
Non-stationary Transformers:
Exploring the Stationarity in Time Series Forecasting

Yong Liu∗, Haixu Wu∗, Jianmin Wang, Mingsheng LongB
School of Software, BNRist, Tsinghua University, China

{liuyong21,whx20}@mails.tsinghua.edu.cn, {jimwang,mingsheng}@tsinghua.edu.cn

Abstract

Transformers have shown great power in time series forecasting due to their
global-range modeling ability. However, their performance can degenerate ter-
ribly on non-stationary real-world data in which the joint distribution changes
over time. Previous studies primarily adopt stationarization to attenuate the non-
stationarity of original series for better predictability. But the stationarized series
deprived of inherent non-stationarity can be less instructive for real-world bursty
events forecasting. This problem, termed over-stationarization in this paper, leads
Transformers to generate indistinguishable temporal attentions for different series
and impedes the predictive capability of deep models. To tackle the dilemma
between series predictability and model capability, we propose Non-stationary
Transformers as a generic framework with two interdependent modules: Series
Stationarization and De-stationary Attention. Concretely, Series Stationarization
unifies the statistics of each input and converts the output with restored statis-
tics for better predictability. To address the over-stationarization problem, De-
stationary Attention is devised to recover the intrinsic non-stationary information
into temporal dependencies by approximating distinguishable attentions learned
from raw series. Our Non-stationary Transformers framework consistently boosts
mainstream Transformers by a large margin, which reduces MSE by 49.43% on
Transformer, 47.34% on Informer, and 46.89% on Reformer, making them the
state-of-the-art in time series forecasting. Code is available at this repository:
https://github.com/thuml/Nonstationary_Transformers.

1 Introduction

Time series forecasting has become increasingly ubiquitous in real-world applications, such as weather
forecasting, energy consumption planning, and financial risk assessment. Recently, Transformers [32]
have achieved progressive breakthrough on extensive areas [11, 12, 10, 22]. Especially in time
series forecasting, credited to their stacked structure and the capability of attention mechanisms,
Transformers can naturally capture the temporal dependencies from deep multi-level features [37, 17,
20, 35], thereby fitting the series forecasting task perfectly.

Despite the remarkable architectural design, it is still challenging for Transformers to predict real-
world time series because of the non-stationarity of data. Non-stationary time series is characterized
by the continuous change of statistical properties and joint distribution over time, which makes
the time series less predictable [6, 14]. Besides, it is a fundamental problem to make deep models
generalize well on a varying distribution [26, 19, 5]. In previous work, it is generally acknowledged
to pre-process the time series by stationarization [24, 27, 15], which can attenuate the non-stationarity
of raw time series for better predictability and provide more stable data distribution for deep models.

∗Equal Contribution

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://github.com/thuml/Nonstationary_Transformers


Ⅰ Ⅱ Ⅲ

Non-stationary 

Varied !, #

(a) Vanilla
Transformer

(b) Transformer with
Series Stationarization

(c) Non-stationary
Transformer

Ⅰ

!$, #$

Ⅱ

!%, #%

Ⅲ

!&, #&

Learned 
AttentionZoom in 

Figure 1: Visualization of learned temporal attentions for different series with varied mean µ and
standard deviation σ. (a) is from the vanilla Transformer [32] trained on raw series. (b) is from
the Transformer trained on stationarized series, which presents similar attentions. (c) is from Non-
stationary Transformers, which involves De-stationary Attention to avoid over-stationarization.

However, non-stationarity is the inherent property of real-world time series and also good guidance for
discovering temporal dependencies for forecasting. Experimentally, we observe that training on the
stationarized series will undermine the distinction of attentions learned by Transformers. While vanilla
Transformers [32] can capture distinct temporal dependencies from different series in Figure 1(a),
Transformers trained on the stationarized series tend to generate indistinguishable attentions in
Figure 1(b). This problem, named by the over-stationarization, will bring unexpected side-effect
that makes Transformers fail to capture eventful temporal dependencies, limit the model’s predictive
ability, and even induce the model to generate outputs with huge non-stationarity deviation from the
ground truth. Thus, how to attenuate time series non-stationarity towards better predictability and
mitigate the over-stationarization problem for model capability simultaneously is the key problem to
further improve the performance of forecasting.

In this paper, we explore the effect of stationarization in time series forecasting and propose Non-
stationary Transformers as a general framework, which empowers Transformer [32] and its efficient
variants [17, 37, 35] with great predictive ability for real-world time series. The proposed framework
involves two interdependent modules: Series Stationarization to increase the predictability of non-
stationary series and De-stationary Attention to alleviate over-stationarization. Technically, Series
Stationarization adopts a simple but effective normalization strategy to unify the key statistics of
each series without extra parameters. And De-stationary Attention approximates the attention of
unstationarized data and compensates the intrinsic non-stationarity of raw series. Benefiting from
the above designs, Non-stationary Transformers can take advantage of the great predictability of
stationarized series and crucial temporal dependencies discovered from original non-stationary data.
Our method achieves state-of-the-art performance on six real-world benchmarks and can generalize
to various Transformers for further improvement. The contributions lie in three folds:

• We refine that the predictive capability of non-stationary series is essential in real-world
forecasting. By detailed analysis, we find out that current stationarization approaches will
lead to the over-stationarization problem, limiting the predictive capability of Transformers.

• We propose Non-stationary Transformers as a generic framework, including Series Sta-
tionarization to make the series more predictable and De-stationary Attention to avoid the
over-stationarization problem by re-incorporating the non-stationarity of original series.

• Non-stationary Transformers consistently boosts four mainstream Transformers by a large
margin and achieves state-of-the-art performance on six real-world benchmarks.

2 Related Work

2.1 Deep Models for Time Series Forecasting

In recent years, deep models with elaboratively designed architectures have achieved great progress
in time series forecasting. RNN-based models [33, 36, 23, 29, 30] are proposed for application in an

2



autoregressive manner for sequence modeling, but the recurrent structure can suffer from modeling
long-term dependency. Soon afterward, Transformer [32] emerges and shows great power in sequence
modeling. To overcome the quadratic computation growth on sequence length, subsequent works
aim to reduce Self-Attention’s complexity. Especially in time series forecasting, Informer [37]
extends Self-Attention with KL-divergence criterion to select dominant queries. Reformer [17]
introduces local-sensitive hashing (LSH) to approximate attention by allocated similar queries. Not
only improved by reduced complexity, the following models further develop delicate building blocks
for time series forecasting. Autoformer [35] fuses the decomposition blocks into a canonical structure
and develops Auto-Correlation to discover series-wise connections. Pyraformer [21] designs pyramid
attention module (PAM) to capture temporal dependencies with different hierarchies. Other deep
but Transformer-free models also achieve remarkable performance. N-BEATS [25] proposes the
explicit decomposition of trend and seasonal terms with strong interpretability. N-HiTS [9] introduces
hierarchical layout and multi-rate sampling for tackling time series with respective frequency bands.
In this paper, different from previous works focusing on architectural design, we analyze the series
forecasting task from the basic view of stationarity, which is an essential property of time series [6, 14].
It is also notable that as a general framework, our proposed Non-stationary Transformers can be
easily applied to various Transformer-based models.

