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1 More Object Detection Experiments on COCO

Faster R-CNN. To validate the generalization of GhostNetV2 with different detection heads, we
also embed GhostNetV2 into Faster R-CNN with Feature Pyramid Networks [5, 4]. Following [2],
we resize the input images to a short side of 800 and a long side not exceeding 1333. The models
are fine-tuned for 12 epochs, and the pre-trained weights on ImageNet are used as the initial values.
The results of different backbones are shown in Table A12. Compared with GhostNetV1 (e.g., 26.9
mAP), GhostNetV2 achieves much higher performance (e.g., 28.5 mAP). It empirically shows that
GhostNetV2 is compatible with different detection models as a universe backbone.

Table A1: Results of object detection on MS COCO dataset. Faster R-CNN with Feature Pyramid
Networks [5, 4] is used as the detection head.

Backbone Backbone FLOPs (M) AP AP50 AP75 APS APM APL

MobileNetV2 1.0× [6] 300 27.5 47.4 28.5 16.0 30.6 35.2
GhostNet V1 1.1× 168 26.9 46.8 27.6 16.0 29.7 34.6
GhostNetV2 1.0× 167 28.5 46.6 30.3 16.1 30.7 38.7

2 Discussion about Decoupled Attention and Full Attention

We compare the calculation process of decoupled attention and full attention in Figure A1. In full
attention, all the patches in a region participate in the calculation of the focused patch directly. For
the decoupled attention, a patch is directly aggregated by patches in its vertical/horizontal lines, while
other patches participate in the generation of those patches in the vertical/horizontal lines, having
an indirect relationship with the focused token. Thus the calculation of a patch also involves all the
patches in the region. The visualization of attention map is shown in Figure 6 of the main paper.

3 More Ablation Studies

The feature’s size in DFC attention. To reduce the computational cost, we down-sample the feature
maps and conduct RA attention on the smaller features. By leveraging the interpolation function,
the feature maps can be resized to any shape, whose impact is investigated in Table A2. For a fair
comparison, the width of different models is adjusted to control the computational cost. The results
show that a better trade-off can be achieved by down-sampling the attention branch, e.g., 75.3% top-1
accuracy with 0.5 down-sampling ratio vs.74.4% accuracy without down-sampling. We conclude
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Figure A1: The calculation process of decoupled attention and full attention.

Table A2: The ratio of down-sampling in DFC attention.

Ratio Top1-Acc. Params FLOPs
(%) (M) (G)

0.3 75.2 6.8 170
0.5 75.3 6.1 167
0.7 74.9 5.5 164
1.0 74.4 5.0 172

that the attention branch is to assist the main branch by endowing it long-range dependence, and
high-resolution feature maps tend to be redundant in this branch.

Discussion with NAS-based lightweight non-local networks. Auto-NL [3] is a NAS-based work
following the typical paradigm of self-attention (i.e., (xxT )x, or x(xxT ), where x is a vector),
whose computational cost is saved by reducing the feature’s dimensions and replacing convolution
with light-weight depthwise convolution. It also requires ’einsum’, tensor reshaping, and transposing
operations for practical implementation, which incur large latency. Since only theoretical FLOPs are
reported in [3], we measure its latency using the same devices for GhostNetV2 (Huawei P30 with
Kirin 980 CPU) and show the results in Table A3. AutoNL suffers much higher latency (76.4ms v.s.
56.7ms) than GhostNet with lower accuracy (76.5% v.s. 76.9%).

Table A3: Comparison with NAS-based lightweight non-Local networks.

Model Top1-Acc. FLOPs Latency
(%) (M) (ms)

AutoNL-S [3] 76.5 267 76.4
GhostNetV2 1.3× 76.9 269 56.7

AutoNL-L [3] 77.7 353 101.6
GhostNetV2 1.6× 77.8 399 77.6

NAS-based methods (e.g., Auto-NL [3], OFA [1]) and GhostNetV2 actually focus on different
aspects of designing architectures. Auto-NL [3] searches the architecture’s configuration (e.g.,
location for inserting LightNL, channel’s number in each layer) to pursue high performance. OFA [1]
also searches the architecture configures for specific hardware and uses more training tricks (e.g.,
progressive shrinking, knowledge distillation) to improve performance. While GhostNetV2 focuses
on how to design a hardware-friendly attention mechanism, which doesn’t optimize the network
architecture and training recipe. Searching network’s configuration and improving training recipe
have the potential to further improve GhostNetV2’s performance.
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