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Abstract

Pre-training video transformers on extra large-scale datasets is generally required
to achieve premier performance on relatively small datasets. In this paper, we
show that video masked autoencoders (VideoMAE) are data-efficient learners for
self-supervised video pre-training (SSVP). We are inspired by the recent Image-
MAE [30] and propose customized video tube masking with an extremely high
ratio. This simple design makes video reconstruction a more challenging and
meaningful self-supervision task, thus encouraging extracting more effective video
representations during the pre-training process. We obtain three important findings
with VideoMAE: (1) An extremely high proportion of masking ratio (i.e., 90% to
95%) still yields favorable performance for VideoMAE. The temporally redundant
video content enables higher masking ratio than that of images. (2) VideoMAE
achieves impressive results on very small datasets (i.e., around 3k-4k videos) with-
out using any extra data. This is partially ascribed to the challenging task of video
reconstruction to enforce high-level structure learning. (3) VideoMAE shows that
data quality is more important than data quantity for SSVP. Domain shift between
pre-training and target datasets is an important factor. Notably, our VideoMAE with
the vanilla ViT backbone can achieve 87.4% on Kinects-400, 75.4% on Something-
Something V2, 91.3% on UCF101, and 62.6% on HMDB51, without using any
extra data. Code is available at https://github.com/MCG-NJU/VideoMAE.

1 Introduction

Transformer [70] has brought significant progress in natural language processing [17, 7, 54]. The
vision transformer [20] also improves a series of computer vision tasks including image classifi-
cation [66, 88], object detection [8, 37], semantic segmentation [80], object tracking [13, 16], and
video recognition [6, 3]. The multi-head self-attention upon linearly projected image/video tokens
is capable of modeling global dependency among visual content either spatially or temporally. The
inductive bias is effectively reduced via this flexible attention mechanism.

Training effective vision transformers (ViTs) typically necessitates large-scale supervised datasets.
Initially, the pre-trained ViTs achieve favorable performance by using hundreds of millions of labeled
images [20]. For video transformers [3, 6], they are usually derived from image-based transformers
and heavily depend on the pre-trained models from large-scale image data (e.g., ImageNet [57]).
Previous trials [3, 6] on training video transformers from scratch yield unsatisfied results (except
for MViT [21] with a strong inductive bias). Therefore, the learned video transformers are naturally
biased by image-based models, and it still remains a challenge that how to effectively and efficiently
train a vanilla vision transformer on the video dataset itself without using any pre-trained model
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Figure 1: VideoMAE performs the task of masking random cubes and reconstructing the missing ones
with an asymmetric encoder-decoder architecture. Due to high redundancy and temporal correlation
in videos, we present the customized design of tube masking with an extremely high ratio (90% to
95%). This simple design enables us to create a more challenging and meaningful self-supervised
task to make the learned representations capture more useful spatiotemporal structures.

or extra image data. Moreover, the existing video datasets are relatively small compared with
image datasets, which further increases the difficulty of training video transformers from scratch.
Meanwhile, self-supervised learning has shown remarkable performance by using large-scale image
datasets [14, 9]. The learned representations have outperformed the ones via supervised learning
when being transferred to downstream tasks. It is expected that this self-supervised learning paradigm
can provide a promising solution to address the challenge of training video transformers.

Following the success of masked autoencoding in NLP [17] and images [30, 4], we present a new self-
supervised video pre-training (SSVP) method, termed as Video Masked Autoencoder (VideoMAE).
Our VideoMAE inherits the simple pipeline of masking random cubes and reconstructing the missing
ones. However, the extra time dimension of videos makes them different from images in this masked
modeling. First, video frames are often densely captured, and their semantics varies slowly in
time [87]. This temporal redundancy would increase the risk of recovering missing pixels from
the spatiotemporal neighborhood with little high-level understanding. Furthermore, video could be
viewed as the temporal evolution of static appearance, and there exists a correspondence between
frames. This temporal correlation could lead to information leakage (i.e., masked spatiotemporal
content re-occurrence) during reconstruction unless a specific masking strategy is considered. In
this sense, for each masked cube, it is easy to find a corresponding and unmasked copy in adjacent
frames. This property would make the learned models identify some “shortcut” features that are hard
to generalize to new scenarios.

To make video masked modeling more effective, in this paper, we present a customized design of tube
masking with an extremely high ratio in our VideoMAE. First, due to temporal redundancy, we use
an extremely high masking ratio to drop the cubes from the downsampled clips. This simple strategy
not only effectively increases the pre-training performance but also greatly reduces the computational
cost due to the asymmetric encoder-decoder architecture. Second, to consider temporal correlation,
we devise a simple yet effective tube masking strategy, which turns out to be helpful in relieving the
risk of information leakage for cubes with no or negligible motion during reconstruction. With this
simple yet effective design in our VideoMAE, we are able to successfully train vanilla ViT backbones
on the relatively small-scale video datasets such as Something-Something [25], UCF101 [60], and
HMDB51 [34], which significantly outperform the previous state of the art under the setting without
extra data. In summary, the main contribution of this paper is threefold:

• We present a simple but effective video masked autoencoder that unleashes the potential of
vanilla vision transformer for video recognition. To the best of our knowledge, this is the
first masked video pre-training framework of simply using plain ViT backbones. To relieve
the information leakage issue in masked video modeling, we present the tube masking with
an extremely high ratio, which brings the performance improvement to the VideoMAE.

• Aligned with the results in NLP and Images on masked modeling, our VideoMAE demon-
strates that this simple masking and reconstruction strategy provides a good solution to
self-supervised video pre-training. The models pre-trained with our VideoMAE significantly
outperform those trained from scratch or pre-trained with contrastive learning methods.

• We obtain extra important findings on masked modeling that might be ignored in previous
research in NLP and Images. (1) We demonstrate that VideoMAE is a data-efficient learner
that could be successfully trained with only 3.5k videos. (2) Data quality is more important
than quantity for SSVP when a domain shift exists between the source and target dataset.
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2 Related Work

Video representation learning. Learning good video representations has been heavily investigated
in the literature. The supervised learning methods [58, 75, 69, 10, 6] usually depend on the image
backbones. The video encoder backbones are first pre-trained with image data in a supervised
form. Then, these backbones are fine-tuned on the video dataset for classifying human actions.
Meanwhile, some methods [67, 22, 21] directly train video backbones from videos in a supervised
manner. Besides supervised learning, semi-supervised video representation learning has also been
studied [59]. The representations of labeled training samples are utilized to generate supervision
signals for unlabeled ones. Supervised or semi-supervised representation learning mainly uses a
top-down training paradigm, which is not effective in exploring the inherent video data structure
itself. Meanwhile, some multimodal contrastive learning methods [36, 42, 62] have been developed
to learn video representation from noisy text supervision.