2.2 Stationarization for Time Series Forecasting

While stationarity is important to the predictability of time series [6, 14], real-world series always
present non-stationarity. To tackle this problem, the classical statistical method ARIMA [7, 8]
stationarizes the time series through differencing. As for deep models, since the distribution-varying
problem accompanied by non-stationarity makes deep forecasting even more intractable, stationariza-
tion methods are widely explored and always adopted as the pre-processing for deep model inputs.
Adaptive Norm [24] applies z-score normalization for each series fragment by global statistics of a
sampled set. DAIN [27] employs a nonlinear neural network to adaptively stationarize time series
with observed training distribution. RevIN [15] introduces a two-stage instance normalization [31]
that transforms model input and output respectively to reduce the discrepancy of each series. In
contrast, we find out that directly stationarizing time series will damage the model’s capability of
modeling specific temporal dependency. Therefore, unlike previous methods, in addition to the
stationarization, Non-stationary Transformers further develops De-stationary Attention to bring the
intrinsic non-stationarity of the raw series back to attention.

3 Non-stationary Transformers

As aforementioned, stationarity is an important element of time series predictability. Previous “direct
stationarization” designs can attenuate non-stationarity of series for better predictability, but they
obviously neglect inherent properties of real-world series, which will result in the over-stationarization
problem as stated in Figure 1. To deal with the dilemma, we go beyond previous works and propose
Non-stationary Transformers as a generic framework. Our model involves two complementary
parts: Series Stationarization to attenuate time series non-stationarity and De-stationary Attention to
re-incorporate non-stationary information of raw series. Empowered by these designs, Non-stationary
Transformers can improve data predictability and maintain model capability simultaneously.

3.1 Series Stationarization

Non-stationary time series make the forecasting task intractable for deep models because it is hard
for them to generalize well on series with changed statistics during inference, typically varied mean
and standard deviation. The pilot work, RevIN [15] applies instance normalization with learnable
affine parameters to each input and restores the statistics to the corresponding output, which makes
each series follow a similar distribution. Experimentally, we find that this design also works well
without learnable parameters. Thus, we propose a more straightforward but effective design to wrap
Transformers as the base model without extra parameters, naming by Series Stationarization. As is
shown in Figure 2, it contains two corresponding operations: Normalization module at first to deal
with the non-stationary series caused by varied mean and standard deviation, and De-normalization
module at the end to transform the model outputs back with original statistics. Here are the details.

3



Q’ K’ V’

MatMul

MatMul

Rescale

Softmax
<latexit sha1_base64="dduGU1WQkwnmVSsSAfAmOKRgZAU=">AAAC2nicjVHLSsNAFD2Nr1pfVXHlJlgEF1ISEXVZ1IXLCvYBTSmTdNoG8yKZCKV0407c+gNu9YPEP9C/8M6YglpEJyQ5c+49Z+bea0eemwjDeM1pM7Nz8wv5xcLS8srqWnF9o56EaezwmhN6Ydy0WcI9N+A14QqPN6OYM9/2eMO+PpPxxg2PEzcMrsQw4m2f9QO35zpMENUpblmCpfu65TMxsHsj65x7go07xZJRNtTSp4GZgRKyVQ2LL7DQRQgHKXxwBBCEPTAk9LRgwkBEXBsj4mJCropzjFEgbUpZnDIYsdf07dOulbEB7aVnotQOneLRG5NSxy5pQsqLCcvTdBVPlbNkf/MeKU95tyH97czLJ1ZgQOxfuknmf3WyFoEeTlQNLtUUKUZW52QuqeqKvLn+pSpBDhFxEncpHhN2lHLSZ11pElW77C1T8TeVKVm5d7LcFO/yljRg8+c4p0H9oGwelc3Lw1LlNBt1HtvYwR7N8xgVXKCKGnmP8IgnPGuWdqvdafefqVou02zi29IePgAg9ZgC</latexit>

⌧,�

Feed 
Forward

De-stationary 
Attention

<latexit sha1_base64="dduGU1WQkwnmVSsSAfAmOKRgZAU=">AAAC2nicjVHLSsNAFD2Nr1pfVXHlJlgEF1ISEXVZ1IXLCvYBTSmTdNoG8yKZCKV0407c+gNu9YPEP9C/8M6YglpEJyQ5c+49Z+bea0eemwjDeM1pM7Nz8wv5xcLS8srqWnF9o56EaezwmhN6Ydy0WcI9N+A14QqPN6OYM9/2eMO+PpPxxg2PEzcMrsQw4m2f9QO35zpMENUpblmCpfu65TMxsHsj65x7go07xZJRNtTSp4GZgRKyVQ2LL7DQRQgHKXxwBBCEPTAk9LRgwkBEXBsj4mJCropzjFEgbUpZnDIYsdf07dOulbEB7aVnotQOneLRG5NSxy5pQsqLCcvTdBVPlbNkf/MeKU95tyH97czLJ1ZgQOxfuknmf3WyFoEeTlQNLtUUKUZW52QuqeqKvLn+pSpBDhFxEncpHhN2lHLSZ11pElW77C1T8TeVKVm5d7LcFO/yljRg8+c4p0H9oGwelc3Lw1LlNBt1HtvYwR7N8xgVXKCKGnmP8IgnPGuWdqvdafefqVou02zi29IePgAg9ZgC</latexit>

⌧,�

Q’ V’K’

En
co

d
er

D
eco

d
er

De-normalization

Normalization

P
ro

jecto
r

<latexit sha1_base64="dduGU1WQkwnmVSsSAfAmOKRgZAU=">AAAC2nicjVHLSsNAFD2Nr1pfVXHlJlgEF1ISEXVZ1IXLCvYBTSmTdNoG8yKZCKV0407c+gNu9YPEP9C/8M6YglpEJyQ5c+49Z+bea0eemwjDeM1pM7Nz8wv5xcLS8srqWnF9o56EaezwmhN6Ydy0WcI9N+A14QqPN6OYM9/2eMO+PpPxxg2PEzcMrsQw4m2f9QO35zpMENUpblmCpfu65TMxsHsj65x7go07xZJRNtTSp4GZgRKyVQ2LL7DQRQgHKXxwBBCEPTAk9LRgwkBEXBsj4mJCropzjFEgbUpZnDIYsdf07dOulbEB7aVnotQOneLRG5NSxy5pQsqLCcvTdBVPlbNkf/MeKU95tyH97czLJ1ZgQOxfuknmf3WyFoEeTlQNLtUUKUZW52QuqeqKvLn+pSpBDhFxEncpHhN2lHLSZ11pElW77C1T8TeVKVm5d7LcFO/yljRg8+c4p0H9oGwelc3Lw1LlNBt1HtvYwR7N8xgVXKCKGnmP8IgnPGuWdqvdafefqVou02zi29IePgAg9ZgC</latexit>

⌧,�

Embedding

Add & Norm

Add & Norm

N x

<latexit sha1_base64="ntf/ZnL5dgT0TKwX4OzsrG6RxFc=">AAAC1nicjVHLSsNAFD2Nr/pudekmWARXJRFRl0U3LivYB7RVkjhtB/NiMlFLqTtx6w+41U8S/0D/wjtjCmoRnZDkzLn3nJl7rxv7PJGW9ZozpqZnZufy8wuLS8srq4XiWj2JUuGxmhf5kWi6TsJ8HrKa5NJnzVgwJ3B91nAvj1S8ccVEwqPwVA5i1gmcXsi73HMkUeeFYjtwZN/tDm/O2rHgARudF0pW2dLLnAR2BkrIVjUqvKCNC0TwkCIAQwhJ2IeDhJ4WbFiIietgSJwgxHWcYYQF0qaUxSjDIfaSvj3atTI2pL3yTLTao1N8egUpTWyRJqI8QVidZup4qp0V+5v3UHuquw3o72ZeAbESfWL/0o0z/6tTtUh0caBr4FRTrBlVnZe5pLor6ubml6okOcTEKXxBcUHY08pxn02tSXTtqreOjr/pTMWqvZflpnhXt6QB2z/HOQnqO2V7r2yf7JYqh9mo89jAJrZpnvuo4BhV1Mj7Go94wrPRNG6NO+P+M9XIZZp1fFvGwwdKPpbx</latexit>

