
A More algorithmic details and analysis on the proposed method

A.1 Sample-distinguishment module

We summarize the SD module in Algorithm 1. Note that it is a simplified version for an easy
understanding and the detailed version is illustrated in Algorithm 2.

Algorithm 1 A simplified version of sample-distinguishment module
Input: poisoned training set D̄train, a set of data transformations τ , randomly initialized model gθ,

number of training epochs et, proportion of separated clean (poisoned) samples αc (αp)
Output: separated clean (poisoned) samples D̂c (D̂p), the remaining uncertain samples D̂u

Inject backdoor into model
1: Train a backdoored model gθ by minimizing the standard cross-entropy on D̄train for et epochs
2: Let f(·) denote the feature representation of gθ

Assign threshold for choosing clean and poisoned samples
3: Initialize S ← {}
4: for each (x, y) ∈ D̄train do
5: S.append(∆trans(x; τ, f))
6: end for
7: S′ ← sorted(S) in ascending order
8: γc ← [S′]αc|D̄train|, γp ← [S′](1−αp)|D̄train|

Separate samples
9: for each (x, y) ∈ D̄train do

10: if ∆trans(x; τ, f) ≤ γc then
11: D̂c.append((x, y))
12: else if ∆trans(x; τ, f) ≥ γp then
13: D̂p.append((x, y))
14: else
15: D̂u.append((x, y))
16: end if
17: end for
18: return D̂c, D̂p, D̂u

We omit some algorithmic details and state the SD module in Algorithm 1 for an easy understanding.
Here, we continue to elaborate our mechanism in Algorithm 2. The main supplement is the step of
fine-tuning the backdoored model, which is highlighted in blue.

Empirically, we discover that et = 2 is enough for injecting backdoor into model gθ for the Train
ASR is already higher than 90%. When we then use Algorithm 1 to distinguish samples, we observe
that it works under dirty-label attacks (shown in Fig. 8(a,b,d,e)) since the distributions of clean and
poisoned samples are quite distinct. However, it doesn’t work under clean-label attacks (shown in
Fig. 8(c,f)) since poisoned samples are mixed up with clean samples.

We first analyze the reason for the success under dirty-label attacks and then give an assumption of
the reason for the failure under the clean-label attacks. In the feature space of a backdoored model
[2, 24], poisoned samples are congregated into one cluster, called the poisoned cluster, as illustrated
in black in Fig. 7. Let Ci

c, Cj
p denote the cluster made up of clean samples labelled as i and poisoned

samples labelled as j, respectively. We formulate the intra-cluster distance between Ci
c and Cj

p as
follows.

dintra(C
i
c, C

j
p) = ∥cic − cjp∥22 = ∥

∑
xi∈Ci

c
f(xi)

|Ci
c|

−
∑

xj∈Cj
p
f(xj)

|Cj
p|

∥22, (6)

where cic, cjp are the center of Ci
c and Cj

p , respectively. Under dirty-label attacks, when the trigger is
perturbed by the the transformations τ , poisoned samples are no longer located at the poisoned cluster
Ct

p (see black points). Instead, they move towards their true-class clusters Ci
c(i ̸= t) (see non-black

points). The long intra-cluster distance between the two clusters, namely dintra(C
i
c, C

t
p)(i ̸= t),

makes the ∆trans(x; τ, f) of poisoned samples large. By contrast, under clean-label attacks where
poisoned samples are labeled as their true classes (i.e.ground-truth classes), the poisoned cluster Ct

p

13

Algorithm 2 A detailed version of sample-distinguishment module
Input: the poisoned training set D̄train, a set of data transformations τ , randomly initialized model

gθ, number of training epochs et, number of fine-tuning epochs eft, proportion of separated
clean samples αc, proportion of separated poisoned samples αp, number of classes N

Output: separated clean samples D̂c, separated poisoned samples D̂p, the remaining uncertain
samples D̂u

Inject backdoor into model
1: Train gθ with the standard cross-entropy loss on D̄train for et epochs
2: Let f(·) denote the feature representation of gθ
3: Let ci =

∑
xi∈Ci f(xi)

|Ci| denote the center of cluster Ci, which consists of samples labelled as i

4: Let Lintra = 1
N2

∑
i,j∈{0,1...N−1},i̸=j

<ci,cj>
∥ci∥2·∥cj∥2

5: Fine-tune gθ with Lintra on D̄train for eft epochs
Assign threshold for choosing clean and poisoned samples

