (10.8) 70.05 (0.63) 68.39 (0.88) 42.32 (0.60) 40.31 (0.61)
NOL 71.57 (11.7) 65.77 (15.3) 68.11 (1.40) 66.94 (1.50) 42.07 (0.72) 40.10 (0.72)

GroupDRO-T OL 76.88 (4.74) 71.40 (6.84) 69.53 (0.54) 67.68 (0.78) 39.06 (0.54) 37.18 (0.52)
NOL 72.78 (10.7) 67.40 (14.1) 68.41 (0.41) 67.26 (0.49) 36.07 (1.35) 33.98 (1.46)

IRM-T OL 76.17 (6.32) 70.64 (8.99) 70.21 (1.05) 68.71 (1.13) 35.75 (0.90) 33.91 (1.09)
NOL 73.08 (9.99) 67.69 (13.1) 69.58 (0.79) 68.16 (0.64) 38.85 (0.44) 36.86 (0.42)

Since, on the aggregate, using overlapping time windows resulted in better performance, we keep the
results using non-overlapping windows in Table 2 of the main paper.

E.3 Effect of Model Backbones

We investigate the effect of different models backbones on a Wild-Time image dataset (FMoW-Time)
and text dataset (arXiv). Specifically, we use ResNet18 and ResNet50 backbones for FMoW-
Time, and BERT and ALBERT backbones for arXiv. We report the performance of ERM and two
representative invariant learning and continual learning approaches – LISA and Fine-tuning – under
the Eval-Fix setting in Table 14.

These results are consistent with our findings that neither invariant learning nor continual learning
approaches make models more robust to temporal distribution shift, even with different backbones.

E.4 Reducing the Number of Training Examples

We analyze the performance of all baselines when reducing the number of training examples. Specifi-
cally, under the Eval-Fix setting, we randomly allocate 30% of the data at each training timestamp
as training, rather than 90% in our original results (c.f., Table 2 in the main paper). We report all
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Table 14: Performance comparison w.r.t. Different backbones.
Backbone ERM Fine-tuning LISA

FMoW-Time

ResNet18 47.95 (0.39) 40.95 (0.50) 47.59 (0.36)

ResNet50 52.91 (0.46) 45.68 (0.79) 53.17 (0.85)

DenseNet101 54.07 (0.25) 44.22 (0.56) 52.33 (0.42)

arXiv

DistilBERT 45.94 (0.97) 50.31 (0.39) 47.82 (0.47)

BERT 47.51 (1.20) 50.99 (0.52) 49.05 (1.01)

ALBERT 45.25 (0.65) 49.76 (0.69) 46.01 (0.52)

results in Table 15. We observe that ERM still outperforms invariant learning and continual learning
approaches, corroborating our findings in the main paper.

F Datasets without Gradual Temporal Distribution Shifts

In this section, we discuss two additional datasets that were not included in Wild-Time. These datasets
do not satisfy the criteria discussed in Section 2.1.

F.1 Drug-BA

F.1.1 Dataset Setup

Problem Setting. The task is predicting the binding affinity of candidate drugs to their target
molecules. The input x contains molecular information of both the drug and target molecules, and
the label y is the binding affinity value.

Data. The Therapeutics Data Commons (TDC) benchmark (MIT license). TDC offers the BindingDB
dataset, which was curated from BindingDB, a public database that features drug-target binding
affinities collected from a variety of sources, including patents, journals, and assays. Each entry in
BindingDB consists of a small molecule and the corresponding target protein. We exclude data from
the year 2021 in the original TDC benchmark as 2021 includes only one month’s worth of data.

For Eval-Fix, we use the first 4 years (2013− 2016) for training and allocate 4 years (2017− 2020)
for testing. For streaming evaluation (Eval-Stream), we treat each year as a single timestamp. We
provide the number of examples allocated to ID Train, ID Test, and OOD Test for each timestamp in
Table 16.

Evaluation Metrics. We use Pearson Correlation Coefficient (PCC), which measures the amount of
linear correlations between the true values and the predicted values, to evaluate model performance
in predicting drug-target binding affinity. Eval-Stream evaluates performance across the next 3 years,
which represents 37.5% of all timestamps in the entire dataset.