x0
<latexit sha1_base64="espMOGFkmXFM7EhNks8XRw7G7Ck=">AAAC9nicjVHLSsNAFD3GV31HXboJFsGFlEREXRbduKxgW8GWMonTOpgXyURaSr/DnTtx6w+41U8Q/0D/wjtjio8iOiHJmXPvOTP3Xjf2RSpt+2XMGJ+YnJouzMzOzS8sLpnLK7U0yhKPV73Ij5JTl6XcFyGvSiF9fhonnAWuz+vu5aGK1694koooPJG9mDcD1glFW3hMEtUynUbA5IXb7ncHW1YjyFr9T0IxqegE7BvZMot2ydbLGgVODorIVyUyn9HAOSJ4yBCAI4Qk7IMhpecMDmzExDXRJy4hJHScY4BZ0maUxSmDEXtJ3w7tznI2pL3yTLXao1N8ehNSWtggTUR5CWF1mqXjmXZW7G/efe2p7tajv5t7BcRKXBD7l26Y+V+dqkWijX1dg6CaYs2o6rzcJdNdUTe3vlQlySEmTuFziieEPa0c9tnSmlTXrnrLdPxVZypW7b08N8ObuiUN2Pk5zlFQ2y45uyXneKdYPshHXcAa1rFJ89xDGUeooEre13jAI56MrnFj3Bp3H6nGWK5Zxbdl3L8Di96kxw==</latexit>x, µx,�x

<latexit sha1_base64="dWWJ52XXfrp2rbLcBXvomP6p7Fo=">AAAC6nicjVHLSsNAFD2N7/qKunQTLAUXUhIRdSm6cVnBaqGVMonTOpgXyUQsoV/gzp249Qfc6oeIf6B/4Z0xBbWITkhy5tx7zsy91419kUrbfi0ZY+MTk1PTM+XZufmFRXNp+SSNssTjDS/yo6TpspT7IuQNKaTPm3HCWeD6/NS9PFDx0yuepCIKj2U/5mcB64WiKzwmieqY1XaQdfJ2wOSF282vB4MNq52KXsC+kR2zYtdsvaxR4BSggmLVI/MFbZwjgocMAThCSMI+GFJ6WnBgIybuDDlxCSGh4xwDlEmbURanDEbsJX17tGsVbEh75ZlqtUen+PQmpLRQJU1EeQlhdZql45l2Vuxv3rn2VHfr098tvAJiJS6I/Us3zPyvTtUi0cWurkFQTbFmVHVe4ZLprqibW1+qkuQQE6fwOcUTwp5WDvtsaU2qa1e9ZTr+pjMVq/ZekZvhXd2SBuz8HOcoONmsOds152irsrdfjHoaq1jDOs1zB3s4RB0N8r7BI57wbPjGrXFn3H+mGqVCs4Jvy3j4ADY2n8U=</latexit>µx,�x

<latexit sha1_base64="IZ4JV/kJRtiMNqwstb1c47bSvHA=">AAACzXicjVHLTsJAFD3UF+ILdemmkZi4Iq0x6pLoxp2YCBiBmLYMMKGvTKdGgrj1B9zqbxn/QP/CO2NJVGJ0mrZnzr3nzNx73djnibSs15wxMzs3v5BfLCwtr6yuFdc36kmUCo/VvMiPxKXrJMznIatJLn12GQvmBK7PGu7gRMUbN0wkPAov5DBm7cDphbzLPUcSddUKHNl3u6Pb8XWxZJUtvcxpYGeghGxVo+ILWugggocUARhCSMI+HCT0NGHDQkxcGyPiBCGu4wxjFEibUhajDIfYAX17tGtmbEh75ZlotUen+PQKUprYIU1EeYKwOs3U8VQ7K/Y375H2VHcb0t/NvAJiJfrE/qWbZP5Xp2qR6OJI18Cpplgzqjovc0l1V9TNzS9VSXKIiVO4Q3FB2NPKSZ9NrUl07aq3jo6/6UzFqr2X5aZ4V7ekAds/xzkN6ntl+6Bsn++XKsfZqPPYwjZ2aZ6HqOAUVdTIO8QjnvBsnBmpcWfcf6YauUyziW/LePgAyiWTow==</latexit>x

<latexit sha1_base64="XBHSmy9y1Sv+zS5bJC+9jHwtIz0=">AAACzXicjVHLSsNAFD2Nr1pfVZdugkVwVRIRdVl0484K9oFtkSSdtkPzYjIRSq1bf8Ct/pb4B/oX3hlTUIvohCRnzr3nzNx73djnibSs15wxN7+wuJRfLqysrq1vFDe36kmUCo/VvMiPRNN1EubzkNUklz5rxoI5geuzhjs8U/HGLRMJj8IrOYpZJ3D6Ie9xz5FEXbcDRw7c3ng0uSmWrLKllzkL7AyUkK1qVHxBG11E8JAiAEMISdiHg4SeFmxYiInrYEycIMR1nGGCAmlTymKU4RA7pG+fdq2MDWmvPBOt9ugUn15BShN7pIkoTxBWp5k6nmpnxf7mPdae6m4j+ruZV0CsxIDYv3TTzP/qVC0SPZzoGjjVFGtGVedlLqnuirq5+aUqSQ4xcQp3KS4Ie1o57bOpNYmuXfXW0fE3nalYtfey3BTv6pY0YPvnOGdB/aBsH5Xty8NS5TQbdR472MU+zfMYFZyjihp5h3jEE56NCyM17oz7z1Qjl2m28W0ZDx/MhpOk</latexit>y

<latexit sha1_base64="nhM5o+xjAyCyR6rKZctCn46gmeE=">AAAC1XicjVHLSsNAFD2Nr1pfUZdugkVwVRIRdVl047KCfUBbJEmn7dC8mEwKpXQnbv0Bt/pL4h/oX3hnTMEHohOSnDn3njNz7/WSgKfStl8KxsLi0vJKcbW0tr6xuWVu7zTSOBM+q/txEIuW56Ys4BGrSy4D1koEc0MvYE1vdKHizTETKY+jazlJWDd0BxHvc9+VRN2YZid05dDrTyezTiJ4yG7Msl2x9bJ+AicHZeSrFpvP6KCHGD4yhGCIIAkHcJHS04YDGwlxXUyJE4S4jjPMUCJtRlmMMlxiR/Qd0K6dsxHtlWeq1T6dEtArSGnhgDQx5QnC6jRLxzPtrNjfvKfaU91tQn8v9wqJlRgS+5dunvlfnapFoo8zXQOnmhLNqOr83CXTXVE3tz5VJckhIU7hHsUFYV8r5322tCbVtaveujr+qjMVq/Z+npvhTd2SBux8H+dP0DiqOCcV5+q4XD3PR13EHvZxSPM8RRWXqKFO3mM84BFPRtOYGbfG3UeqUcg1u/iyjPt3QXuWig==</latexit>

y0

<latexit sha1_base64="zlEFPxSFa/VRTRcaEdWyA4vbfxo=">AAACznicjVHLSsNAFD2Nr/quunQTLIKrkoioy6KbLivYB9Qik+m0DebFZFIopbj1B9zqZ4l/oH/hnTEFtYhOSHLm3HPuzL3XSwI/VY7zWrAWFpeWV4qra+sbm1vbpZ3dZhpnkosGj4NYtj2WisCPREP5KhDtRAoWeoFoeXeXOt4aCZn6cXStxonohmwQ+X2fM0VU5yZkashZMKlNb0tlp+KYZc8DNwdl5Ksel15wgx5icGQIIRBBEQ7AkNLTgQsHCXFdTIiThHwTF5hijbwZqQQpGLF39B3QrpOzEe11ztS4OZ0S0CvJaeOQPDHpJGF9mm3imcms2d9yT0xOfbcx/b08V0iswpDYv3wz5X99uhaFPs5NDT7VlBhGV8fzLJnpir65/aUqRRkS4jTuUVwS5sY567NtPKmpXfeWmfibUWpW73muzfCub0kDdn+Ocx40jyvuacW9OilXL/JRF7GPAxzRPM9QRQ11NEzHH/GEZ6tujaypdf8ptQq5Zw/flvXwAXjZk+U=</latexit>H

Figure 2: Non-stationary Transformers. Series Stationarization is adopted as a wrapper on the base
model to normalize each incoming series and de-normalize the output. De-stationary Attention
replaces the original Attention mechanism to approximate attention learned from unstationarized
series, which rescales current temporal dependency weights with learned de-stationary factors τ,∆.