6: Initialize S ← {}
7: for each (x, y) ∈ D̄train do
8: S.append(∆trans(x; τ, f))
9: end for

10: S′ ← sorted(S) in ascending order
11: γc ← [S′]αc|D̄train|, γp ← [S′](1−αp)|D̄train|

Separate samples
12: for each (x, y) ∈ D̄train do
13: if ∆trans(x; τ, f) ≤ γc then
14: D̂c.append((x, y))
15: else if ∆trans(x; τ, f) ≥ γp then
16: D̂p.append((x, y))
17: else
18: D̂u.append((x, y))
19: end if
20: end for
21: return D̂c, D̂p, D̂u

(see black points) adjoins Ct
c (see red points) which is also the true-class cluster, leading to the short

intra-cluster distance, namely dintra(C
t
c, C

t
p), and the resulting small ∆trans(x; τ, f) of poisoned

samples.

In order to validate our assumption, we fine-tune the model gθ backdoored by clean-label attacks
with the intra-cluster loss Lp

intra for ef = 5 epochs, which aims to enlarge dintra(C
t
c, C

t
p).

Lp
intra =

1

N

∑
i∈{0,1...N−1}

< ctp, c
i
c >

∥ctp∥2 · ∥cic∥2
, (7)

where N denote the number of classes. Lp
intra can successfully increase dintra(Ct

c, C
t
p) from 0.25 to

17.19. Then, we reuse the SD module and find that clean and poisoned samples can be well separated.

However, in the realistic scenario, we can not exactly know the poisoned cluster. So, the fine-tuning
strategy above is infeasible. Instead, we fine-tune the model g with the intra-class loss Lintra for
ef = 5 epochs. Denote Ci as the cluster made up of all samples labelled as i. Lintra is formulated
as:

Lintra =
1

N2

∑
i,j∈{0,1...N−1},i̸=j

< ci, cj >

∥ci∥2 · ∥cj∥2
, (8)

where ci =
∑

xi∈Ci f(xi)

|Ci| is the center of Ci. Empirically, we discover that Lintra also helps to
enlarge dintra(C

t
c, C

t
p), making it increase to 4.96. Subsequently, with the application of the SD

module, poisoned samples can be separated from clean samples (Fig. 8(i,l)). Note that Lintra can
even boost the separation under dirty-label attacks (Fig. 8(g,h,j,k)). In conclusion, combined with the
fine-tuning step, our proposed SD module can work under all kinds of attacks.

14

(a) BadNets (b) Blend (c) SIG (d) CL

Figure 7: T-SNE [4] visualization of feature space of models backdoored by different attacks on
CIFAR-10. Target class is 0. The poisoned cluster is in black while other clean clusters are in
non-black.

A.2 Distinguishment and secure training (D-ST) method

The D-ST method is shown in Algorithm 3.

Algorithm 3 Distinguishment and secure training (D-ST) method
Input: The training set D̄train, number of training epochs for feature extractor ee, number of training

epochs for classifier ec
Output: A secure model gθ

Sample distinguishment module
1: Separate D̄train to three subsets, i.e., D̂p, D̂c, D̂u (see Section 3.2)
Secure training module
2: Stage 1: learning the feature extractor fθe

through SS-CTL, i.e., minimizing LSS−CTL on
D̄train (see Eq. (2)), for ee epochs

3: Stage 2: learning the classifier hθc via minimizing the mixed cross-entropy loss, i.e., minimizing
LMCE on D̄c and D̄p (see Eq. (3)), for ec epochs

4: return gθ = hθc(fθe(·))

A.3 Distinguishment and backdoor removal (D-BR) method

The D-BR method is shown in Algorithm 4.

Algorithm 4 Distinguishment and backdoor removal (D-BR) method
Input: The training set D̄train, number of training epochs et, number of fine-tuning epochs eft
Output: A secure model gθ

Sample distinguishment module
1: Separate D̄train to three subsets, i.e., D̂p, D̂c, D̂u (see Section 3.2)
Backdoor removal module
2: Train a backdoored model gθ by minimizing the standard cross-entropy on D̄train for et epochs
3: for each e ∈ {1, . . . , eft} do
4: Unlearning: Fine-tune gθ by minimizing Lunlearn on D̂p for an epoch (see Eq. (4))
5: Relearning: Fine-tune gθ by minimizing Lrelearn on D̂c for an epoch (see Eq. (5))
6: end for
7: return gθ

15

(a) BadNets (b) Blend-signal (c) SIG

(d) Trojan (e) Blend-kitty (f) CL

(g) BadNets (h) Blend-signal (i) SIG

(j) Trojan (k) Blend-kitty (l) CL

Figure 8: Distribution of clean and poisoned samples with respect to the FCT metric on CIFAR-10.
The top(bottom) two rows represent the distribution before(after) the step of fine-tuning. Note that
after fine-tuning, clean and poisoned samples are too far apart to be seen clearly.