For self-supervised learning, the prior knowledge of temporal information has been widely exploited
to design pretext tasks [78, 44, 82, 5] for SSVP. Recently, contrastive learning [28, 45, 29, 52, 24, 27]
is popular to learn better visual representation. However these methods heavily rely on strong data
augmentation and large batch size [23]. Predicting the video clip with autoencoders in pixel space has
been explored for representation learning by using CNN or LSTM backbones [48, 61], or conducting
video generation with autoregressive GPT [83]. Instead, our VideoMAE aims to use the simple
masked autoencoder with recent ViT backbones to perform data-efficient SSVP.

Masked visual modeling. Masked visual modeling has been proposed to learn effective visual
representations based on the simple pipeline of masking and reconstruction. These works mainly
focus on the image domain. The early work [72] treated the masking as a noise type in denoised
autoencoders [71] or inpainted missing regions with context [47] by using convolutions. iGPT [11]
followed the success of GPT [7, 55] in NLP and operated a sequence of pixels for prediction. The
original ViT [20] investigated the masked token prediction for self-supervised pre-training. More
recently, the success of vision transformer has led to investigation of Transformer-based architectures
for masked visual modeling [4, 19, 30, 79, 81, 89]. BEiT [4], BEVT [76] and VIMPAC [64] followed
BERT [17] and proposed to learn visual representations from images and videos by predicting
the discrete tokens [56]. MAE [30] introduced an asymmetric encoder-decoder architecture for
masked image modeling. MaskFeat [79] proposed to reconstruct the HOG features of masked tokens
to perform self-supervised pre-training in videos. VideoMAE is inspired by the ImageMAE and
introduces specific design in implementation for SSVP. In particular, compared with previous masked
video modeling [30, 76, 64], we present a simpler yet more effective video masked autoencoder by
directly reconstructing the pixels. Our VideoMAE is the first masked video pre-training framework
of simply using plain ViT backbones.

3 Proposed Method

In this section, we first revisit ImageMAE [30]. Then we analyze the characteristics of video data.
Finally, we show how we explore MAE in the video data by presenting our VideoMAE.

3.1 Revisiting Image Masked Autoencoders

ImageMAE [30] performs the masking and reconstruction task with an asymmetric encoder-decoder
architecture. The input image I ∈ R3×H×W is first divided into regular non-overlapping patches
of size 16 ×16, and each patch is represented with token embedding. Then a subset of tokens are
randomly masked with a high masking ratio (75%), and only the remaining ones are fed into the
transformer encoder Φenc. Finally, a shallow decoder Φdec is placed on top of the visible tokens from
the encoder and learnable mask tokens to reconstruct the image. The loss function is mean squared
error (MSE) loss between the normalized masked tokens and reconstructed ones in the pixel space:

L =
1

Ω

∑
p∈Ω

|I(p)− Î(p)|2, (1)

where p is the token index, Ω is the set of masked tokens, I is the input image, and Î is the
reconstructed one.
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Figure 2: Slowness is a general prior in (a) video data [87]. This leads to two important characteristics
in time: temporal redundancy and temporal correlation. Temporal redundancy makes it possible to
recover pixels under an extremely high masking ratio. Temporal correlation leads to easily reconstruct
the missing pixels by finding those corresponding patches in adjacent frames under plain (b) frame
masking or (c) random masking. To avoid this simple task and encourage learning representative
representation, we propose a (d) tube masking, where the masking map is the same for all frames.

3.2 Characteristics of Video Data

Compared with static images, video data contain temporal relations. We show the motivation of our
VideoMAE by analyzing video characteristics.

Temporal redundancy. There are frequently captured frames in a video. The semantics vary slowly
in the temporal dimension [87]. We observe that consecutive frames are highly redundant, as shown
in Figure 2. This property leads to two critical issues in masked video autoencoding. First, it would
be less efficient to keep the original temporal frame rate for pre-training. This would draw us to focus
more on static or slow motions in our masked modeling. Second, temporal redundancy greatly dilutes
motion representations. This would make the task of reconstructing missing pixels not difficult under
the normal masking ratio (e.g., 50% to 75%). The encoder backbone is not effective in capturing
motion representations.

Temporal correlation. Videos could be viewed as the temporal extension of static appearance, and
therefore there exists an inherent correspondence between adjacent frames. This temporal correlation
could increase the risk of information leakage in the masking and reconstruction pipeline. In this
sense, as shown in Figure 2, we can reconstruct the masked patches by finding the spatiotemporal
corresponding unmasked patches in the adjacent frames under plain random masking or frame
masking. In this case, it might guide the VideoMAE to learn low-level temporal correspondence
rather than high-level information such as spatiotemporal reasoning over the content. To alleviate this
behavior, we need to propose a new masking strategy to make the reconstruction more challenging
and encourage effective learning of spatiotemporal structure representations.

3.3 VideoMAE

To relieve the above issues in video masked modeling, we make the customized design in our
VideoMAE, and the overall pipeline is shown in Figure 1. Our VideoMAE takes the downsampled
frames as inputs and uses the cube embedding to obtain video tokens. Then, we propose a simple
design of tube masking with high ratio to perform MAE pre-training with an asymmetric encoder-
decoder architecture. Our backbone uses the vanilla ViT with joint space-time attention.

Temporal downsampling. According to the above analysis on temporal redundancy over consecutive
frames, we propose to use the strided temporal sampling strategy to perform more efficient video
pre-training. Formally, one video clip consisting of t consecutive frames is first randomly sampled
from the original video V . We then use temporal sampling to compress the clip to T frames, each
of which contains H ×W × 3 pixels. In experiments, the stride τ is set to 4 and 2 on Kinetics and
Something-Something, respectively.

Cube embedding. We adopt the joint space-time cube embedding [3, 21, 38] in our VideoMAE,
where we treat each cube of size 2× 16× 16 as one token embedding. Thus, the cube embedding
layer obtains T

2 × H
16 × W

16 3D tokens and maps each token to the channel dimension D. This design
can decrease the spatial and temporal dimension of input, which helps to alleviate the spatiotemporal
redundancy in videos.
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Tube masking with extremely high ratios. First, temporal redundancy is a factor affecting Video-
MAE design. We find that VideoMAE is in favor of extremely high masking ratios (e.g. 90% to 95%)
compared with the ImageMAE. Video information density is much lower than images, and we expect
a high ratio to increase the reconstruction difficulty. This high masking ratio is helpful to mitigate the
information leakage during masked modeling and make masked video reconstruction a meaningful
self-supervised pre-training task.

Second, temporal correlation is another factor in our VideoMAE design. We find even under the
extremely high masking ratio, we can still improve the masking efficiency by proposing the temporal
tube masking mechanism. Temporal tube masking enforces a mask to expand over the whole
temporal axis, namely, different frames sharing the same masking map. Mathematically, the tube
mask mechanism can be expressed as I[px,y,· ∈ Ω] ∼ Bernoulli(ρmask) and different time t shares
the same value. With this mechanism, temporal neighbors of masked cubes are always masked. So
for some cubes with no or small motion (e.g., finger cube in 4th row of Figure 2 (d)), we can not
find the spatiotemporal corresponding content in all frames. In this way, it would encourage our
VideoMAE to reason over high-level semantics to recover these totally missing cubes. This simple
strategy can alleviate the information leakage for cubes with no or negligible motion, and turns out to
be effective in practice for masked video pre-training.