Normalization module To attenuate the non-stationarity of each input series, we conduct nor-
malization on the temporal dimension by a sliding window over time. For each input series
x = [x1, x2, ..., xS ]

⊤ ∈ RS×C , we transform it by translation and scaling operations and ob-
tain x′ = [x′

1, x
′
2, ..., x

′
S ]

⊤ ∈ RS×C , where S and C denote the sequence length and variable number
respectively. The Normalization module can be formulated as follows:

µx =
1

S

S∑
i=1

xi, σ
2
x =

1

S

S∑
i=1

(xi − µx)
2, x′

i =
1

σx
⊙ (xi − µx), (1)

where µx, σx ∈ RC×1, 1
σx

means the element-wise division and ⊙ is the element-wise product. Note
that Normalization module decreases the distributional discrepancy among each input time series,
making the distribution of the model input more stable.

De-normalization module As shown in Figure 2, after the base model H predicting the future value
with length-O, we adopt De-normalization to transform the model output y′ = [y′1, y

′
2, ..., y

′
O]

⊤ ∈
RO×C with σx and µx and obtain ŷ = [ŷ1, ŷ2, ..., ŷO]

⊤ as the eventual forecasting results. The
De-normalization module can be formulated as follows:

y′ = H(x′), ŷi = σx ⊙ (y′i + µx). (2)

By means of the two-stage transformation, the base models will receive stationarized inputs, which
follow a stable distribution and are easier to generalize. This design also makes the model equivariant
to translational and scaling perturbance of time series, thereby benefiting real-world series forecasting.

3.2 De-stationary Attention

While the statistics of each time series are explicitly restored to the corresponding prediction, the
non-stationarity of the original series cannot be fully recovered only by De-normalization. For
instance, Series Stationarization can generate the same stationarized input x′ from distinct time series
x1, x2 (i.e. x2 = αx1+β), and the base model will get identical attention that fails to capture crucial
temporal dependencies entangled with non-stationarity (Figure 1). In other words, the undermined
effects caused by over-stationarization happen inside the deep model, especially in the calculation of
attention. Furthermore, non-stationary time series are fragmented and normalized into several series
chunks with the same mean and variance, which follow more similar distributions than the raw data
before stationarization. Thus, the model is more likely to generate over-stationary and uneventful
outputs, which is irreconcilable with the natural non-stationarity of the original series.

To tackle the over-stationarization problem caused by Series Stationarization, we propose a novel
De-stationary Attention mechanism, which can approximate the attention that is obtained without
stationarization and discover the particular temporal dependencies from original non-stationary data.

4



Analysis of the plain model As mentioned above, the over-stationarization problem is caused
by the vanishment of inherent non-stationarity information, which will make the base model fail to
capture eventful temporal dependencies for forecasting. Therefore, we try to approximate the attention
learned from the original non-stationary series. We start from the formula of Self-Attention [32]:

Attn(Q,K,V) = Softmax

(
QK⊤
√
dk

)
V, (3)

where Q,K,V ∈ RS×dk are length-S queries, keys and values of dk-dimension respectively, and
Softmax(·) is conducted row by row. To simplify the analysis, we assume the embedding and
feed-forward layers f to hold the linear properties2 and f is conducted separately on each time point,
that is, each query token in Q = [q1, q2, ..., qS ]

⊤ can be calculated as qi = f(xi) with respect to
the input series x = [x1, x2, · · · , xS ]

⊤. Since it is a convention to conduct normalization on each
time series variable to avoid certain variable that dominates the scale, we can further assume each
variable of series x shares the same variance, and thus original σx ∈ RC×1 is reduced to a scalar.
After Normalization module, the model receives the stationarized input x′ = (x− 1µ⊤

x )/σx, where
1 ∈ RS×1 is an all-ones vector. Based on the linear property assumption, it can be proved that
the Attention layer will receive Q′ = [f(x′

1), ..., f(x
′
S)]

⊤ = (Q − 1µ⊤
Q)/σx, where µQ ∈ Rdk×1

is the mean of Q along the temporal dimension (See Appendix for a detailed proof). And so is
the corresponding transformed K′,V′. Without Series Stationarization, the input of Softmax(·) in
Self-Attention should be QK⊤/

√
dk, while now the attention is calculated based on Q′,K′:

Q′K′⊤ =
1

σ2
x

(
QK⊤ − 1(µ⊤

QK⊤)− (QµK)1⊤ + 1(µ⊤
QµK)1⊤) ,

Softmax

(
QK⊤
√
dk

)
= Softmax

(
σ2
x Q′K′⊤ + 1(µ⊤

QK⊤) + (QµK)1⊤ − 1(µ⊤
QµK)1⊤

√
dk

)
.

(4)

We find that QµK ∈ RS×1 and µ⊤
QµK ∈ R, and they are repeatedly operated on each column and

element of σ2
xQ

′K′⊤ ∈ RS×S respectively. Since Softmax(·) is invariant to the same translation on
the row dimension of input, we have the following equation:

Softmax

(
QK⊤
√
dk

)
= Softmax

(
σ2
x Q′K′⊤ + 1µ⊤

QK⊤
√
dk

)
. (5)

Equation 5 deduces a direct expression of the attention Softmax
(
QK⊤/

√
dk
)

learned from raw
series x. Except for the current Q′,K′ from stationarized series x′, this expression also requires the
non-stationary information σx, µQ,K that are eliminated by Series Stationarization.

De-stationary Attention To recover the original attention on non-stationary series, we attempt to
bring the vanished non-stationary information back to its calculation. Based on Equation 5, the key
is to approximate the positive scaling scalar τ = σ2

x ∈ R+ and shifting vector ∆ = KµQ ∈ RS×1,
which are defined as de-stationary factors. Since the strict linear property hardly holds for a deep
model, other than estimating and utilizing real factors with great effort, we try to learn de-stationary
factors directly from the statistics of unstationarized x,Q and K by a simple but effective multi-
layer perceptron layer. As we can only discover limited non-stationary information from current
Q′,K′, the unique and reasonable source to compensate non-stationarity is the original x without
being normalized. Thus, as a direct deep learning implementation of Equation 5, we apply a multi-
layer perceptron as the projector to learn de-stationary factors τ,∆ from the statistics µx, σx of
unstationarized x individually. And the De-stationary Attention is calculated as follows:

log τ = MLP(σx,x),∆ = MLP(µx,x),

Attn(Q′,K′,V′, τ,∆) = Softmax

(
τ Q′K′⊤ + 1∆⊤

√
dk

)
V′,

(6)

where the de-stationary factors τ and ∆ are shared by De-stationary Attention of all layers (Figure 2).
De-stationary Attention mechanism learns the temporal dependencies from both stationarized series

2Function f has the linear property if it satisfies that f(ax+ by) = af(x) + bf(y), where a, b are scalar
constants and x, y are vector variables.