16

B More details on semi-supervised contrastive learning (SS-CTL)

We explain ℓCTL and ℓS−CTL in details here. For clarity, we denote fθe
(x̃

(1)
i) as f1

i and fθe
(x̃

(2)
i)

as f2
i .

ℓCTL

(
fθe(x̃

(1)
i), fθe(x̃

(2)
i)

)
= − log

exp (f1
i · f2

i /T)∑
k=1,2

∑|D̄train|
j=1 I(f1

i ̸= fk
j) exp (f

1
i · fk

j /T)

− log
exp (f2

i · f1
i /T)∑

k=1,2

∑|D̄train|
j=1 I(f2

i ̸= fk
j) exp (f

2
i · fk

j /T)
.

(9)

If yi = yj , then

ℓS−CTL

(
fθe

(x̃
(1)
i), fθe

(x̃
(2)
i), fθe

(x̃
(1)
j), fθe

(x̃
(2)
j); yi, yj

)
= −1

3
{log exp (f1

i · f2
i /T)∑

k=1,2

∑|D̄train|
j=1 I(f1

i ̸= fk
j) exp (f

1
i · fk

j /T)

+ log
exp (f1

i · f1
j /T)∑

k=1,2

∑|D̄train|
j=1 I(f1

i ̸= fk
j) exp (f

1
i · fk

j /T)

+ log
exp (f1

i · f2
j /T)∑

k=1,2

∑|D̄train|
j=1 I(f1

i ̸= fk
j) exp (f

1
i · fk

j /T)
}

−1

3
{log exp (f2

i · f1
i /T)∑

k=1,2

∑|D̄train|
j=1 I(f2

i ̸= fk
j) exp (f

2
i · fk

j /T)

+ log
exp (f2

i · f1
j /T)∑

k=1,2

∑|D̄train|
j=1 I(f2

i ̸= fk
j) exp (f

2
i · fk

j /T)

+ log
exp (f2

i · f2
j /T)∑

k=1,2

∑|D̄train|
j=1 I(f2

i ̸= fk
j) exp (f

2
i · fk

j /T)
}

−1

3
{log

exp (f1
j · f1

i /T)∑
k=1,2

∑|D̄train|
j=1 I(f1

j ̸= fk
j) exp (f

1
j · fk

j /T)

+ log
exp (f1

j · f2
i /T)∑

k=1,2

∑|D̄train|
j=1 I(f1

j ̸= fk
j) exp (f

1
j · fk

j /T)

+ log
exp (f1

j · f2
j /T)∑

k=1,2

∑|D̄train|
j=1 I(f1

j ̸= fk
j) exp (f

1
j · fk

j /T)
}

−1

3
{log

exp (f2
j · f1

i /T)∑
k=1,2

∑|D̄train|
j=1 I(f2

j ̸= fk
j) exp (f

2
j · fk

j /T)

+ log
exp (f2

j · f2
i /T)∑

k=1,2

∑|D̄train|
j=1 I(f2

j ̸= fk
j) exp (f

2
j · fk

j /T)

+ log
exp (f2

j · f1
j /T)∑

k=1,2

∑|D̄train|
j=1 I(f2

j ̸= fk
j) exp (f

2
j · fk

j /T)
}.

(10)

Else,
ℓS−CTL

(
fθe

(x̃
(1)
i), fθe

(x̃
(2)
i), fθe

(x̃
(1)
j), fθe

(x̃
(2)
j); yi, yj

)
= 0. (11)

C More implementation details

All experiments are run on 3 RTX 5000 GPUs and are repeated over 5 runs with different random
seeds.

17

C.1 Dataset details

We conduct experiments on three benchmark datasets, CIFAR-10 [3], CIFAR-100 [3] and an ImageNet
subset [33]. We use the ImageNet subset provided by [9], which contains 200 classes with 100000
training samples (500 samples per class) and 10000 testing samples (50 samples per class).