F.1.2 Baseline Results and Analysis

Experimental Setup. We use the DeepDTA model from [39], which achieves state-of-the-art perfor-
mance on drug target binding affinity prediction by using CNNs to construct high-level representations
of a drug and a target. We use the Adam optimizer with a learning rate of 2 × 10−5 or 5 × 10−5

(for different baselines) and batch size of 256. Baselines were trained for 5000 iterations under the
Eval-Fix setting and for 500 iterations under the Eval-Stream setting. In terms of hyperparameters
for CORAL, GroupDRO and IRM, the CORAL penalty, IRM penalty, learning rate, the number of
substreams and the size of substreams are set as 0.9, 10−3, 5× 10−5, 3, 2, respectively. Notice that
LISA is only applicable to classification problem, thus we do not evaluate LISA on Drug-BA.

Results. In Drug-BA, similar to Table 10, we reported the results of standard splits and mixed
splits and the results of Eval-Stream and Eval-Fix in Figure 5. First, though the performance
comparison between standard split and mixed split in the top table of Figure 5, we observe a
significant drop between them, where OOD average performance drops from 0.724 (mixed split) to
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Table 15: Performance of all baselines when reducing the amount of training data. We randomly
allocate 30% of the data at each timestamp to training, rather than 90% in our original benchmark.

Yearbook FMoW-Time
(Accuracy (%) ↑) (Accuracy (%) ↑)

ID Avg. OOD Avg. OOD Worst ID Avg. OOD Avg. OOD Worst

Fine-tuning 46.29 (1.17) 52.00 (5.00) 44.10 (2.15) 40.30 (0.14) 39.34 (0.57) 30.91 (0.29)
EWC 45.50 (0.00) 48.84 (0.01) 42.86 (0.01) 40.89 (0.66) 39.99 (0.66) 31.24 (0.43)
SI 49.42 (6.73) 47.03 (17.2) 45.52 (4.61) 41.03 (0.19) 39.65 (0.53) 30.91 (0.29)
A-GEM 45.50 (0.00) 46.98 (3.57) 44.95 (3.45) 40.52 (0.56) 39.60 (0.41) 31.05 (0.38)

ERM 93.96 (1.72) 77.05 (5.13) 60.72 (2.92) 51.74 (0.77) 50.63 (0.56) 40.29 (0.94)
GroupDRO-T 77.56 (11.5) 60.45 (7.10) 47.03 (7.99) 40.16 (0.68) 39.52 (0.86) 31.62 (0.29)
mixup 92.88 (2.35) 77.31 (2.60) 61.56 (3.00) 54.23 (0.26) 53.77 (0.23) 43.04 (0.77)
LISA 92.51 (4.03) 74.17 (5.22) 57.39 (1.77) 51.34 (0.14) 50.76 (0.83) 40.12 (1.42)
CORAL-T 75.35 (19.7) 59.66 (10.1) 44.00 (10.58) 44.15 (0.93) 43.85 (0.46) 34.59 (0.25)
IRM-T 77.04 (17.7) 60.45 (7.10) 47.03 (7.99) 45.19 (0.94) 44.11 (1.23) 36.26 (1.36)

MIMIC-Readmission MIMIC-Mortality
(Accuracy (%) ↑) (AUC (%) ↑)

ID Avg. OOD Avg. OOD Worst ID Avg. OOD Avg. OOD Worst

Fine-tuning 74.22 (2.96) 64.20 (3.73) 62.33 (5.25) 87.92 (0.92) 59.20 (0.71) 50.00 (1.35)
EWC 74.49 (1.41) 66.75 (0.99) 65.93 (1.26) 87.94 (0.08) 60.07 (2.45) 51.21 (3.11)
SI 74.22 (2.96) 64.20 (3.73) 62.33 (5.25) 87.92 (0.92) 59.20 (0.71) 50.00 (1.35)
A-GEM 80.58 (0.14) 69.90 (0.01) 68.48 (0.01) 70.27 (17.5) 53.68 (3.76) 48.00 (1.83)