5



Q′, K′ and non-stationary series x, µx, σx, and multiplies by the stationarized values V′. Therefore,
it can benefit from the predictability of stationarized series and maintain the inherent temporal
dependencies of raw series simultaneously.

Overall architecture Following the prior use of Transformers [37, 35] in time series forecasting, we
adopt the standard Encoder-Decoder structure (Figure 2), where the encoder is to extract information
from past observations, and the decoder is to aggregate past information and refine the prediction from
simple initialization. The canonical Non-stationary Transformer is wrapped by Series Stationarization
to both the input and output of vanilla Transformer [32], and replacing the Self-Attention by our
proposed De-stationary Attention, which can boost the non-stationary series predictive capability of
the base model. For the Transformer variants [17, 37, 35], we transform the terms inside Softmax(·)
with the de-stationary factors τ , ∆ to re-integrate the non-stationary information (See Appendix for
the implementation details).

4 Experiments
We conduct extensive experiments to evaluate the performance of Non-stationary Transformers on
six real-world time series forecasting benchmarks and further validate the generality of the proposed
framework on various mainstream Transformer variants.

Datasets Here are the descriptions of the datasets: (1) Electricity [3] records the hourly electricity
consumption of 321 clients from 2012 to 2014. (2) ETT [37] contains the time series of oil de-
stationary factors and power load collected by electricity transformers from July 2016 to July 2018.
ETTm1 /ETTm2 are recorded every 15 minutes, and ETTh1/ETTh2 are recorded every hour. (3)
Exchange [18] collects the panel data of daily exchange rates from 8 countries from 1990 to 2016.
(4) ILI [1] collects the ratio of influenza-like illness patients versus the total patients in one week,
which is reported weekly by Centers for Disease Control and Prevention of the United States from
2002 and 2021. (5) Traffic [2] contains hourly road occupancy rates measured by 862 sensors on
San Francisco Bay area freeways from January 2015 to December 2016. (6) Weather [4] includes
meteorological time series with 21 weather indicators collected every 10 minutes from the Weather
Station of the Max Planck Biogeochemistry Institute in 2020.

Especially, in this paper, we adopt the Augmented Dick-Fuller (ADF) test statistic [13] as the metric
to quantitatively measure the degree of stationarity. A smaller ADF test statistic indicates a higher
degree of stationarity, which means the distribution is more stable. Table 1 summarizes the overall
statistics of the datasets and lists them in ascending order by degree of stationarity. We follow the
standard protocol that divides each dataset into the training, validation, and testing subsets according
to the chronological order. The split ratio is 6:2:2 for the ETT dataset and 7:1:2 for others.

Table 1: Summary of datasets. Smaller ADF test statistic indicates more stationary dataset.

Dataset Variable Number Sampling Frequency Total Observations ADF Test Statistic

Exchange 8 1 Day 7,588 -1.889
ILI 7 1 Week 966 -5.406
ETTm2 7 15 Minutes 69,680 -6.225
Electricity 321 1 Hour 26,304 -8.483
Traffic 862 1 Hour 17,544 -15.046
Weather 21 10 Minutes 52,695 -26.661

Baselines We evaluate the vanilla Transformer [32] equipped by the Non-stationary Transform-
ers framework in both multivariate and univariate settings to demonstrate its effectiveness. For
multivariate forecasting, we include six state-of-the-art deep forecasting models: Autoformer [35],
Pyraformer [21], Informer [37], LogTrans [20], Reformer [17] and LSTNet [18]. For univariate
forecasting, we include seven competitive baselines: N-HiTS [9], N-BEATS [25], Autoformer [35],
Pyraformer [21], Informer [37], Reformer [17] and ARIMA [7]. In addition, we adopt the pro-
posed framework on both the canonical and efficient variants of Transformers: Transformer [32],
Informer [37], Reformer [17] and Autoformer [35] to validate the generality of our framework.

Implementation details All the experiments are implemented with PyTorch [28] and conducted on
a single NVIDIA TITAN V 12GB GPU. Each model is trained by ADAM [16] using L2 loss with

6



the initial learning rate of 10−4 and batch size of 32. Each Transformer-based model contains two
encoder layers and one decoder layer. Considering the efficiency of hyperparameters search, we use
two-layer perceptron projector with the hidden dimension varying in {64, 128, 256} in De-stationary
Attention. We repeat each experiment three times with different random seeds and report the test
MSE/MAE under different prediction lengths, and the standard deviations are also provided in
Appendix. A lower MSE/MAE indicates better performance.

4.1 Main Results

Forecasting results As for multivariate forecasting results, the vanilla Transformer equipped with
our framework consistently achieves state-of-the-art performance in all benchmarks and prediction
lengths (Table 2). Notably, Non-stationary Transformer outperforms other deep models impressively
on datasets characterized by high non-stationarity: under the prediction length of 336, we achieve
17% MSE reduction (0.509 → 0.421) on Exchange and 25% (2.669 → 2.010) on ILI compared to
previous state-of-the-art results, which indicates that the potential of deep model is still constrained
on non-stationary data. We also list the univariate results of two typical datasets with different
stationarity in Table 3. Non-stationary Transformer still realizes remarkable forecasting performance.

Table 2: Forecasting results comparison under different prediction lengths O ∈ {96, 192, 336, 720}.
The input sequence length is set to 36 for ILI and 96 for the others. Additional results (ETTm1,
ETTh1, ETTh2) can be found in Appendix.

Models Ours Autoformer [35] Pyraformer [21] Informer [37] LogTrans [20] Reformer [17] LSTNet [18]

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
xc

ha
ng

e 96 0.111 0.237 0.197 0.323 0.852 0.780 0.847 0.752 0.968 0.812 1.065 0.829 1.551 1.058
192 0.219 0.335 0.300 0.369 0.993 0.858 1.204 0.895 1.040 0.851 1.188 0.906 1.477 1.028
336 0.421 0.476 0.509 0.524 1.240 0.958 1.672 1.036 1.659 1.081 1.357 0.976 1.507 1.031
720 1.092 0.769 1.447 0.941 1.711 1.093 2.478 1.310 1.941 1.127 1.510 1.016 2.285 1.243

IL
I

24 2.294 0.945 3.483 1.287 5.800 1.693 5.764 1.677 4.480 1.444 4.400 1.382 6.026 1.770
36 1.825 0.848 3.103 1.148 6.043 1.733 4.755 1.467 4.799 1.467 4.783 1.448 5.340 1.668
48 2.010 0.900 2.669 1.085 6.213 1.763 4.763 1.469 4.800 1.468 4.832 1.465 6.080 1.787
60 2.178 0.963 2.770 1.125 6.531 1.814 5.264 1.564 5.278 1.560 4.882 1.483 5.548 1.720

E
T

T
m

2 96 0.192 0.274 0.255 0.339 0.409 0.488 0.365 0.453 0.768 0.642 0.658 0.619 3.142 1.365
192 0.280 0.339 0.281 0.340 0.673 0.641 0.533 0.563 0.989 0.757 1.078 0.827 3.154 1.369
336 0.334 0.361 0.339 0.372 1.210 0.846 1.363 0.887 1.334 0.872 1.549 0.972 3.160 1.369
720 0.417 0.413 0.422 0.419 4.044 1.526 3.379 1.388 3.048 1.328 2.631 1.242 3.171 1.368