C.2 Model details

We conduct experiments with ResNet-18 [34] as base model. For the ST module, we leverage the
model provided by [30] on CIFAR-10 and CIFAR-100. For the BR module, we use the model
implemented by codes3 on CIFAR-10, codes4 on CIFAR-100 and [9] on the ImageNet subset.

C.3 Attack details

Referring to Section 2, we can categorize existing poisoning-based backdoor attacks according to
various criteria. As shown in Table 4, we choose eight attacks to guarantee at least one method in
each category. We also give some examples in Fig. 9 to display the patterns of different triggers.

Table 4: Categories of eight backdoor attacks based on different criteria.

Criterion Size of trigger Visibility of trigger Variability of trigger Label-consistency Num of target classes
Patch Blend Visible Invisible Agnostic Specific Dirty Clean All2one All2all

BadNets-all2one " " " " "

BadNets-all2all " " " " "

Trojan " " " " "

Blend-signal " " " " "

Blend-kitty " " " " "

SIG " " " " "

CL " " " " "

SSBA " " " " "

(a) BadNets-all2one (b) Blend-signal (c) SIG (d) BadNets-all2all

(e) Trojan (f) Blend-kitty (g) CL (h) SSBA

Figure 9: Examples of poisoned samples attached with triggers crafted by different backdoor attacks.

Besides, we provide an explanation for the poisoning rate configured in attacks. Take CIFAR-10
(50000 training samples) as an example, if the poisoning rate is 10%, then 10% of samples with
non-target classes are poisoned in dirty-label (also all2one) attacks (4500 samples) while 10% of
samples with target class are poisoned in clean-label (also all2one) attacks (500 samples).

3https://github.com/huyvnphan/PyTorch_CIFAR10
4https://github.com/weiaicunzai/pytorch-cifar100

18

https://github.com/huyvnphan/PyTorch_CIFAR10
https://github.com/weiaicunzai/pytorch-cifar100

C.4 Defense details

Here, we complement some details not mentioned in the main paper.

• FT: We fine-tune the backdoored model on 1% of the clean training samples with 100 epochs.

• MCR: We adopt t = 0.3.

• Baseline1: We first use self-supervised contrastive learning, SimCLR [31] particularly, to train the
feature extractor. During the process, data is regarded as unlabeled. Thus, the positive of a sample
is its augmented version. We then use standard supervised learning to train the classifier on the
poisoned dataset.

• Baseline2: We first use supervised contrastive learning, SupContrast [30] particularly, to train
the feature extractor. During the process, the positives of a sample are its augmented version and
samples with the same label (and also their augmented versions). Note that since there are poisoned
samples in the dataset, ‘samples with the same label’ may not be the genuine intra-class samples.
We then use standard supervised learning to train the classifier on the poisoned dataset.

C.5 Details of proposed method

Choices of parameters. Here, we complement some details not mentioned in the main paper.

• Algorithm 2: τ =rotate+affine, et = 2, ef = 10, αc = 0.20, αp = 0.05. No other data
augmentations are used since they would hinder the effect of backdoor implantation.

• Algorithm 3: ee = 200, ec = 10, λp = 0.001. Applied data augmentations are the same as [31].

• Algorithm 4: et = 200, eft = 20. Data augmentations applied on CIFAR-10 are random crop,
random horizontal flip and normalization. Data augmentations applied on CIFAR-100 are random
crop, random horizontal flip, random rotation and normalization. Data augmentations applied on
ImageNet are random rotation, random horizontal flip and normalization.

Choices of different data transformations τ . In Section 4.3, we select six types of τ to change the
pattern or location of the trigger, which are listed as follows and shown in Fig. 10.

• Rotate: Rotate an image by a random degree less than 180◦.

• Affine: Translate an image horizontally and vertically.

• Flip: Flip an image horizontally.

• Crop: Crop an image at a random location.

• Blur: Perform Gaussian blurring on an image by given kernel.

• Erase: Select a random rectangle region in an image and erase its pixels.

D Results on ImageNet

Here, we exhibit the performance of our proposed methods on the ImageNet subset [33, 9] in Table
5. Since we aim to study successful backdoor attacks in this paper where ASR of the backdoored
model is higher than 85%, results on unsuccessful attacks are not reported. For instance, the increase
of number of classes adds to the difficulty of clean-label attacks (ASR < 5%). So, we do not report
results on clean-label attacks.