Backbone: joint space-time attention. Due to the high proportion of masking ratio mentioned above,
only a few tokens are left as the input for the encoder. To better capture high-level spatio-temporal
information in the remaining tokens, we use the vanilla ViT backbone [20] and adopt the joint
space-time attention [3, 38]. Thus, all pair tokens could interact with each other in the multi-head
self-attention layer [70]. The specific architecture design for the encoder and decoder is shown in
supplementary materials. The quadratic complexity of the joint space-time attention mechanism is a
computational bottleneck, while our design of an extremely high masking ratio alleviates this issue
by only putting the unmasked tokens (e.g., 10%) into the encoder during the pre-training phase.

4 Experiments

4.1 Datasets

We evaluate our VideoMAE on five common video datasets: Kinetics-400 [33], Something-Something
V2 [25], UCF101 [60], HMDB51 [34], and AVA [26]. The Kinetics-400 contains around 240k
training videos and 20k validation videos of 10s from 400 classes. The Something-Something V2
is another large-scale video dataset, having around 169k videos for training and 20k videos for
validation. In contrast to Kinetics-400, this dataset contains 174 motion-centric action classes. These
two large-scale video datasets focus on different visual cues for action recognition. UCF101 and
HMDB51 are two relatively small video datasets, which contain around 9.5k/3.5k train/val videos
and 3.5k/1.5k train/val videos, respectively. Compared with those large-scale video datasets, these
two small datasets are more suitable for verifying the effectiveness of VideoMAE, as training large
ViT models is more challenging on small datasets. Moreover, we also transfer the learned ViT models
by VideoMAE to downstream action detection task. We work on AVA, a dataset for spatiotemporal
localization of human actions with 211k training and 57k validation video segments. In experiments
of downstream tasks, we fine-tune the pre-trained VideoMAE models on the training set and report
the results on the validation set. The implementation details are described in Appendix § B.

4.2 Ablation Studies

In this subsection, we perform in-depth ablation studies on VideoMAE design with the default
backbone of 16-frame ViT-B on Something-Something V2 (SSV2) and Kinetics-400 (K400). The
specific architectures for the encoder and decoder are shown in Appendix § A. For fine-tuning, we
perform TSN [75] uniform sampling on SSV2 and dense sampling [77, 22] on K400. All models
share the same inference protocol, i.e., 2 clips × 3 crops on SSV2 and 5 clips × 3 crops on K400.

Decoder design. The lightweight decoder is one key component of our VideoMAE. We conduct
experiments with the different depths in Table 1a. Unlike in ImageMAE, a deep decoder here is im-
portant for better performance, while a shallow decoder could reduce the GPU memory consumption.
We take 4 blocks for the decoder by default. The decoder width is set to half channel of the encoder
(e.g., 384-d for ViT-B), following the design in the image domain.
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blocks SSV2 K400 GPU mem.
1 68.5 79.0 7.9G
2 69.2 79.2 10.2G
4 69.6 80.0 14.7G
8 69.3 79.7 23.7G

(a) Decoder depth. 4 blocks of
decoder achieve the best trade-
off. “GPU mem.” is GPU mem-
ory during pre-training, bench-
marked in one GPU with a batch
size of 16.

case ratio SSV2 K400
tube 75 68.0 79.8
tube 90 69.6 80.0
random 90 68.3 79.5
frame 87.5∗ 61.5 76.5

(b) Mask sampling. We com-
pare different masking strate-
gies. Our proposed tube mask-
ing with an extremely high ratio
works the best. ∗“87.5” means
masking 14/16 frames.

input target SSV2 K400
T×τ center 63.0 79.3
T× τ

2
T× τ

2
68.9 79.8

T×τ T×τ 69.6 80.0
T×τ 2T× τ

2
69.2 80.1

(c) Reconstruction target. T ×
τ denotes “frames ×stride”. cen-
ter denotes the center frame of
the input clip. T is set to 16 as
default. τ is set to 2 and 4 on
SSV2 and K400, respectively.

case SSV2 K400
from scratch 32.6 68.8
ImageNet-21k sup. 61.8 78.9
IN-21k+K400 sup. 65.2 -
VideoMAE 69.6 80.0

(d) Pre-training strategy. Our
VideoMAE works the best with-
out using any extra data. “sup.” is
supervised training.

dataset method SSV2 K400
IN-1K ImageMAE 64.8 78.7
K400 VideoMAE 68.5 80.0
SSV2 VideoMAE 69.6 79.6

(e) Pre-training dataset. Our
VideoMAE works the best when
directly pre-training the models
on the source datasets.

case SSV2 K400
L1 loss 69.1 79.7
MSE loss 69.6 80.0
Smooth L1 loss 68.9 79.6

(f) Loss function. MSE loss
works the best for the mask-
ing and reconstruction task in
VideoMAE.

Table 1: Ablation experiments on Something-Something V2 and Kinetics-400. Our backbone is
16-frame vanilla ViT-B and all models are pre-trained with mask ratio ρ=90% for 800 epochs, and fine-
tuned for evaluation. We perform TSN [75] uniform sampling on SSV2 and dense sampling [77, 22]
on K400. All models share the same inference protocol, i.e., 2 clips × 3 crops on SSV2 and 5 clips
× 3 crops on K400. The default choice for our model is colored in gray .

Masking strategy. We compare different masking strategies in Table 1b. When increasing the
masking ratio from 75% to 90% for tube masking, the performance on SSV2 boosts from 68.0% to
69.6%. Then, with an extremely high ratio, we find tube masking also achieves better performance
than plain random masking and frame masking. We attribute these interesting observations to the
redundancy and temporal correlation in videos. The conclusion on K400 is in accord with one on
SSV2. One may note that the performance gap on K400 is lower than one on SSV2. We argue that
the Kinetics videos are mostly stationary and scene-related. The effect of temporal modeling is not
obvious. Overall, we argue that our default designs enforce the networks to capture more useful
spatiotemporal structures and therefore make VideoMAE a more challenging task, which a good
self-supervised learner hunger for.

Reconstruction target. First, if we only employ the center frame as the target, the results would
decrease greatly as shown in Table 1c. The sampling stride is also sensitive. The result of small
sampling stride τ

2 is lower than default sampling stride τ (68.9% vs. 69.6% on SSV2). We also try
to reconstruct 2T frames from the downsampled T frames, but it obtains slightly worse results on
SSV2. For simplicity, we use the input downsampled clip as our default reconstruction target.