E
le

ct
ri

ci
ty 96 0.169 0.273 0.201 0.317 0.498 0.299 0.274 0.368 0.258 0.357 0.312 0.402 0.680 0.645

192 0.182 0.286 0.222 0.334 0.828 0.312 0.296 0.386 0.266 0.368 0.348 0.433 0.725 0.676
336 0.200 0.304 0.231 0.338 1.476 0.326 0.300 0.394 0.280 0.380 0.350 0.433 0.828 0.727
720 0.222 0.321 0.254 0.361 4.090 0.372 0.373 0.439 0.283 0.376 0.340 0.420 0.957 0.811

Tr
af

fic

96 0.612 0.338 0.613 0.388 0.684 0.393 0.719 0.391 0.684 0.384 0.732 0.423 1.107 0.685
192 0.613 0.340 0.616 0.382 0.692 0.394 0.696 0.379 0.685 0.390 0.733 0.420 1.157 0.706
336 0.618 0.328 0.622 0.337 0.699 0.396 0.777 0.420 0.733 0.408 0.742 0.420 1.216 0.730
720 0.653 0.355 0.660 0.408 0.712 0.404 0.864 0.472 0.717 0.396 0.755 0.423 1.481 0.805

W
ea

th
er 96 0.173 0.223 0.266 0.336 0.354 0.392 0.300 0.384 0.458 0.490 0.689 0.596 0.594 0.587

192 0.245 0.285 0.307 0.367 0.673 0.597 0.598 0.544 0.658 0.589 0.752 0.638 0.560 0.565
336 0.321 0.338 0.359 0.395 0.634 0.592 0.578 0.523 0.797 0.652 0.639 0.596 0.597 0.587
720 0.414 0.410 0.419 0.428 0.942 0.723 1.059 0.741 0.869 0.675 1.130 0.792 0.618 0.599

Framework generality We apply our framework to four mainstream Transformers and report the
performance promotion of each model (Table 4). Our method consistently improves the forecasting
ability of different models. Overall, it achieves averaged 49.43% promotion on Transformer, 47.34%
on Informer, 46.89% on Reformer and 10.57% on Autoformer, making each of them surpass
previous state-of-the-art. Compared to native blocks of the models, there is hardly any parameter
and computation increase by applying our framework (See Appendix for details), and thereby their
computational complexities can be preserved. It validates that Non-stationary Transformer is an
effective and lightweight framework that can be widely applied to Transformer-based models and
enhances their non-stationary predictability to achieve state-of-the-art performance.

7



Table 3: Univariate results under different prediction lengths O ∈ {96, 192, 336, 720} on two typical
datasets with strong non-stationary. The input sequence length is set to 96.

Models Ours N-HiTS [9] N-BEATS [25] Autoformer [35] Pyraformer [21] Informer [37] Reformer [17] ARIMA [6]

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
E

xc
ha

ng
e 96 0.104 0.235 0.114 0.248 0.156 0.299 0.241 0.387 0.290 0.439 0.591 0.615 1.327 0.944 0.112 0.245

192 0.230 0.375 0.250 0.387 0.669 0.665 0.273 0.403 0.594 0.644 1.183 0.912 1.258 0.924 0.304 0.404
336 0.432 0.509 0.434 0.516 0.611 0.605 0.508 0.539 0.962 0.824 1.367 0.984 2.179 1.296 0.736 0.598
720 0.782 0.682 1.061 0.773 1.111 0.860 0.991 0.768 1.285 0.958 1.872 1.072 1.280 0.953 1.871 0.935

E
T

T
m

2 96 0.069 0.193 0.092 0.232 0.082 0.219 0.065 0.189 0.074 0.208 0.088 0.225 0.131 0.288 0.211 0.362
192 0.109 0.249 0.128 0.276 0.120 0.268 0.118 0.256 0.116 0.252 0.132 0.283 0.186 0.354 0.261 0.406
336 0.139 0.286 0.165 0.314 0.226 0.370 0.154 0.305 0.143 0.295 0.180 0.336 0.220 0.381 0.317 0.448
720 0.180 0.331 0.243 0.397 0.188 0.338 0.182 0.335 0.197 0.338 0.300 0.435 0.267 0.430 0.366 0.487

Table 4: Performance promotion by applying the proposed framework to Transformer and its variants.
We report the averaged MSE/MAE of all prediction lengths (stated in Table 2) and the relative
MSE reduction ratios (Promotion) by our framework. Full results (under all prediction lengths and
promotion on ETSformer [34], FEDformer [38]) can be found in Appendix.

Dataset Exchange ILI ETTm2 Electricity Traffic Weather

Model MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Transformer 1.425 0.915 4.864 1.460 1.501 0.869 0.277 0.372 0.665 0.363 0.657 0.573
+ Ours 0.457 0.449 2.077 0.914 0.306 0.347 0.193 0.296 0.628 0.345 0.288 0.314

Promotion 67.93% 57.30% 79.61% 30.32% 5.56% 56.16%

Informer 1.550 0.998 5.137 1.544 1.410 0.823 0.311 0.397 0.764 0.416 0.634 0.548
+ Ours 0.496 0.460 2.125 0.928 0.460 0.434 0.226 0.330 0.719 0.409 0.275 0.302

Promotion 68.00% 58.63% 67.38% 27.33% 5.89% 56.78%

Reformer 1.280 0.932 4.724 1.443 1.479 0.915 0.338 0.429 0.741 0.423 0.803 0.656
+ Ours 0.462 0.468 2.865 1.065 0.493 0.441 0.206 0.308 0.682 0.372 0.286 0.308

Promotion 63.91% 39.35% 66.67% 39.05% 7.96% 64.38%

Autoformer 0.613 0.539 3.006 1.161 0.324 0.368 0.227 0.338 0.628 0.379 0.338 0.382
+ Ours 0.487 0.491 2.545 1.039 0.305 0.345 0.216 0.315 0.619 0.364 0.286 0.310

Promotion 20.55% 15.34% 5.86% 4.85% 1.43% 15.38%

4.2 Ablation Study

Quality evaluation To explore the role of each module in our proposed framework, we compare the
prediction results on ETTm2 obtained by three models: vanilla Transformer, Transformer with only
Series Stationarization, and our Non-stationary Transformer. In Figure 3, we find out that the two
modules strengthen the non-stationary forecasting ability of Transformer from different perspectives.
Series Stationarization focuses on the alignment of statistical properties among each series input
that benefits Transformer a lot to generalize on out-of-distribution data. However, as is shown in
Figure 3(b), the over-stationarized circumstance for training makes the deep model more likely to
output uneventful series with significant high stationarity and neglect the nature of non-stationary
real-world data. With the aid of De-stationary Attention, the model gives concern back to the inherent
non-stationarity of real-world time series. It is beneficial for an accurate prediction of the detailed
series variation, which is vital in real-world time series forecasting.

0 100 200 300 400
Time

-1.6

-1.2

-0.8

-0.4

Va
lu

e

(a) Vanilla Transformer
Ground Truth
Prediction

0 100 200 300 400
Time

-1.6

-1.4

-1.2

-1.0

Va
lu

e

(b) Transformer + Series Stationarization
Ground Truth
Prediction

0 100 200 300 400
Time

-1.6

-1.4

-1.2

-1.0

Va
lu

e

(c) Non-stationary Transformer
Ground Truth
Prediction

Figure 3: Visualization of ETTm2 predictions given by different models.

8



Table 5: Forecasting results obtained by applying different methods to Transformer and Reformer. We
report the averaged MSE/MAE of all prediction lengths (stated in Table 2) for comparison. Complete
results can be found in Appendix.