Performance of the D-ST method. Note that SupCon [30] does not launch open-souce codes for
ImageNet, so the related results are not reported here.

Performance of the D-BR method. We do not report results of ANP and MCR on ImageNet since
they require particular modification to model and do not have an open-source version for ImageNet.
As illustrated in Table 5, among the selected methods, ABL performs the best with ACC as 80.16%
and ASR as 23.94% on average. However, it still fails on Blend-Strip attack (ASR = 95.75%). In
contrast, D-BR performs steadily well on all attacks, even reducing ASR to 0% in most cases, which
demonstrates the effectiveness of the SD module and the BR module.

19

(a) Rotate (b) Affine (c) Flip

(d) Crop (e) Blur (f) Erase

Figure 10: Examples of six data transformations.

Table 5: Comparisons of D-BR with 3 backdoor-removal defense methods on ImageNet subset. The
best result (with the largest ACC-ASR) is denoted in boldface.

ImageNet Backdoored FT* NAD* ABL D-BR
Attack ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR

BadNets-all2one 84.72 95.80 82.20 56.66 63.07 0.41 82.72 0.00 83.66 0.00
Blend-Strip 84.36 97.64 82.35 78.82 59.66 16.19 79.71 95.74 80.40 0.00
Blend-Kitty 85.46 99.68 82.63 99.60 63.78 98.21 77.10 0.00 84.29 0.00
SSBA 85.24 99.64 82.35 97.63 63.82 34.62 81.10 0.00 83.77 0.09

Avg 84.95 98.19 82.38 83.18 62.58 37.36 80.16 23.94 83.03 0.02

E Performance with different data transformations

Here, we study how τ affects the performance of the SD module, specifically the precision of D̂c

(clean-precision) and D̂p (poison-precision). We select six types of τ which change the pattern or
location of trigger, detailed in Appendix C.5. In order to strengthen the perturbation to trigger, we
adopt a combined τ , combining two of the six choices. The total 36 combinations are applied on the
poisoned training set and the precision is illustrated in Fig. 11 and Appendix E.

(a) BadNets (b) BadNets (c) Blend (d) Blend

Figure 11: Clean(poison)-precision of D̂c and D̂p under different τ . Samples are from CIFAR-10.

Apparently, the lighter the color, the higher the precision. One worse case is applying ‘flip’ twice,
equal to not using any transformation. Hence, genuinely poisoned samples can not be identified
since trigger is not perturbed, and the poison-precision is extremely low. Another slightly worse
case is applying ‘erase’ as the second transformation. We infer that adding a noise patch on the
random position of an image, ‘erase’ may fail to obscure the trigger. In general, the SD module is

20

highly effective in identifying genuinely clean and poisoned samples under most combined τ with
100% precision, also validating the sensitivity of poisoned samples to transformations. Note that the
100% clean-precision does not mean all distinguished clean samples being genuinely clean. In fact,
we discover that there are several genuinely poisoned samples, like five, in the distinguished clean
samples. These tiny amount of poisoned samples are not reflected on the clean-precision due to the
round-off.

Additionally, we show more results in Fig. 12. As a clean-label attack, SIG has high clean-precision
but low poison-precision, which is different from BadNets and Blend attacks. We infer that the
difference comes from the definition of the attack. Although we set a uniform poisoning rate (10%)
for all attacks, the total number of poisoned samples is various. Take CIFAR-10 as an example where
there are 50000 training samples (5000 samples per class). In a dirty-label (also all2one) attack,
excluding the 5000 samples from target class, there are 4500 poisoned samples totally. By contrast,
in a clean-label (also all2one) attack, since the attacker only targets at samples from target class, there
are only 500 poisoned samples. Recalling αp = 5%, we separate 2500 samples as poisoned samples,
which are much more than the actual 500 poisoned samples. Therefore, the poison-precision under a
clean-label attack is quite low.

Nevertheless, the seemingly adverse fact actually helps to validate one of the benefits of our pro-
posed defense modules (the ST module and the BR module), which is the robustness to the wrong
distinguishment in the SD module. Specifically, even with a low poison-precision, the proposed two
defense methods, i.e.D-ST (SD module + ST module) and D-BR (SD module + BR module), are still
effective in defending against clean-label attacks, which demonstrates that the two defense modules
are robust to the inaccurate distinguishment in the SD module. The robustness probably attributes
to the high clean-precision (> 99%). It could help our proposed methods ‘survive’ under extreme
circumstances where there are only tiny amount of poisoned samples, further proved in Appendix G
empirically. Hence, despite some newly introduced attacks focusing on reducing the poisoning rate
to add to the difficulty in defense, our method is still capable of coping with these potential attacks.