Pre-training strategy. We compare different pre-training strategies in Table 1d. Similar to previous
trials [3, 6], training video transformers from scratch yields unsatisfied results on video datasets.
When pre-trained on the large-scale ImageNet-21K dataset, the video transformer obtains better
accuracy from 32.6% to 61.8% on SSV2 and 68.8% to 78.9% on K400. Using the models pre-trained
on both ImageNet-21K and Kinetics further increases accuracy to 65.2% on SSV2. Our VideoMAE
can effectively train a video transformer on the video dataset itself without using any extra data and
achieve the best performance (69.6% on SSV2 and 80.0% on K400).

Pre-training dataset. First, we pre-train the ViT-B on ImageNet-1K for 1600 epochs, following
the recipes in [30]. Then we inflate the 2D patch embedding layer to our cube embedding layer
following [10] and fine-tune the model on the target video datasets. The results surpass the model
trained from scratch as shown in Table 1e. We also compare the ImageMAE pre-trained model with
VideoMAE models pre-trained on video datasets. We see that our VideoMAE models can achieve
better performance than ImageMAE. However, when we try to transfer the pre-trained VideoMAE
models to the other video datasets (e.g. from Kinetics to Something-Something), the results are
slightly worse than their counterpart, which is directly pre-trained on its own target video datasets.
We argue that domain shift between pre-training and target datasets could be an important issue.
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dataset training data from scratch MoCo v3 VideoMAE
K400 240k 68.8 74.2 80.0
Sth-Sth V2 169k 32.6 54.2 69.6
UCF101 9.5k 51.4 81.7 91.3
HMDB51 3.5k 18.0 39.2 62.6

Table 2: Comparisons with the results of previous self-supvised pre-training methods on different
datasets. We take 16-frame ViT-B as the default backbone. Notably, here MoCo v3 and VideoMAE
all only use the unlabelled data in the training set of each dataset for pre-training and are all fine-tuned
for evaluation.

method epoch ft. acc. lin. acc. hours speedup
MoCo v3 300 54.2 33.7 61.7 -
VideoMAE 800 69.6 38.9 19.5 3.2×

Table 3: Comparisons with the efficiency and effectiveness on Something-Something V2. We report
the fine-tuning (ft) and linear probing (lin) accuracy (%). The wall-clock time of pre-training is
benchmarked in 64 Tesla V100 GPUs with PyTorch.

method K400 → SSV2 K400 → UCF K400 → HMDB
MoCo v3 62.4 93.2 67.9
VideoMAE 68.5 96.1 73.3

Table 4: Comparisons with the feature transferability on smaller datasets. We take 16-frame ViT-B
as the default backbone. Notably, here MoCo v3 and VideoMAE are all pre-trained on Kinetics-400
with unlabelled data in the training set. Then the pre-trained model is fine-tuned on target datasets
for evaluation.

Loss function. Table 1f contains an ablation study of loss function. We find that the MSE loss could
achieve a higher result compared with the L1 loss and smooth L1 loss. Therefore, we employ the
MSE loss by default.

4.3 Main Results and Analysis

VideoMAE: data-efficient learner. The self-supervised video pre-training (SSVP) has been exten-
sively studied in previous works, but they mainly use the CNN-based backbones. Few works have
investigated transformer-based backbone in SSVP. Therefore, to demonstrate the effectiveness of
VideoMAE for transformer-based SSVP, we compare two methods implemented by ourselves: (1)
training from scratch and (2) pre-training with contrastive learning (MoCo v3 [14]). For training
from scratch, we carefully tune these hyper-parameters to successfully pre-train ViT-Base from the
training set of the dataset. For pre-training with MoCo v3, we strictly follow the training practice in
its image counterpart and carefully avoid the collapse issue.

The recognition accuracy is reported in Table 2. We see that our VideoMAE significantly outperforms
other two training settings. For instance, on the largest dataset of Kinetics-400, our VideoMAE
outperforms training from scratch by around 10% and MoCo v3 pre-training by around 5%. This
superior performance demonstrates that masked autoencoder provides an effective pre-training
mechanism for video transformers. We also see that the performance gap between our VideoMAE
and the other two methods becomes larger as the training set becomes smaller. Notably, even with only
3.5k training clips on HMDB51, our VideoMAE pre-training can still obtain a satisfying accuracy
(around 61%). This new result demonstrates that VideoMAE is a more data-efficient learner for SSVP.
This property is particularly important for scenarios with limited data available and different with
contrastive learning methods.

We compare the efficiency of VideoMAE pre-training and MoCo v3 pre-training in Table 3. The task
of masked autoencoding with a high ratio is more challenging and thereby requires more training
epochs (800 vs. 300). Thanks to the asymmetric encoder-decoder in our VideoMAE and extremely
high masking ratio, our pre-training time is much shorter than MoCo v3 (19.5 vs. 61.7 hours).

High masking ratio. In VideoMAE, one core design is the extremely high masking ratio. We
perform an investigation of this design on the Kinetics-400 and Something-Something V2 datasets.
The results are shown in Figure 3. We see that the best masking ratio is extremely high, and even
95% can achieve good performance for both datasets. This result is difference from BERT [17] in
NLP and MAE [30] in images. We analyze the temporal redundancy and correlation in videos makes
it possible for our VideoMAE to learn plausible outputs with such a high masking ratio.
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Figure 3: The effect of masking ratio
on (a) Something-Something V2 and (b)
Kinetics-400. We take 16-frame vanilla
ViT-B as default. The results show that
an extremely high masking ratio (90%)
achieves the best efficiency and effective-
ness trade-off on both video datasets.
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Figure 4: Data efficiency of VideoMAE representations.
Our default backbone is 16-frame vanilla ViT-B. • denotes
that all models are trained for the same 132k iterations,
and • denotes that all models are trained for the same 800
epochs. Note that it takes 132k iterations to pre-train the
model for 800 epochs on the full training set of Something-
Something V2.

We also visualize the reconstructed examples in Appendix § E. We see that even under an extremely
high masking ratio, VideoMAE can produce satisfying reconstructed results. This implies VideoMAE
is able to learn useful representations that capture the holistic spatiotemporal structure in videos.

Transfer learning: quality vs. quantity. To further investigate the generalization ability of
VideoMAE in representation learning, we transfer the learned VideoMAE from Kinetics-400 to
Something-Something V2, UCF101, and HMDB51. The results are shown in Table 4, and we
compare them with MoCo v3 pre-training. The models pre-trained by VideoMAE are better than those
pre-trained by MoCo v3, demonstrating that our VideoMAE learns more transferable representations.

Comparing Table 2 and Table 4, the transferred representation outperforms the original VideoMAE
models trained from its own dataset on UCF101 and HMDB51. In contrast, the transferred repre-
sentation is worse on Something-Something V2. To figure out whether this inconsistent result is
caused by the large scale of Something-Something V2, we further perform a detailed investigation by
decreasing the pre-training video numbers. In this study, we run two experiments: (1) pre-training
with the same epochs and (2) pre-training with the same time budget. The result is shown in Figure 4.
We see that more training iterations could contribute to better performance when we decrease the
size of the pre-training set. Surprisingly, even with only 42k pre-training videos, we can still obtain
better accuracy than the Kinetics pre-trained models with 240k videos (68.7% vs. 68.5%). This result
implies that domain shift is another important factor, and data quality is more important than data
quantity in SSVP when there exists a difference between pre-training and target datasets. It also
demonstrates that VideoMAE is a data-efficient learner for SSVP.