Base Models Transformer Reformer

Methods + RevIN [15] + Series + Ours + RevIN [15] + Series + Ours
Stationarization Stationarization

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Exchange 0.567 0.487 0.569 0.488 0.461 0.454 0.469 0.472 0.470 0.473 0.462 0.468

ILI 2.205 0.934 2.206 0.934 2.077 0.914 3.024 1.096 3.023 1.096 2.865 1.065

ETTm2 0.460 0.416 0.461 0.416 0.306 0.347 0.542 0.459 0.537 0.459 0.493 0.441

Electricity 0.197 0.298 0.197 0.298 0.193 0.296 0.208 0.309 0.207 0.309 0.206 0.308

Traffic 0.643 0.352 0.641 0.352 0.628 0.345 0.687 0.378 0.691 0.380 0.682 0.372

Weather 0.301 0.316 0.304 0.317 0.288 0.314 0.291 0.309 0.292 0.309 0.286 0.308

Quantitative performance In addition to the above case study, we also provide quantitative
forecasting performance comparison with stationarization methods: a deep method RevIN [15] and
Series Stationarization (Section 3.1). As is shown in Table 5, the forecasting results assisted by
RevIN and Series Stationarization are basically the same, which indicates that the parameter-free
version of normalization in our framework performs sufficiently to stationarize time series. Besides,
the proposed De-stationary Attention in Non-stationary Transformers further boosts the performance
and achieves the best in all six benchmarks. The MSE reduction brought by De-stationary Attention
becomes significant, especially when the dataset is highly non-stationary (Exchange: 0.569 → 0.461,
ETTm2: 0.461 → 0.306). The comparison reveals that simply stationarizing time series still limits
the predictive capability of Transformers, and the complementary mechanisms in Non-stationary
Transformers can properly release the models’ potential for non-stationary series forecasting.

4.3 Model Analysis

Over-stationarization problem To verify the over-stationarization problem from a statistical view,
we train Transformers with the aforementioned methods respectively, arrange all predicted time series
in chronological order and compare the degree of stationarity with the ground truth (Figure 4). While
models solely equipped with stationarization methods tend to output series with unexpected high
degree of stationarity, the results assisted by De-stationary Attention are close to the actual value
(relative stationarity ∈ [97%, 103%]). Besides, as the degree of series stationarity increases, the over-
stationarization problem becomes more significant. The huge discrepancy of the degree of stationarity
can account for the inferior performance of Transformer with only stationarization. And it also
demonstrates that De-stationary Attention as an internal renovation alleviates over-stationarization.

Transformer + Ours
Transformer + RevIN
Transformer + Series Stationarization

Figure 4: Relative stationarity is calculated as the ratio of ADF test statistics between the model
predictions and ground truth. From left to right, the dataset is increasingly non-stationary. While
models equipped with only stationarization tend to output highly stationary series, our method gives
predictions with stationarity closer to ground truth.

9



Exploring of Non-stationary Information Re-incorporation It is notable that by specifying
over-stationarization as less distinguishable attention, we narrow down our design space into the
attention calculation mechanism. To explore other approaches to retrieve non-stationary information,
we conduct experiments by re-incorporating the µ and σ into feed-forward layers (DeFF), which is
the left part of the Transformer architecture. In detail, we feed learned µ and σ into each feed-forward
layer iteratively. As is shown in Table 6, re-incorporating non-stationarity is necessary only when the
inputs are stationarized (Stationary), which is beneficial for forecasting but will lead to stationarity
discrepancy of model outputs. And our proposed design (Stat + DeAttn) makes further promotion
and achieves the best in most cases (77%). In addition to the theoretical analysis, experimental results
further validate the effectiveness of our design in re-incorporating non-stationarity on attention.

Table 6: Ablation of framework design. Baseline means vanilla Transformer, Stationary means adding
Series Stationarization, DeFF means re-incorporating non-stationarity on feed-forward layers, DeAttn
means re-incorporating by De-stationary Attention, Stat + DeFF means adding Series Stationarization
and re-incorporating on feed-forward layers. Stat + DeAttn means our proposed framework.

Models Baseline Stationary DeFF DeAttn Stat + DeFF Stat + DeAttn

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
xc

ha
ng

e 96 0.567 0.591 0.136 0.258 0.784 0.696 0.611 0.613 0.116 0.243 0.111 0.237
192 1.150 0.825 0.239 0.348 1.162 0.866 1.202 0.840 0.280 0.383 0.219 0.335
336 1.792 1.084 0.425 0.479 1.346 0.963 1.516 0.981 0.371 0.452 0.421 0.476
720 2.191 1.159 1.475 0.865 2.042 1.163 2.894 1.377 0.934 0.704 1.092 0.769

IL
I

24 4.748 1.430 2.573 0.980 4.850 1.445 4.734 1.424 2.404 0.985 2.294 0.945
36 4.671 1.430 1.955 0.870 4.848 1.452 4.927 1.482 2.585 0.983 1.825 0.848
48 4.994 1.482 2.057 0.902 4.903 1.466 4.996 1.483 2.496 0.991 2.010 0.900
60 5.041 1.499 2.238 0.982 5.196 1.524 5.184 1.519 2.667 1.059 2.178 0.963

E
T

T
m

2 96 0.572 0.552 0.253 0.311 0.767 0.635 0.304 0.406 0.275 0.329 0.192 0.274
192 1.161 0.793 0.453 0.404 0.960 0.717 0.820 0.652 0.406 0.403 0.280 0.339
336 1.209 0.842 0.546 0.461 1.159 0.811 1.406 0.883 0.502 0.465 0.334 0.361
720 3.061 1.289 0.593 0.489 3.187 1.308 2.858 1.108 0.694 0.575 0.417 0.413

E
le

ct
ri

ci
ty 96 0.260 0.358 0.171 0.275 0.260 0.356 0.253 0.351 0.170 0.274 0.169 0.273

192 0.266 0.367 0.192 0.296 0.264 0.365 0.257 0.358 0.188 0.293 0.182 0.286
336 0.280 0.375 0.208 0.306 0.277 0.374 0.270 0.365 0.206 0.309 0.200 0.304
720 0.302 0.386 0.216 0.315 0.299 0.384 0.295 0.380 0.223 0.323 0.222 0.321

Tr
af

fic

96 0.647 0.357 0.614 0.337 0.646 0.353 0.650 0.358 0.605 0.333 0.612 0.338
192 0.649 0.356 0.637 0.351 0.645 0.352 0.655 0.358 0.617 0.342 0.613 0.340
336 0.667 0.364 0.653 0.359 0.672 0.360 0.656 0.355 0.635 0.349 0.618 0.328
720 0.697 0.376 0.661 0.360 0.695 0.376 0.681 0.366 0.649 0.351 0.653 0.355

W
ea

th
er 96 0.395 0.427 0.175 0.225 0.417 0.445 0.296 0.364 0.178 0.226 0.173 0.223

192 0.619 0.560 0.273 0.297 0.699 0.604 0.480 0.464 0.256 0.295 0.245 0.285
336 0.689 0.594 0.333 0.325 0.773 0.620 0.581 0.519 0.338 0.351 0.321 0.338
720 0.926 0.710 0.436 0.420 1.008 0.718 0.795 0.642 0.417 0.412 0.414 0.410

5 Conclusion
This paper addresses time series forecasting from the view of stationarity. Unlike previous studies
that simply attenuate non-stationarity leading to over-stationarization, we propose an efficient way
to increase series stationarity and renovate the internal mechanism to re-incorporate non-stationary
information, thus boosting data predictability and model predictive capability simultaneously. Ex-
perimentally, our method shows great generality and performance on six real-world benchmarks.
And detailed derivations and ablations are provided to testify the effectiveness of each component
in our proposed Non-stationary Transformers framework. In the future, we will explore a more
model-agnostic solution for the over-stationarization problem.