Figure 12: Clean(poison)-precision of the separated clean(poisoned) samples identified by our
proposed FCT-based SD module under different τ . Samples are from CIFAR-10 poisoned by SIG
attack.

F Performance with different proportion values

In this part, we explore how αc and αp, specified in the SD module, influence the final defense
performance. To this end, we first conduct the SD module with different αc and αp, and then test the
performance under the backdoor-removal paradigm for illustration. Recall the settings in the previous
experiments where αc = 20% and αp = 5%.

First, we fix αp as 5% and vary αc from 0% to 80%. Results are illustrated in Fig. 13 (a). Comparing
αc = 0 and others, we see that D̂c plays an important role in boosting ACC. As shown in the left
figure, the model may suffer from extremely low ACC without these samples. As αc grows, ACC
increases steadily and finally converges. However, when αc is too large (eg. 80%), Dc may contain
genuinely poisoned samples, resulting in the rise of ASR, as shown in the right figure. Hence, 20%
and 40% are appropriate choices for αc.

21

Then, we fix αc as 20% and alter αp from 0% to 20%. Results are depicted in Fig. 13 (b). The
comparisons between αp = 0 and others validate the effect of D̂p on decreasing ASR. Specifically,
as shown in the right figure, ASR could be extremely high if none of these samples are available.
While with the increase of αp, ASR declines steadily and finally converges. Nevertheless, excessive
D̂p could hurt the model and lead to a reduction in ACC, as shown in the left figure. We infer that the
excessive samples may include a certain amount of genuinely clean samples and unlearning which is
deleterious to the model. Therefore, a moderate αp (eg. 5%) is preferred.

(a) Fixed αp = 5% (b) Fixed αc = 20%

Figure 13: Test ACC and Test ASR of the D-BR method with different αp and αc settings in the SD
module, on CIFAR-10 poisoned by different attacks. αp and αc are fixed separately.

G Performance with different poisoning rates

In this section, we aim to show performance of our proposed methods, namely D-ST and D-BR, under
different poisoning rates. To this end, we set the poisoning rate as 5% and 20% respectively, and
conduct the methods on CIFAR-10 poisoned by different attacks. Here, we choose four representative
attacks for illustration. Note that we keep αc = 20% and αp = 5% as before. The results are shown
in Table 6.

Table 6: Performance of our proposed methods on CIFAR-10 poisoned under different poisoning
rates.

Poisoning rate 5% 20%

CIFAR-10 Backdoored D-BR D-ST Backdoored D-BR D-ST
Attack ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR

BadNets-all2one 91.31 99.98 87.52 4.22 89.38 9.44 89.06 99.99 90.32 0.96 91.48 0.13
BadNets-all2all 91.67 83.23 91.71 0.78 89.84 1.42 91.02 87.01 91.41 0.60 89.98 1.29
Blend-Strip 91.70 99.99 89.07 2.49 89.56 0.00 90.78 100.00 90.11 7.42 90.72 0.00
SIG 92.00 93.26 87.9 0.75 89.56 0.63 92.00 99.87 90.76 0.44 89.13 0.19

Avg 91.67 94.11 89.05 2.06 89.59 2.87 90.71 96.72 90.65 2.36 90.33 0.40

Under the poisoning rate of 20%, D-BR can reduce the average ASR from 96.72% to 2.36%, while
keep ACC barely unchanged. Meanwhile, D-ST can train a clean model from scratch with ACC as
90.33% and ASR as 0.40% on average. When the poisoning rate is as small as 5%, D-BR can still
manage to decrease ASR by 92.05% on average with a mere drop in ACC (2.62% on average). The
model trained with D-ST is relatively clean with ACC as 89.59% and ASR as 2.87% on average.
The performance is slightly worse than that of 20%. We infer that in this case, poisoning rate and
αp both equal to 5%. Since we can not find all poisoned samples accurately, the poisoned samples
separated by the proposed SD module definitely contain some extent of genuinely clean samples,
which is harmful to the performance of the final model. Hence, better performance can be achieved
with a careful adjustment in αc and αp.