Transfer learning: downstream action detection. We also transfer the learned VideoMAE on
Kinetics-400 to downstream action detection dataset AVA. Following the standard setting [26], we
evaluate on top 60 common classes with mean Average Precision (mAP) as the metric under IoU
threshold of 0.5. The results are shown in the Table 5. After self-supervised pre-training on Kinetics-
400, our VideoMAE with the vanilla ViT-B can achieve 26.7 mAP on AVA, which demonstrates
the strong transferability of our VideoMAE. If the pre-trained ViT-B is additionally fine-tuned on
Kinetics-400 with labels, the transfer learning performance can further increase about 5 mAP (from
26.7 to 31.8). More remarkably, when we scale up the pre-training configurations with larger video
datasets (e.g. Kinetics-700) or more powerful backbones (e.g. ViT-Large and ViT-Huge), VideoMAE
can finally obtain better performance. For example, our ViT-L VideoMAE pre-trained on Kinetics-700
achieves 39.3 mAP and ViT-H VideoMAE pre-trained on Kinetics-400 has 39.5 mAP. These results
demonstrate that the self-supervised pre-trained models transfer well not only on action classification
task but on more complex action detection task.
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Method Backbone Pre-train Dataset Extra Labels T × τ GFLOPs Param mAP
supervised [22] SlowFast-R101 Kinetics-400 ✓ 8×8 138 53 23.8
CVRL [53] SlowOnly-R50 Kinetics-400 ✗ 32×2 42 32 16.3
ρBYOLρ=3 [23] SlowOnly-R50 Kinetics-400 ✗ 8×8 42 32 23.4
ρMoCoρ=3 [23] SlowOnly-R50 Kinetics-400 ✗ 8×8 42 32 20.3
MaskFeat↑312 [79] MViT-L Kinetics-400 ✓ 40×3 2828 218 37.5
MaskFeat↑312 [79] MViT-L Kinetics-600 ✓ 40×3 2828 218 38.8
VideoMAE ViT-S Kinetics-400 ✗ 16×4 57 22 22.5
VideoMAE ViT-S Kinetics-400 ✓ 16×4 57 22 28.4
VideoMAE ViT-B Kinetics-400 ✗ 16×4 180 87 26.7
VideoMAE ViT-B Kinetics-400 ✓ 16×4 180 87 31.8
VideoMAE ViT-L Kinetics-400 ✗ 16×4 597 305 34.3
VideoMAE ViT-L Kinetics-400 ✓ 16×4 597 305 37.0
VideoMAE ViT-H Kinetics-400 ✗ 16×4 1192 633 36.5
VideoMAE ViT-H Kinetics-400 ✓ 16×4 1192 633 39.5
VideoMAE ViT-L Kinetics-700 ✗ 16×4 597 305 36.1
VideoMAE ViT-L Kinetics-700 ✓ 16×4 597 305 39.3

Table 5: Comparison with the state-of-the-art methods on AVA v2.2. All models are pre-trained
and fine-tuned at image size 2242. We report the mean Average Precision (mAP) on validation set.
“Ex. labels ✗” means only unlabelled data is used during the pre-training phase and the pre-trained
models are directly transferred to AVA. “Ex. labels ✓” means pre-trained models are additionally
fine-tuned on the pre-training dataset with labels before transferred to AVA. T × τ refers to frame
number and corresponding sample rate.

Method Backbone Extra data Ex. labels Frames GFLOPs Param Top-1 Top-5
TEINetEn [39] ResNet50×2

ImageNet-1K
✓ 8+16 99×10×3 50 66.5 N/A

TANetEn [40] ResNet50×2 ✓ 8+16 99×2×3 51 66.0 90.1
TDNEn [74] ResNet101×2 ✓ 8+16 198×1×3 88 69.6 92.2
SlowFast [22] ResNet101 Kinetics-400 ✓ 8+32 106×1×3 53 63.1 87.6
MViTv1 [21] MViTv1-B ✓ 64 455×1×3 37 67.7 90.9
TimeSformer [6] ViT-B ImageNet-21K ✓ 8 196×1×3 121 59.5 N/A
TimeSformer [6] ViT-L ✓ 64 5549×1×3 430 62.4 N/A
ViViT FE [3] ViT-L

IN-21K+K400

✓ 32 995×4×3 N/A 65.9 89.9
Motionformer [50] ViT-B ✓ 16 370×1×3 109 66.5 90.1
Motionformer [50] ViT-L ✓ 32 1185×1×3 382 68.1 91.2
Video Swin [38] Swin-B ✓ 32 321×1×3 88 69.6 92.7
VIMPAC [64] ViT-L HowTo100M+DALLE ✗ 10 N/A×10×3 307 68.1 N/A
BEVT [76] Swin-B IN-1K+K400+DALLE ✗ 32 321×1×3 88 70.6 N/A
MaskFeat↑312 [79] MViT-L Kinetics-600 ✓ 40 2828×1×3 218 75.0 95.0
VideoMAE ViT-B Kinetics-400 ✗ 16 180×2×3 87 69.7 92.3
VideoMAE ViT-L Kinetics-400 ✗ 16 597×2×3 305 74.0 94.6
VideoMAE ViT-S

no external data

✗ 16 57×2×3 22 66.8 90.3
VideoMAE ViT-B ✗ 16 180×2×3 87 70.8 92.4
VideoMAE ViT-L ✗ 16 597×2×3 305 74.3 94.6
VideoMAE ViT-L ✗ 32 1436×1×3 305 75.4 95.2
Table 6: Comparison with the state-of-the-art methods on Something-Something V2. Our
VideoMAE reconstructs normalized cube pixels and is pre-trained with a masking ratio of 90% for
2400 epochs. “Ex. labels ✗” means only unlabelled data is used during the pre-training phase. “N/A”
indicates the numbers are not available for us.