ERM 70.49 (2.47) 55.28 (2.54) 51.69 (5.47) 89.53 (0.82) 71.06 (7.63) 65.76 (10.2)
GroupDRO-T 74.36 (2.65) 59.90 (15.3) 54.92 (21.3) 89.48 (0.85) 73.28 (7.58) 68.25 (9.97)
mixup 71.82 (3.61) 41.57 (1.12) 30.29 (0.00) 89.48 (1.14) 71.32 (8.55) 65.65 (11.4)
LISA 67.50 (2.22) 40.48 (0.68) 30.29 (0.00) 90.01 (0.32) 73.37 (10.5) 68.97 (14.5)
CORAL-T 74.48 (1.72) 45.00 (4.50) 34.58 (7.05) 89.12 (1.43) 71.55 (10.4) 66.01 (13.6)
IRM-T 74.36 (1.90) 52.00 (14.4) 44.24 (20.0) 88.24 (1.59) 73.13 (10.1) 68.66 (13.5)

HuffPost arXiv
(Accuracy (%) ↑) (Accuracy (%) ↑)

ID Avg. OOD Avg. OOD Worst ID Avg. OOD Avg. OOD Worst

Fine-tuning 13.11 (1.03) 14.12 (3.27) 12.89 (2.46) 50.34 (0.13) 48.88 (0.26) 46.72 (0.25)
EWC 13.26 (1.27) 13.65 (1.51) 12.37 (1.03) 50.31 (0.17) 48.56 (0.05) 46.38 (0.11)
SI 13.06 (1.05) 14.22 (3.26) 12.95 (2.44) 50.35 (0.13) 48.88 (0.25) 46.72 (0.26)
A-GEM 13.07 (0.69) 15.53 (2.18) 13.43 (2.03) 50.36 (0.18) 48.79 (0.32) 46.53 (0.39)

ERM 15.86 (1.45) 12.32 (2.64) 11.32 (2.08) 53.55 (0.21) 46.07 (0.53) 44.16 (0.50)
GroupDRO-T 14.23 (1.05) 11.82 (1.07) 11.03 (0.76) 50.01 (0.03) 39.71 (0.63) 37.79 (0.65)
mixup 15.49 (0.92) 13.35 (1.45) 11.92 (1.08) 52.66 (0.13) 45.98 (0.47) 44.00 (0.45)
LISA 14.95 (0.68) 13.26 (3.62) 11.93 (2.54) 49.17 (0.43) 47.66 (0.27) 45.71 (0.30)
CORAL-T 16.56 (0.56) 13.15 (5.17) 11.82 (4.29) 52.60 (0.06) 42.72 (0.27) 40.72 (0.24)
IRM-T 14.06 (0.65) 11.39 (0.41) 11.05 (0.47) 46.20 (0.12) 35.85 (0.70) 34.14 (0.75)

0.357 (standard split). Second, the performance per test time in Figure 5(b) further indicates such
a sudden performance drop between Oracle ID and ERM in 2017. These results suggest that the
Drug-BA dataset violates our criterion about gradual temporal distribution shifts. Thus, we exclude it
in the official Wild-Time benchmark.

F.1.3 Broader Context

Drug discovery brings new candidate medications to potentially billions of people, allowing people
to live longer and healthier lives. Traditional methods of drug discovery are via high-throughput,
wet-lab experiments [21], which are expensive, time-consuming, and limited in their ability to search
over large sets of drug candidates. Virtual screening is a computational pre-screening process in
which the binding activity of a drug candidate with the target protein of a disease is predicted [8, 43].
Recently, there has been a surge of interest in applying machine learning to virtual screening, which
can reduce costs and increase the search space to avoid missing potential drug candidates. Recent
binding activity prediction models investigate binding pairs between existing compounds and target
proteins [34, 39, 49, 50]. In practice, new target proteins or new classes of compounds appear over
time, requiring machine learning models that are robust to subtle domain shifts across time.
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Table 16: Data subset sizes for the Drug-BA task.
Year ID Train ID Test OOD Test

2013 9,121 2,281 11,402
2014 16,148 4,038 20,186
2015 24,251 6,063 30,314
2016 23,095 5,774 28,869

2017 41,203 10,301 51,504
2018 32,924 8,231 41,155
2019 33,607 8,402 42,009
2020 5,557 1,390 6,947

Eval-Fix split 72,615 18,156 141,615

Dataset Standard Split Mixed Split
OOD Avg. OOD Worst OOD Avg. OOD Worst

Drug-BA 0.357 0.244 0.724 0.710

(a) Performance drops of ERM with different splits on Drug-BA dataset.
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Figure 5: Results on Drug-BA. (b) out-of-distribution performance per test timestamp under Eval-Fix
setting; (b) (c): results under Eval-Stream setting.