H Performance with different model architectures and feature
dimensionalities

In addition to the ResNet-18 we have tested, here we conduct experiments on another three mainstream
model architectures, including ResNet-50, VGG-19[38] and DenseNet-161[39], with the same

22

parameter setting. Results are shown in Table 7. Besides, we uniformly choose the output of the
penultimate layer as the feature representation, resulting in different dimensionalities. Thus, these
results can also reflect the sensitivity of our methods to feature dimensionalities.

Table 7: Performance under different model architectures against BadNet attack on CIFAR-10 dataset.

Model architecture Dimensionality Clean-precision of D̂c Poison-precision of D̂p

Backdoored model D-BR D-ST
ACC ASR ACC ASR ACC ASR

ResNet-18 512 100% 100% 91.64% 100% 92.83% 0.40% 92.77% 0.03%
ResNet-50 2048 100% 9.00% 90.88% 100% 88.47% 0.00% 90.32% 5.89%
VGG-19 512 100% 100% 91.09% 100% 90.90% 0.00% \ \
DenseNet-161 8832 99.93% 21.09% 90.84% 100% 89.82% 0.00% \ \

In the following, we will analyze the effectiveness of different modules.

Effectiveness of SD module. Both ResNet-18 and VGG-19 achieve 100% precision. In contrast, the
poison-precision of ResNet-50 and DenseNet-161 is relatively low, indicating that with the increase
in the dimensionality, the gap between the FCT of clean and poisoned samples may be smaller.
However, since their clean-precision is as high as about 100% and that our methods are robust to
wrong distinguishment as analyzed in Appendix E, this low poison-precision won’t significantly
influence the final performance which is analyzed subsequently.

Effectiveness of BR module. Compared with the performance of the backdoored model, our
proposed BR module (i.e., the D-BR method) could reduce ASR from 100% to 0% on the three new
architectures. Meanwhile, ACC drops by 2.41% at most.

Effectiveness of ST module. Note that since S-CTL [30] (used in stage 1 of D-ST) only released
codes for the ResNet architecture, here we do not evaluate the ST module on VGG-19 and DenseNet-
161. Compared with the backdoored model which directly employs the supervised learning, our
proposed ST module (i.e., the D-ST method) could train a secure model from scratch.

In summary, our methods and the chosen hyper-parameters are generalizable across model architec-
tures. However, we also found that the feature dimensionality may affect the performance, as the
Euclidean distance used in our FCT metric may not be suitable for high dimensonal feature space,
which will be explored in the future.

I Complexity of the proposed two methods

Denote the complexity of one forward and backward pass in feature extractor as ae while that in
classifier as ac.

Complexity of D-ST. Given the training epochs detailed in Appendix C.5, the complexity is O
(
ee ·

ae · [2 · (|D̂p|+ |D̂u|)+12 · |D̂c|2]
)

andO
(
ec ·ac · [|D̂c|+ |D̂p|]

)
for stage 1 and stage 2, respectively.

We adopt ee = 200, ec = 10 in the experiments.

Complexity of D-BR. The complexity of training a backdoored model isO
(
et · (ae + ac) · |D̄train|

)
.

The complexity of the BR module isO
(
eft · (ae+ac) · [|D̂c|+ |D̂p|]

)
. We adopt et = 200, eft = 20

in the experiments.

Take CIFAR-10 as an example. |D̄train| = 50000. |D̂c| and |D̂p| are approximately 10000 and 2500,
respectively. Compared with ae, ac is relatively small and can be omitted. Thus, the complexity of
D-ST is higher than that of D-BR by about O

(
12 · ae · |D̂c|2

)
.

23

	Introduction
	Related work
	Proposed method
	Problem formulation
	Sensitivity of poisoned samples
	Method for paradigm 1: secure training from scratch
	Method for paradigm 2: backdoor removal

	Experiments
	Experimental settings
	Experimental results
	Ablation studies

	Conclusions
	Broader impact
	Acknowledgments and disclosure of funding
	More algorithmic details and analysis on the proposed method
	Sample-distinguishment module
	Distinguishment and secure training (D-ST) method
	Distinguishment and backdoor removal (D-BR) method

	More details on semi-supervised contrastive learning (SS-CTL)
	More implementation details
	Dataset details
	Model details
	Attack details
	Defense details
	Details of proposed method

	Results on ImageNet
	Performance with different data transformations
	Performance with different proportion values
	Performance with different poisoning rates
	Performance with different model architectures and feature dimensionalities
	Complexity of the proposed two methods