4.4 Comparison with the state of the art

We compare with the previous state-of-the-art performance on the Kinetics-400 and Something-
Something V2 datasets. The results are reported in Table 6 and Table 7. Our VideoMAE can easily
scale up with more powerful backbones (e.g. ViT-Large and ViT-Huge) and more frames (e.g. 32).
Our VideoMAE achieves the top-1 accuracy of 75.4% on Something-Something V2 and 87.4% on
Kinetics-400 without using any extra data. We see that the existing state-of-the-art methods all
depend on the external data for pre-training on the Something-Something V2 dataset. On the contrary,
our VideoMAE without any external data significantly outperforms previous methods with the same
input resolution by around 5%. Our ViT-H VideoMAE also achieves very competitive performance
on the Kinetics-400 dataset without using any extra data, which is even better than ViViT-H with on
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Method Backbone Extra data Ex. labels Frames GFLOPs Param Top-1 Top-5
NL I3D [77] ResNet101

ImageNet-1K
✓ 128 359×10×3 62 77.3 93.3

TANet [40] ResNet152 ✓ 16 242×4×3 59 79.3 94.1
TDNEn [74] ResNet101 ✓ 8+16 198×10×3 88 79.4 94.4
TimeSformer [6] ViT-L

ImageNet-21K

✓ 96 8353×1×3 430 80.7 94.7
ViViT FE [3] ViT-L ✓ 128 3980×1×3 N/A 81.7 93.8
Motionformer [50] ViT-L ✓ 32 1185×10×3 382 80.2 94.8
Video Swin [38] Swin-L ✓ 32 604×4×3 197 83.1 95.9
ViViT FE [3] ViT-L JFT-300M ✓ 128 3980×1×3 N/A 83.5 94.3
ViViT [3] ViT-H JFT-300M ✓ 32 3981×4×3 N/A 84.9 95.8
VIMPAC [64] ViT-L HowTo100M+DALLE ✗ 10 N/A×10×3 307 77.4 N/A
BEVT [76] Swin-B IN-1K+DALLE ✗ 32 282×4×3 88 80.6 N/A
MaskFeat↑352 [79] MViT-L Kinetics-600 ✗ 40 3790×4×3 218 87.0 97.4
ip-CSN [68] ResNet152

no external data

✗ 32 109×10×3 33 77.8 92.8
SlowFast [22] R101+NL ✗ 16+64 234×10×3 60 79.8 93.9
MViTv1 [21] MViTv1-B ✗ 32 170×5×1 37 80.2 94.4
MaskFeat [79] MViT-L ✗ 16 377×10×1 218 84.3 96.3
VideoMAE ViT-S

no external data

✗ 16 57×5×3 22 79.0 93.8
VideoMAE ViT-B ✗ 16 180×5×3 87 81.5 95.1
VideoMAE ViT-L ✗ 16 597×5×3 305 85.2 96.8
VideoMAE ViT-H ✗ 16 1192×5×3 633 86.6 97.1
VideoMAE↑320 ViT-L no external data ✗ 32 3958×4×3 305 86.1 97.3
VideoMAE↑320 ViT-H ✗ 32 7397×4×3 633 87.4 97.6

Table 7: Comparison with the state-of-the-art methods on Kinetics-400. Our VideoMAE recon-
structs normalized cube pixels. Here models are self-supervised pre-trained with a masking ratio
of 90% for 1600 epochs on Kinetics-400. VideoMAE↑320 is initialized from its 2242 resolution
counterpart and then fine-tuned for evaluation. “Ex. labels ✗” means only unlabelled data is used
during the pre-training phase. “N/A” indicates the numbers are not available for us.

JFT-300M pre-training (86.6% v.s. 84.9%). When fine-tuned with larger spatial resolutions and input
video frames, the performance of our ViT-H VideoMAE can further boost from 86.6% to 87.4%.

5 Conclusion

In this paper, we have presented a simple and data-efficient self-supervised learning method (Video-
MAE) for video transformer pre-training. Our VideoMAE introduces two critical designs of extremely
high masking ratio and tube masking strategy to make the video reconstruction task more challenging.
This harder task would encourage VideoMAE to learn more representative features and relieve the
information leakage issue. Empirical results demonstrate this simple algorithm works well for video
datasets of different scales. In particular, we are able to learn effective VideoMAE only with thousands
of video clips, which has significant practical value for scenarios with limited data available.

Future work VideoMAE could be further improved by using larger webly datasets, larger models
(e.g., ViT-G) and larger spatial resolutions of input video (e.g., 3842). VideoMAE only leverages the
RGB video stream without using additional audio or text stream. We expect that audio and text from
the video data can provide more information for self-supervised pre-training.

Broader impact Potential negative societal impacts of VideoMAE are mainly concerned with energy
consumption. The pre-training phase may lead to a large amount of carbon emission. Though the
pre-training is energy-consuming, we only need to pre-train the model once. Different downstream
tasks can then share the same pre-trained model via additional fine-tuning. Our VideoMAE unleashes
the great potential of vanilla vision transformer for video analysis, which could increase the risk of
video understanding model or its outputs being used incorrectly, such as for unauthorized surveillance.
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video vision transformer. In IEEE/CVF International Conference on Computer Vision, 2021.

[4] Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. BEit: BERT pre-training of image transformers. In
International Conference on Learning Representations, 2022.

[5] Sagie Benaim, Ariel Ephrat, Oran Lang, Inbar Mosseri, William T. Freeman, Michael Rubinstein, Michal
Irani, and Tali Dekel. Speednet: Learning the speediness in videos. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2020.

[6] Gedas Bertasius, Heng Wang, and Lorenzo Torresani. Is space-time attention all you need for video
understanding? In International Conference on Machine Learning, 2021.

[7] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark,
Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models
are few-shot learners. In Advances in Neural Information Processing Systems, 2020.

[8] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey
Zagoruyko. End-to-end object detection with transformers. In European Conference on Computer Vision,
2020.

[9] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and Armand
Joulin. Emerging properties in self-supervised vision transformers. In IEEE/CVF International Conference
on Computer Vision, 2021.

[10] João Carreira and Andrew Zisserman. Quo vadis, action recognition? A new model and the kinetics dataset.
In IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2017.

[11] Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, and Ilya Sutskever.
Generative pretraining from pixels. In International Conference on Machine Learning, 2020.

[12] Peihao Chen, Deng Huang, Dongliang He, Xiang Long, Runhao Zeng, Shilei Wen, Mingkui Tan, and
Chuang Gan. Rspnet: Relative speed perception for unsupervised video representation learning. In
Proceedings of the AAAI Conference on Artificial Intelligence, 2021.

[13] Xin Chen, Bin Yan, Jiawen Zhu, Dong Wang, Xiaoyun Yang, and Huchuan Lu. Transformer tracking. In
CVPR, 2021.

[14] Xinlei Chen, Saining Xie, and Kaiming He. An empirical study of training self-supervised vision
transformers. In IEEE/CVF International Conference on Computer Vision, 2021.

[15] Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le. Randaugment: Practical automated data
augmentation with a reduced search space. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops, 2020.

[16] Yutao Cui, Cheng Jiang, Limin Wang, and Gangshan Wu. Mixformer: End-to-end tracking with iterative
mixed attention. In IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022.

[17] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidi-
rectional transformers for language understanding. In North American Chapter of the Association for
Computational Linguistics, 2019.

[18] Ali Diba, Vivek Sharma, Reza Safdari, Dariush Lotfi, Saquib Sarfraz, Rainer Stiefelhagen, and Luc
Van Gool. Vi2clr: Video and image for visual contrastive learning of representation. In IEEE/CVF
International Conference on Computer Vision, 2021.

11



[19] Xiaoyi Dong, Jianmin Bao, Ting Zhang, Dongdong Chen, Weiming Zhang, Lu Yuan, Dong Chen, Fang
Wen, and Nenghai Yu. Peco: Perceptual codebook for bert pre-training of vision transformers. arXiv
preprint arXiv:2111.12710, 2021.