F.2 Precipitation

F.2.1 Dataset Setup

Problem Setting. The task is classifying the precipitation level of a region. The input x is tabular
data consisting of 123 meteorological features (1 categorical feature and 122 continuous features).
The label y is one of 9 precipitation classes.

Data. Precipitation is based on the Shifts Precipitation Prediction dataset [33] (Apache-2.0 license),
which collected and processed tabular Precipitation data from the Yandex Precipitation Service to
provide a domain shift benchmark for two tasks: temperature prediction (scalar regression) and
precipitation classification (multi-class classification). The Shifts Precipitation Prediction dataset
contains 10 million 129-column entries, consisting of 123 heterogeneous meteorological features, 4
meta-data attributes (e.g., time, latitude, longitude, and climate type), and 2 targets (temperature and
precipitation class). The data is distributed uniformly between September 1, 2018 to September 1,
2019 and is partitioned by both time and climate type.

We use a subset of the original Shifts Precipitation Prediction dataset, using measurements taken from
October 2018 - August 2019. The Precipitation dataset consists of 123 heterogeneous meteorological
features, 1 target (precipitation class), and 1 metadata attribute (time). We partition the dataset by
month. Our fixed time split (Eval-Fix) uses data from October 2018 - April 2019 (7 months) for ID,
and data from May 2019 - August 2019 (4 months) for OOD. For streaming evaluation (Eval-Stream),
we treat each month as a single timestamp. We allocate 10% of the data at each timestamp for test,
and the rest for training. For OOD testing, all samples are used. Table 17 lists the number of examples
allocated to ID Train, ID Test, and OOD Test for each timestamp.

The Shifts Precipitation Prediction dataset is provided as a CSV file. We ignore the latitude, longitude,
and climate type metadata and filter out samples where at least one of the meteorological features
is NaN. We shuffle Precipitation measurements in each month, and randomly select 10% of the
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Table 17: Data subset sizes for the Precipitation task.
Month ID Train ID Test OOD Test

Sep 2018 698,134 77,570 775,705
Oct 2018 714,265 79,362 793,628
Nov 2018 613,885 68,209 682,095
Dec 2019 707,274 78,586 785,861
Jan 2019 739,325 82,147 821,473
Feb 2019 665,745 73,971 739,717
Mar 2019 729,527 81,058 810,586
Apr 2019 691,366 76,818 768,185
May 2019 673,058 74,784 747,843
Jun 2019 548,793 60,976 609,770
Jul 2019 680,152 75,572 755,725
Aug 2019 681,035 75,670 756,706

Eval-Fix split 4,868,155 540,903 3,638,229

measurements in each month as test-ID and allocate the remaining 90% for training. For OOD testing,
all samples in each month are used.

Evaluation Metrics. We evaluate models by their average and worst-time OOD accuracies. The
former measures the model’s ability to generalize across time, while the latter additionally measures
model robustness to trends in seasonal Precipitation patterns.

Eval-Stream evaluates performance across the next 4 months, which represents 33.3% of all times-
tamps in the entire dataset and tests a model’s robustness to shifting meteorological measurements
from seasonal Precipitation changes.

F.3 Results

Experimental Setup. We follow [33] and use a FTTransformer [28], which is well-suited for deep
learning with tabular data. We use all default architecture settings for the FTTransformer, except
that the deep MLP in our FTTransformer has 2 layers, each of size 32 units, and uses LeakyReLU
activation.

We use the Adam optimizer with a fixed learning rate of 10−3 and train with a batch size of 128.
Baselines were trained for 5000 iterations under the Eval-Fix setting and for 500 iterations under the
Eval-Stream setting. In terms of hyperparameters for CORAL, GroupDRO and IRM, the CORAL
penalty, IRM penalty, learning rate, the number of substreams and the size of substreams are set as
0.9, 1.0, 10−3, 3, 4, respectively.

Results. Similar to Table 10, we reported the results of standard splits and mixed splits and the results
of Eval-Stream and Eval-Fix in Figure 6. According to the performance between different splits, we
can not observe clear performance gaps between standard split and mixed split. Thus, precipitation
dataset violates our first dataset selection criterion, and we decide not to include this dataset in the
Wild-Time benchmark.

