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A Proofs

Proof of lemma 1. We have by chain rule

∇xf(x) =

k∑
i=1

pi(x)∇fi(x) +

k∑
i=1

∇pi(x)fi(x).

Hence,

‖∇xf(x)‖ ≤
k∑
i=1

pi(x)Lfi + ‖
k∑
i=1

∇pi(x)fi(x)‖,

where

∇pi(x) = ∇ exp(〈si,x〉)∑
j exp(〈sj ,x〉)

=

∑
j exp(〈sj ,x〉) · exp(〈si,x〉)si − exp(〈si,x〉) ·

∑
j exp(〈sj ,x〉)sj∑

j exp(〈sj ,x〉) ·
∑
j exp(〈sj ,x〉)

=
exp(〈si,x〉)si∑
j exp(〈sj ,x〉)

− pi

∑
j exp(〈sj ,x〉)sj∑
j exp(〈sj ,x〉)

= pisi − pi
∑
j

pjsj .

Let s̄(x) =
∑
j pj(x)sj . Substituting this in the above equation gives us

‖∇xf(x)‖ ≤
k∑
i=1

pi(x)Lfi + ‖
k∑
i=1

pi(x)fi(x)(si − s̄(x))‖

≤ max
i
{Lfi}+ max

x
‖

E∑
i=1

pi(x)fi(x)(si − s̄(x))‖.

The last inequality follows from Holder’s inequality and
∑k
i=1 pi(x) = 1.

Proof of theorem 1. Since Ui are orthogonal to each other, we can decompose ‖w∗‖ as follows.

‖w∗‖2 = ‖(X>X)†X>y‖2 = ‖(
∑
i

UiU
>
i )(X>X)†X>y‖2 =

∑
i

‖UiU
>
i (X>X)†X>y‖2.

(10)

From definition 1 we have, for any unit norm vector z,

ε1 ≥ ‖UiU
>
i (X>X)† − (X>i Xi)

†‖2
≥ ‖UiU

>
i (X>X)†z − (X>i Xi)

†z‖
≥
∣∣‖UiU

>
i (X>X)†z‖ − ‖(X>i Xi)

†z‖
∣∣

The last step follows from triangle inequality. This implies

‖(X>i Xi)
†z‖ ≤ ‖UiU

>
i (X>X)†z‖+ ε1.

Hence, by setting z = X>y/‖X>y‖, we see that

‖UiU
>
i (X>X)†X>y‖ ≥ ‖(X>i Xi)

†X>y‖ − ε1‖X>y‖.
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Recall that X>y =
∑E
j=1 X

>
j yj . Then using triangle inequality, and the above inequality, we get,

‖w∗i ‖ = ‖(X>i Xi)
†X>i yi‖

≤ ‖(X>i Xi)
†X>y‖+

∑
j 6=i

‖(X>i Xi)
†X>j yj‖

≤ ‖UiU
>
i (X>X)†X>y‖+ ε1‖X>y‖+

∑
j 6=i

‖(X>i Xi)
†X>j yj‖

≤ ‖UiU
>
i (X>X)†X>y‖+ ε1‖X>y‖+ ε2

∑
j 6=i

‖X>j yj‖.

The last step follows from definition 2. Thus,

‖UiU
>
i (X>X)†X>y‖ ≥ ‖w∗i ‖ − ε1‖X>y‖ − ε2

∑
j 6=i

‖X>j yj‖.

Substituting this in equation 10 gives us the result.

‖w∗‖2 ≥
∑
i

(b‖w∗i ‖ − ε1‖X>y‖ − ε2
∑
j 6=i

‖X>j yj‖c+)2.

B Experiments details

B.1 Architectures

Table 1 contains the details of the architectures used in section 4. All V-MoE models have replaced
one in every two feedforward layers in the original ViT-B/32 architecture, with a MoE of feedforward
layers, and select only K = 2 experts out of the E available experts. All models were pre-trained on
JFT-300M, at a resolution of 224× 224 pixels, for a total number of 7 epochs, using the same batch
size and optimizer settings as used by Dosovitskiy et al. [7] and Riquelme et al. [22] (see details
section 4). We used the B/32 variants of ViT and V-MoE since these are the “base” configurations
suggested in the respective papers.

In order to match the quality of a dense ViT and a sparse V-MoE model, we also trained a bigger
version of ViT-B/32, which we refer to as ViT-B++/32. The values for the number of layers, number
of attention heads, embedding dimension and the hidden dimension of the FFN, are simply an
interpolation between the ViT-B/32 and the ViT-L/32 corresponding values.

We implemented all models, training and evaluation code using JAX2 and FLAX3. Although we
cannot release the models used in the experiments, since they are pre-trained on proprietary data, the
code used in all of them is available at http://github.com/google-research/vmoe.