[20] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is
worth 16x16 words: Transformers for image recognition at scale. In International Conference on Learning
Representations, 2021.

[21] Haoqi Fan, Bo Xiong, Karttikeya Mangalam, Yanghao Li, Zhicheng Yan, Jitendra Malik, and Christoph
Feichtenhofer. Multiscale vision transformers. In IEEE/CVF International Conference on Computer Vision,
2021.

[22] Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and Kaiming He. Slowfast networks for video
recognition. In IEEE/CVF International Conference on Computer Vision, 2019.

[23] Christoph Feichtenhofer, Haoqi Fan, Bo Xiong, Ross Girshick, and Kaiming He. A large-scale study on
unsupervised spatiotemporal representation learning. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2021.

[24] Chongjian Ge, Youwei Liang, Yibing Song, Jianbo Jiao, Jue Wang, and Ping Luo. Revitalizing cnn
attentions via transformers in self-supervised visual representation learning. In Advances in Neural
Information Processing Systems, 2021.

[25] Raghav Goyal, Samira Ebrahimi Kahou, Vincent Michalski, Joanna Materzynska, Susanne Westphal,
Heuna Kim, Valentin Haenel, Ingo Fründ, Peter Yianilos, Moritz Mueller-Freitag, Florian Hoppe, Christian
Thurau, Ingo Bax, and Roland Memisevic. The "something something" video database for learning and
evaluating visual common sense. In IEEE/CVF International Conference on Computer Vision, 2017.

[26] Chunhui Gu, Chen Sun, David A Ross, Carl Vondrick, Caroline Pantofaru, Yeqing Li, Sudheendra
Vijayanarasimhan, George Toderici, Susanna Ricco, Rahul Sukthankar, et al. Ava: A video dataset of
spatio-temporally localized atomic visual actions. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2018.

[27] Sheng Guo, Zihua Xiong, Yujie Zhong, Limin Wang, Xiaobo Guo, Bing Han, and Weilin Huang. Cross-
architecture self-supervised video representation learning. In CVPR, 2022.

[28] Tengda Han, Weidi Xie, and Andrew Zisserman. Memory-augmented dense predictive coding for video
representation learning. In European Conference on Computer Vision, 2020.

[29] Tengda Han, Weidi Xie, and Andrew Zisserman. Self-supervised co-training for video representation
learning. In Advances in Neural Information Processing Systems, 2020.

[30] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked autoencoders
are scalable vision learners. In IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022.

[31] Elad Hoffer, Tal Ben-Nun, Itay Hubara, Niv Giladi, Torsten Hoefler, and Daniel Soudry. Augment your
batch: Improving generalization through instance repetition. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2020.

[32] Kai Hu, Jie Shao, Yuan Liu, Bhiksha Raj, Marios Savvides, and Zhiqiang Shen. Contrast and order
representations for video self-supervised learning. In IEEE/CVF International Conference on Computer
Vision, 2021.

[33] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier, Sudheendra Vijayanarasimhan,
Fabio Viola, Tim Green, Trevor Back, Paul Natsev, Mustafa Suleyman, and Andrew Zisserman. The
kinetics human action video dataset. arXiv preprint arXiv:1705.06950, 2017.

[34] Hildegard Kuehne, Hueihan Jhuang, Estíbaliz Garrote, Tomaso Poggio, and Thomas Serre. Hmdb: a large
video database for human motion recognition. In IEEE/CVF International Conference on Computer Vision,
2011.

[35] Hsin-Ying Lee, Jia-Bin Huang, Maneesh Singh, and Ming-Hsuan Yang. Unsupervised representation
learning by sorting sequence. In IEEE/CVF International Conference on Computer Vision, 2017.

[36] Tianhao Li and Limin Wang. Learning spatiotemporal features via video and text pair discrimination.
CoRR, abs/2001.05691, 2020.

12



[37] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In IEEE/CVF International
Conference on Computer Vision, 2021.

[38] Ze Liu, Jia Ning, Yue Cao, Yixuan Wei, Zheng Zhang, Stephen Lin, and Han Hu. Video swin transformer.
In IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022.

[39] Zhaoyang Liu, Donghao Luo, Yabiao Wang, Limin Wang, Ying Tai, Chengjie Wang, Jilin Li, Feiyue
Huang, and Tong Lu. TEINet: Towards an efficient architecture for video recognition. In Proceedings of
the AAAI Conference on Artificial Intelligence, 2020.

[40] Zhaoyang Liu, Limin Wang, Wayne Wu, Chen Qian, and Tong Lu. Tam: Temporal adaptive module for
video recognition. In IEEE/CVF International Conference on Computer Vision, 2021.

[41] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv preprint
arXiv:1608.03983, 2016.

[42] Antoine Miech, Jean-Baptiste Alayrac, Lucas Smaira, Ivan Laptev, Josef Sivic, and Andrew Zisserman.
End-to-end learning of visual representations from uncurated instructional videos. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2020.

[43] Antoine Miech, Jean-Baptiste Alayrac, Lucas Smaira, Ivan Laptev, Josef Sivic, and Andrew Zisserman.
End-to-End Learning of Visual Representations from Uncurated Instructional Videos. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2020.

[44] Ishan Misra, C Lawrence Zitnick, and Martial Hebert. Shuffle and learn: unsupervised learning using
temporal order verification. In European Conference on Computer Vision, 2016.

[45] Tian Pan, Yibing Song, Tianyu Yang, Wenhao Jiang, and Wei Liu. Videomoco: Contrastive video
representation learning with temporally adversarial examples. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2021.

[46] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang,
Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie
Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep learning library. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in
Neural Information Processing Systems, 2019.

[47] Deepak Pathak, Philipp Krähenbühl, Jeff Donahue, Trevor Darrell, and Alexei A. Efros. Context encoders:
Feature learning by inpainting. In IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2016.

[48] Viorica Patraucean, Ankur Handa, and Roberto Cipolla. Spatio-temporal video autoencoder with differen-
tiable memory. arXiv preprint arXiv:1511.06309, 2015.

[49] Mandela Patrick, Yuki M. Asano, Polina Kuznetsova, Ruth Fong, João F. Henriques, Geoffrey Zweig,
and Andrea Vedaldi. Multi-modal self-supervision from generalized data transformations. In IEEE/CVF
International Conference on Computer Vision, 2021.

[50] Mandela Patrick, Dylan Campbell, Yuki M. Asano, Ishan Misra Florian Metze, Christoph Feichtenhofer,
Andrea Vedaldi, and Joo F. Henriques. Keeping your eye on the ball: Trajectory attention in video
transformers. In Advances in Neural Information Processing Systems, 2021.

[51] AJ Piergiovanni, Anelia Angelova, and Michael S Ryoo. Evolving losses for unsupervised video represen-
tation learning. In IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020.