F.3.1 Broader Context

Precipitation forecasting enhances public health, safety, and economic prosperity. Extreme Precipita-
tion warnings can save lives and reduce property damage. Forecasts on temperature and precipitation
are crucial to agriculture, and hence to traders on commodity markets. On a daily basis, many people
use Precipitation forecasts on a daily basis. Precipitation forecasting comprises a large part of the
economy: the United States alone spent 5.1 billion on Precipitation forecasting in 2009, resulting in
benefits estimated to be 6 times as much [40].

The Precipitation dataset, which contains heterogeneous tabular data, exhibits data that changes over
time due to seasonal changes in Precipitation patterns. In addition, the distribution of the measurement
locations are distributed non-uniformly across the planet. Certain climate regions, such as the polar
caps, are under-represented, presenting further challenges [33].

18



Dataset Standard Split Mixed Split
OOD Avg. OOD Worst OOD Avg. OOD Worst

Precipitation 46.08% 44.15% 47.56% 45.51%

(a) Performance drops of ERM with different splits on Precipitation dataset.
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Figure 6: Results on Precipitation. (b) out-of-distribution performance per test timestamp under
Eval-Fix setting; (b) (c): results under Eval-Stream setting.

G User Guide and Maintenance Plan

G.1 User Guide of Wild-Time

Licenses. The Wild-Time datasets and baselines are freely available for research purposes. Though
Drug-BA and Precipitation are not included in the formal Wild-Time benchmark, we still include
these datasets in the Wild-Time package. All code for Wild-Time is available under the MIT license.
We list the licenses for each Wild-Time dataset below:

• Yearbook: MIT License
• FMoW-Time: The Functional Map of the World Challenge Public License
• MIMIC-IV (Readmission and Mortality): PhysioNet Credentialed Health Data License 1.5.0
• Drug-BA: MIT License
• Precipitation: CC BY-NC 4.0
• Huffpost: CC0: Public Domain
• arXiv: CC0: Public Domain

Hosting Platform. We will use GitHub as the hosting platform of code. We provide (1) detailed data
preprocessing scripts to help users process the data from scratch, and (2) preprocessed data from each
curated dataset except MIMIC-IV.

Dependencies. Wild-Time is built upon Python 3.8+, and depends on PyTorch, PyTorch Tabular,
PyTorch Transformers, PyTDC, Huggingface-Hub. Additionally, it uses numpy, scipy, and scikit-learn
for data manipulation.

G.2 Using the Wild-Time Package

In this section, we discuss our open-sourced Python package that provides a simple interface to use
the Wild-Time benchmark. Our Python package allows the users to use our datasets with a few lines
of code. In addition, users can easily construct their own datasets or baselines on top of our package.
Specifically, Figure 7 shows how to use APIs to load the Wild-Time datasets and train a baseline.
Beyond the current APIs, we plan to provide standardized evaluation of methods using our dataset in
the future.

G.3 Maintenance Plan

Wild-Time will be maintained by the authors of this paper. The group can be contacted by raising
an issue on the GitHub or by writing to the first authors. The dataset is currently hosted on Google
Drive storage. The Wild-Time benchmark may be updated at the discretion of the authors. Updates
may include adding more diverse baseline methods, datasets, and tasks, or updating infrastructure to
improve efficiency. Updates which correct errors will replace previous versions of the datasets.
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>>> import argparse
>>> from WildTime import dataloader, baseline_trainer
# Load the corresponding config for a specific baseline and dataset
>>> from WildTime.configs.eval_fix.configs_fmow import configs_fmow_ewc
>>> configs = argparse.Namespace(**configs_fmow_ewc)

# If you only need data, you only need the get_data method
>>> fmow_data = dataloader.getdata("fmow", configs)

# If you need to run a baseline, use the following method
>>> baseline_trainer.train(configs)

Figure 7: Dataset initialization and baseline training.

We welcome contributions to the Wild-Time benchmark. Other parties may update the Wild-Time
benchmark by submitting a pull request on GitHub. We are releasing the Wild-Time benchmark under
the open-source MIT License. We permit other parties to create new datasets from the Wild-Time
benchmark, given that the changes are documented and the Wild-Time benchmark is referenced.