Acknowledgments
This work was supported by the National Key Research and Development Plan (2021YFC3000905),
National Natural Science Foundation of China (62022050 and 62021002), Beijing Nova Program
(Z201100006820041), and BNRist Innovation Fund (BNR2021RC01002).

10



References
[1] Illness Dataset. https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html.

[2] Traffic Dataset. http://pems.dot.ca.gov/.

[3] UCI Electricity Load Time Series Dataset. https://archive.ics.uci.edu/ml/datasets/
ElectricityLoadDiagrams20112014.

[4] Weather Dataset. https://www.bgc-jena.mpg.de/wetter/.

[5] Kartik Ahuja, Ethan Caballero, Dinghuai Zhang, Jean-Christophe Gagnon-Audet, Yoshua Bengio, Ioannis
Mitliagkas, and Irina Rish. Invariance principle meets information bottleneck for out-of-distribution
generalization. NeurIPS, 2021.

[6] O. Anderson and M. Kendall. Time-series. 2nd edn. J. R. Stat. Soc. (Series D), 1976.

[7] G. E. P. Box and Gwilym M. Jenkins. Time series analysis, forecasting and control. 1970.

[8] George EP Box and Gwilym M Jenkins. Some recent advances in forecasting and control. J. R. Stat. Soc.
(Series-C), 1968.

[9] Cristian Challu, Kin G Olivares, Boris N Oreshkin, Federico Garza, Max Mergenthaler, and Artur
Dubrawski. N-hits: Neural hierarchical interpolation for time series forecasting. arXiv preprint
arXiv:2201.12886, 2022.

[10] Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence modeling.
NeurIPS, 2021.

[11] J. Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. In NAACL-HLT, 2019.

[12] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and
Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale. In ICLR,
2021.

[13] Graham Elliott, Thomas J. Rothenberg, and James H. Stock. Efficient tests for an autoregressive unit root.
Econometrica, 1996.

[14] Rob J Hyndman and George Athanasopoulos. Forecasting: principles and practice. OTexts, 2018.

[15] Taesung Kim, Jinhee Kim, Yunwon Tae, Cheonbok Park, Jang-Ho Choi, and Jaegul Choo. Reversible
instance normalization for accurate time-series forecasting against distribution shift. In ICLR, 2022.

[16] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015.

[17] Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In ICLR, 2020.

[18] Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long-and short-term temporal
patterns with deep neural networks. In SIGIR, 2018.

[19] Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M Hospedales. Deeper, broader and artier domain
generalization. In ICCV, 2017.

[20] Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyou Zhou, Wenhu Chen, Yu-Xiang Wang, and Xifeng Yan.
Enhancing the locality and breaking the memory bottleneck of transformer on time series forecasting. In
NeurIPS, 2019.

[21] Shizhan Liu, Hang Yu, Cong Liao, Jianguo Li, Weiyao Lin, Alex X Liu, and Schahram Dustdar. Pyraformer:
Low-complexity pyramidal attention for long-range time series modeling and forecasting. In ICLR, 2021.

[22] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo. Swin
transformer: Hierarchical vision transformer using shifted windows. In ICCV, 2021.

[23] Danielle C Maddix, Yuyang Wang, and Alex Smola. Deep factors with gaussian processes for forecasting.
arXiv preprint arXiv:1812.00098, 2018.

11

https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html
http://pems.dot.ca.gov/
https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
https://www.bgc-jena.mpg.de/wetter/


[24] Eduardo Ogasawara, Leonardo C. Martinez, Daniel de Oliveira, Geraldo Zimbrão, Gisele L. Pappa, and
Marta Mattoso. Adaptive normalization: A novel data normalization approach for non-stationary time
series. In IJCNN, 2010.

[25] Boris N Oreshkin, Dmitri Carpov, Nicolas Chapados, and Yoshua Bengio. N-BEATS: Neural basis
expansion analysis for interpretable time series forecasting. ICLR, 2019.

[26] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. TKDE, 2009.

[27] Nikolaos Passalis, Anastasios Tefas, Juho Kanniainen, Moncef Gabbouj, and Alexandros Iosifidis. Deep
adaptive input normalization for time series forecasting. TNNLS, 2019.

[28] Adam Paszke, S. Gross, Francisco Massa, A. Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Z. Lin, N. Gimelshein, L. Antiga, Alban Desmaison, Andreas Köpf, Edward Yang, Zach DeVito, Martin
Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala.
Pytorch: An imperative style, high-performance deep learning library. In NeurIPS, 2019.

[29] Syama Sundar Rangapuram, Matthias W Seeger, Jan Gasthaus, Lorenzo Stella, Yuyang Wang, and Tim
Januschowski. Deep state space models for time series forecasting. In NeurIPS, 2018.

[30] David Salinas, Valentin Flunkert, Jan Gasthaus, and Tim Januschowski. DeepAR: Probabilistic forecasting
with autoregressive recurrent networks. Int. J. Forecast., 2020.

[31] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Instance normalization: The missing ingredient
for fast stylization. arXiv preprint arXiv:1607.08022, 2016.

[32] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS, 2017.

[33] Ruofeng Wen, Kari Torkkola, Balakrishnan Narayanaswamy, and Dhruv Madeka. A multi-horizon quantile
recurrent forecaster. NeurIPS, 2017.

[34] Gerald Woo, Chenghao Liu, Doyen Sahoo, Akshat Kumar, and Steven C. H. Hoi. Etsformer: Exponential
smoothing transformers for time-series forecasting. arXiv preprint arXiv:1406.1078, 2022.

[35] Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition transformers
with Auto-Correlation for long-term series forecasting. In NeurIPS, 2021.

[36] Rose Yu, Stephan Zheng, Anima Anandkumar, and Yisong Yue. Long-term forecasting using tensor-train
rnns. arXiv preprint arXiv:1711.00073, 2017.

[37] Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. In AAAI, 2021.

[38] Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. FEDformer: Frequency
enhanced decomposed transformer for long-term series forecasting. In ICML, 2022.

12



Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s contribu-
tions and scope? [Yes] See Section 1.

(b) Did you describe the limitations of your work? [Yes] See Section 7 of the Appendix.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See Section 6 of the

Appendix.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Section 1 of the
Appendix.

(b) Did you include complete proofs of all theoretical results? [Yes] See Section 1 of the Appendix.

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experimental
results (either in the supplemental material or as a URL)? [Yes] We provide the data link and
code in https://github.com/thuml/Nonstationary_Transformers.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were chosen)?
[Yes] See Section 5.1 of the Appendix.

(c) Did you report error bars (e.g., with respect to the random seed after running experiments
multiple times)? [Yes] See Table 4 of the Appendix.

(d) Did you include the total amount of compute and the type of resources used (e.g., type of GPUs,
internal cluster, or cloud provider)? [Yes] See Section 4.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] The data source is described in
Section 4.

(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes] We

provide the code in https://github.com/thuml/Nonstationary_Transformers.
(d) Did you discuss whether and how consent was obtained from people whose data you’re us-

ing/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable informa-

tion or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if applicable?
[N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review Board (IRB)
approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount spent on
participant compensation? [N/A]

13

https://github.com/thuml/Nonstationary_Transformers
https://github.com/thuml/Nonstationary_Transformers

	Introduction
	Related Work
	Deep Models for Time Series Forecasting
	Stationarization for Time Series Forecasting

	Non-stationary Transformers
	Series Stationarization
	De-stationary Attention

	Experiments
	Main Results
	Ablation Study
	Model Analysis

	Conclusion