[52] Rui Qian, Tianjian Meng, Boqing Gong, Ming-Hsuan Yang, Huisheng Wang, Serge Belongie, and Yin Cui.
Spatiotemporal contrastive video representation learning. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2021.

[53] Rui Qian, Tianjian Meng, Boqing Gong, Ming-Hsuan Yang, Huisheng Wang, Serge J. Belongie, and Yin
Cui. Spatiotemporal contrastive video representation learning. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2021.

[54] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language understanding
by generative pre-training. OpenAI blog, 2018.

13



[55] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language models
are unsupervised multitask learners. OpenAI blog, 2019.

[56] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen, and
Ilya Sutskever. Zero-shot text-to-image generation. In International Conference on Machine Learning,
2021.

[57] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition challenge.
International Journal of Computer Vision, 2015.

[58] Karen Simonyan and Andrew Zisserman. Two-stream convolutional networks for action recognition in
videos. Advances in Neural Information Processing Systems, 2014.

[59] Ankit Singh, Omprakash Chakraborty, Ashutosh Varshney, Rameswar Panda, Rogerio Feris, Kate Saenko,
and Abir Das. Semi-supervised action recognition with temporal contrastive learning. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2021.

[60] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. Ucf101: A dataset of 101 human actions
classes from videos in the wild. arXiv preprint arXiv:1212.0402, 2012.

[61] Nitish Srivastava, Elman Mansimov, and Ruslan Salakhutdinov. Unsupervised learning of video represen-
tations using lstms. International Conference on Machine Learning, 2015.

[62] Jonathan C. Stroud, David A. Ross, Chen Sun, Jia Deng, Rahul Sukthankar, and Cordelia Schmid. Learning
video representations from textual web supervision. CoRR, abs/2007.14937, 2020.

[63] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking the
inception architecture for computer vision. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2016.

[64] Hao Tan, Jie Lei, Thomas Wolf, and Mohit Bansal. Vimpac: Video pre-training via masked token prediction
and contrastive learning. arXiv preprint arXiv:2106.11250, 2021.

[65] Jiajun Tang, Jin Xia, Xinzhi Mu, Bo Pang, and Cewu Lu. Asynchronous interaction aggregation for action
detection. In European Conference on Computer Vision, 2020.

[66] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé Jégou.
Training data-efficient image transformers & distillation through attention. In International Conference on
Machine Learning, 2021.

[67] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani, and Manohar Paluri. Learning spatiotemporal
features with 3d convolutional networks. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2015.

[68] Du Tran, Heng Wang, Matt Feiszli, and Lorenzo Torresani. Video classification with channel-separated
convolutional networks. In IEEE/CVF International Conference on Computer Vision, 2019.

[69] Du Tran, Heng Wang, Lorenzo Torresani, Jamie Ray, Yann LeCun, and Manohar Paluri. A closer look at
spatiotemporal convolutions for action recognition. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2018.

[70] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information Processing
Systems, 2017.

[71] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Extracting and composing
robust features with denoising autoencoders. In International Conference on Machine Learning, 2008.

[72] Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and Pierre-Antoine Manzagol. Stacked
denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion.
Journal of Machine Learning Research, 2010.

[73] Jiangliu Wang, Jianbo Jiao, and Yun-Hui Liu. Self-supervised video representation learning by pace
prediction. In European Conference on Computer Vision, 2020.

[74] Limin Wang, Zhan Tong, Bin Ji, and Gangshan Wu. TDN: Temporal difference networks for efficient
action recognition. In IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021.

14



[75] Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao, Dahua Lin, Xiaoou Tang, and Luc Van Gool. Temporal
segment networks for action recognition in videos. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2019.

[76] Rui Wang, Dongdong Chen, Zuxuan Wu, Yinpeng Chen, Xiyang Dai, Mengchen Liu, Yu-Gang Jiang,
Luowei Zhou, and Lu Yuan. Bevt: Bert pretraining of video transformers. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2022.

[77] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaiming He. Non-local neural networks. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2018.

[78] Xiaolong Wang and Abhinav Gupta. Unsupervised learning of visual representations using videos. In
IEEE/CVF International Conference on Computer Vision, 2015.

[79] Chen Wei, Haoqi Fan, Saining Xie, Chao-Yuan Wu, Alan Yuille, and Christoph Feichtenhofer. Masked
feature prediction for self-supervised visual pre-training. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2022.

[80] Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M Alvarez, and Ping Luo. Segformer: Sim-
ple and efficient design for semantic segmentation with transformers. In Advances in Neural Information
Processing Systems, 2021.

[81] Zhenda Xie, Zheng Zhang, Yue Cao, Yutong Lin, Jianmin Bao, Zhuliang Yao, Qi Dai, and Han Hu.
Simmim: A simple framework for masked image modeling. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2022.

[82] Dejing Xu, Jun Xiao, Zhou Zhao, Jian Shao, Di Xie, and Yueting Zhuang. Self-supervised spatiotemporal
learning via video clip order prediction. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2019.

[83] Wilson Yan, Yunzhi Zhang, Pieter Abbeel, and Aravind Srinivas. Videogpt: Video generation using
VQ-VAE and transformers. arXiv preprint arXiv:2104.10157, 2021.

[84] Ceyuan Yang, Yinghao Xu, Bo Dai, and Bolei Zhou. Video representation learning with visual tempo
consistency. arXiv preprint arXiv:2006.15489, 2020.

[85] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo. Cutmix:
Regularization strategy to train strong classifiers with localizable features. In IEEE/CVF International
Conference on Computer Vision, 2019.

[86] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical risk
minimization. arXiv preprint arXiv:1710.09412, 2017.

[87] Zhang Zhang and Dacheng Tao. Slow feature analysis for human action recognition. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2012.

[88] Daquan Zhou, Bingyi Kang, Xiaojie Jin, Linjie Yang, Xiaochen Lian, Qibin Hou, and Jiashi Feng. Deepvit:
Towards deeper vision transformer. arXiv preprint arXiv:2103.11886, 2021.

[89] Jinghao Zhou, Chen Wei, Huiyu Wang, Wei Shen, Cihang Xie, Alan Yuille, and Tao Kong. iBOT: Image
bert pre-training with online tokenizer. International Conference on Learning Representations, 2022.

15



Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] Shown in Section 5.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] Shown in

Section 5.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main exper-

imental results (either in the supplemental material or as a URL)? [Yes] Shown in
Section 4.1 and Appendix § B.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] Shown in Appendix § B.

(c) Did you report error bars (e.g., with respect to the random seed after running exper-
iments multiple times)? [No] Because of the computation costs, we did not run the
experiments multiple times.

(d) Did you include the total amount of compute and the type of resources used (e.g.,
type of GPUs, internal cluster, or cloud provider)? [Yes] Please see Table 3 and
Appendix § B.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes] Shown in Appendix § F.
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes] We used publicly available datasets whose licenses allow research
usage.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [No] To the best of our knowledge, the data we used
contains no personally identifiable information or offensive content.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

16