G.4 Author Statement

To the best of our knowledge, the released dataset and benchmark does not violate any existing
licenses. However, if such a violation were to exist, the authors claim responsibility for resolving
these issues.

H Discussion

H.1 Limitations

One limitation of this paper is that we do not categorize covariant shift and concept drift over time.
Though, we’ve seen some sudden distribution shifts occur in our benchmark, we currently do not find
a good way to precisely identify the reasons of sudden distribution shifts and further categorize them.
We will focus on this in the next version.

H.2 Ethics Discussion

The Wild-Time benchmark includes the Yearbook dataset, which is an adaptation of the Portraits
dataset [16]. The task is binary gender prediction from yearbook photos of American high schoolers.
We recognize the harmful ramifications of binary gender prediction. A binary gender prediction
task excludes nonbinary individuals, may misgender transgender individuals, and may reinforce
problematic gender norms.

The FMoW-Time dataset, adapted from the WILDS benchmark [30], involves geographic region
prediction from satellite imagery and has applications to remote sensing. We recognize the privacy
and surveillance issues surrounding remote sensing. We remark that FMoW-Time uses a lower image
resolution than other publicly available satellite data, such as Google Maps. We also recognize
that the FMoW-Time dataset raises issues of systematic bias and fairness. Specifically, the WILDS
benchmark [30] found that models performed poorly on satellite images from Africa. As remote
sensing is used for development and humanitarian purposes, poor model performance in certain
geographic regions can harm certain populations. These issues are discussed in more detail in the
UNICEF discussion paper by Berman et al. [4].

The MIMIC dataset, adapted from the MIMIC-IV database [26], involves predicting patient mortality
and readmission to the ICU. Ethical challenges associated with using artificial intelligence (AI)
in healthcare include (1) informed consent to use, (2) safety and transparency, (3) fairness and
algorithmic biases, and (4) data privacy [15]. The MIMIC-IV database adopted a permissive access
scheme, allowing for broad reuse of data. With regards to patient privacy, we note that the MIMIC-IV
database includes de-identified patient data [26]. We also note that the authors of Wild-Time followed
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proper credentialing protocol to access the MIMIC-IV dataset. To protect patient confidentiality, we
do not release the MIMIC dataset. Instead, we provide instructions for how users can get credentialed
on PhysioNet to download the MIMIC-IV dataset and provide a script to generate the MIMIC
dataset. We recognize considerations of fairness and algorithmic bias for the MIMIC task. Several
studies have found that AI algorithms exhibit biases with respect to ethnicity and gender [35, 37].
Phenotype-related data in healthcare can similarly lead to biased models. This can result in incorrect
diagnoses for certain subpopulations, endangering their safety. Finally, we emphasize the importance
of robust and interpretable AI, especially in healthcare, where human safety is at stake. We hope that
the MIMIC task can help lay the groundwork for further research in this direction. We refer readers
to [25] for an in-depth discussion of the ethical issues surrounding AI in healthcare.

H.3 Comments on Designing Temporally Robust Models

In our experiments, we found that most existing approaches can not effectively mitigate natural
temporal distribution shifts. We believe that there are two important aspects to consider in resolving
natural distribution shift:

• Learning changeable temporal invariance. To build a robust model, it would be useful to learn
invariance, which captures features in the data that remain invariant across different distributions.
However, this is difficult to do when temporal distribution shift happens, as such invariance can
also change over time, where one kind of invariance is only suitable for a specific time window.
Capturing the correlations between different time windows and determining when and how to
update the invariant model are crucial.

• Leveraging supervised and unsupervised adaptation. In addition to maintaining a temporally
invariant model, adapting to new timestamps is also necessary in tackling temporal distribution
shifts. Here, we can leverage labeled data from timestamps in the near past and unlabeled observa-
tions from the current timestamp to fine-tune the model. How to combine temporal invariance with
supervised and unsupervised adaptation to achieve effective adaptation remains an open problem.
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Table 18: The in-distribution versus out-of-distribution test performance of each method evaluated on
Wild-Time under the Eval-Fix setting. The average and standard deviation (value in parentheses) are
computed over three random seeds. We bold the best OOD performance for each dataset.
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