B.2 Compute resources

We use TPUv3 to train and evaluate our models. In particular, we used 32 TPUv3 cores for pre-
training and fine-tuning the models. In most of the evaluation experiments against adversarial attacks
we used 8 TPUv3 cores, since the compute needed to perform the evaluation against adversarial attack
is much lower. The total training cost (in terms of total training runtime and FLOPs) of ViT-B/32 and
V-MoE-B/32 can be found in [22].

ViT-B/32 is pre-trained for a total of 27.6 TPUv3-core-days, performing 56.1 ExaFLOPs. V-MoE-
B/32 (with 32 experts) is trained for a total of 54.9 TPUv3-core-days and performs a total of 76.1
ExaFLOPs. Finally, the larger dense ViT-B++/32 is trained for a total of 78.3 TPUv3-core-days and
performs 113.4 ExaFLOPs.

The GFLOPs are computed automatically by JAX. For instance, to compute the GFLOPs used for
each individual image during the evaluation of the models, the code snippet in listing 1 is used.

2https://github.com/google/jax
3https://github.com/google/flax
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Table 1: Architecture details of all the models used in the experiments. We specify here the number
of layers in the Transformer encoder, the number of heads used in the multi-head attention, the
embedding dimension (i.e. token size), the hidden size in the feedforward (FFN) layers and experts,
the selected and total number of experts (when applicable), the active/total number of parameters,
and the cost of evaluation per image (at a resolution of 224 × 224 pixels). Precision-at-1 on the
pre-training dataset (JFT-300M) and classification error rate on ImageNet (ILSVRC2012) are also
reported.

Name ViT-B/32 ViT-B++/32 V-MoE-B/32
E=2 E=4 E=8 E=16 E=32

Layers 12 18 12
Heads 12 14 12
Embedding dim. 768 896 768
FFN dim. 3072 3584 3072
Selected/Total experts — — 2/2 2/4 2/8 2/16 2/32
Active parameters (M) 102.1 193.6 130.5 130.5 130.5 130.5 130.6
Total parameters (M) 102.1 193.6 130.5 187.1 300.5 527.2 980.6
Eval. GFLOPs/image 8.9 17.9 12.1 12.2 12.2 12.3 12.4

JFT-300M P@1 (%) 39.3 42.9 40.5 41.4 42.7 43.6 43.5
ILSVRC2012 error (%) 19.3 17.2 18.9 18.7 18.0 17.8 17.8

Listing 1: Code snippet used to compute the evaluation GFLOPs per image.
1 client = jax.lib.xla_bridge.get_backend ()
2 # eval_step_fn is the function called to evaluate one batch.
3 m = jax.xla_computation(eval_step_fn)(...).as_hlo_module ()
4 analysis = jax.lib.xla_client._xla.hlo_module_cost_analysis(client , m)
5 eval_gflops_per_image = analysis[’flops ’] / 10**9 / batch_size
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C Adversarial examples

Figure 5: ImageNet adversarial examples generated when attacking a V-MoE-B/32, for different
values of Linf . Although the differences are hard to spot (better seen in a monitor, zooming in the
images), they are sufficient to change the prediction of the model.

D A complementary result to theorem 1

We now present our complementary result. In essence, in a regression setting, our result tries to
capture how different the sub-problems tackled by the experts should be in order to get improved
robustness compared with a dense approach.
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In what follows, we use the shortcuts Z = X>X ∈ RD×D and Zi = X>i Xi ∈ RD×D for i ∈ [E].
Also, we recall that each Xi is in RNi×D with

∑E
i=1Ni = N .

Theorem 2. Let w∗ be the minimizer of equation 8 and {w∗i }i∈[E] be the minimizers of equation 9.
For all i ∈ [E], let us assume that there exist βi ∈ RD and ri ∈ RNi such that we can write

yi = Xiβi + ri

where the vectors ri’s are residual terms that can for instance account for non-linear effects in Xi

and/or some stochastic noise. Further assume the {Zi}i∈[E] to be invertible and define

ηi = Z−1i X>i ri and η = Z−1X>r with r = [r1, . . . , rE ] ∈ RN .

Let us denote the (normalized) difference between any two vectors (βi, βj) as ∆ij ∈ RD, that is

for any i 6= j, ∆ij = Z−1Zj(βi − βj),
and consider the cumulative difference with respect to the vector βi as

for any i ∈ [E], ∆i =
∑
j 6=i

∆ij ∈ RD.

Consider γ ∈ (0, 1]. If the structures of the underlying sub-problems on {(Xi,yi)}i∈[E] differ
sufficiently from each other in the following sense

for all i ∈ [E], ‖∆i‖ ≥ ‖βi + η‖+
1
√
γ
‖βi + ηi‖,

then it holds that
max
i∈[E]

‖w∗i ‖2 ≤ γ‖w∗‖2.

In other words, the experts have smaller Lipschitz constants than the dense model by a factor γ. As a
corollary, if we can control the residual terms ri’s such that

‖η‖ ≤ min
i∈[E]

‖βi‖ and for all i ∈ [E], ‖ηi‖ ≤ ‖βi‖,

then the same conclusion is implied by the simpler sufficient condition

min
i∈[E]

{
‖∆i‖ − 4/

√
γ · ‖βi‖

}
≥ 0.

Proof of theorem 2. As a first comment, since we assume that all the Zi’s are invertible, then so is
Z =

∑E
i=1 Zi. We readily have for i ∈ [E]

w∗i = Z−1i X>i yi = βi + Z−1i X>i ri = βi + ηi.

Moreover, for any i ∈ [E], we have

w∗ = Z−1X>y

= Z−1
E∑
j=1

X>j yj

= Z−1
E∑
j=1

(Zjβj + X>j rj)

=

Z−1
E∑
j=1

Zj(βi −Z−1j Z∆ij)

+ η

= Z−1


E∑
j=1

Zj

βi −
E∑
j=1

∆ij + η

= βi −∆i + η

= w∗i −∆i + η − ηi.

18



To summarize, for any i ∈ [E], it therefore holds

‖w∗ −w∗i ‖ = ‖η − ηi −∆i‖.

Let us consider γ ∈ (0, 1]. We can observe that

γ‖w∗‖2 − ‖w∗i ‖2 = γ‖w∗ −w∗i ‖2 − (1 + γ)‖w∗i ‖2 + 2γ(w∗)>w∗i .

We develop each term individually:

γ‖w∗ −w∗i ‖2 = γ‖η − ηi‖2 + γ‖∆i‖2 − 2γ∆>i (η − ηi) (A)

with
−(1 + γ)‖w∗i ‖2 = −(1 + γ)‖βi + ηi‖2 (B)

and using w∗ = βi −∆i + η = βi + ηi −∆i + η − ηi, we get

2γ(w∗)>w∗i = 2γ‖βi + ηi‖2 − 2γ∆>i (βi + ηi) + 2γ(βi + ηi)
>(η − ηi). (C)

Gathering (A)+(B)+(C), we obtain the expression

γ‖w∗‖2 − ‖w∗i ‖2 = γ‖w∗ −w∗i ‖2 − (1 + γ)‖w∗i ‖2 + 2γ(w∗)>w∗i

= γ‖∆i‖2 − 2γ∆>i (βi + η) + γ‖βi + η‖2 − ‖βi + ηi‖2 = φ(∆i).

We want to understand the conditions on ∆i to guarantee that

γ‖w∗‖2 − ‖w∗i ‖2 = φ(∆i) ≥ 0.

To find a sufficient condition, we lower bound the quadratic form φ(∆i) as follows

For any ∆i ∈ RD, φ(∆i) ≥ γ‖∆i‖2 − 2γ‖∆i‖‖βi + η‖+ γ‖βi + η‖2 − ‖βi + ηi‖2

= γ (‖∆i‖ − root+) · (‖∆i‖ − root−)

with

root+ = ‖βi + η‖+
1
√
γ
‖βi + ηi‖ and root− = ‖βi + η‖ − 1

√
γ
‖βi + ηi‖.

The lower bound is a standard polynomial of degree 2 and it is non-negative beyond its positive root

‖∆i‖ ≥ ‖βi + η‖+
1
√
γ
‖βi + ηi‖.

We apply the exact same rationale for all i ∈ [E] and take the minimum of the conditions to make
them hold simultaneously.

Since γ ∈ (0, 1] and 1/
√
γ ≥ 1, if we further assume that the residual terms are sufficiently small

• ‖η‖ ≤ mini∈[E] ‖βi‖

• for all i ∈ [E], ‖ηi‖ ≤ ‖βi‖

then we get the simpler sufficient condition after using the triangle inequality

‖∆i‖ ≥
4
√
γ
‖βi‖ ≥ ‖βi + η‖+

1
√
γ
‖βi + ηi‖.

E Auxiliary losses for MoEs

In this section we present the Auxiliary losses used for training MoEs and attack objectives used for
our experiments in section 4. Auxiliary losses are used to ensure the data is routed in a balanced way
across different experts. In particular we use the losses from Riquelme et al. [22] which are defined
below.
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Recall that the router weights for a given token x and a given expert j, with routing parameters
{sj}Ej=1, were defined in equation 6 as:

pj(x) =
exp(〈sj ,x〉)∑E
j′=1 exp(

〈
s′j ,x

〉
)

In practice, we use a noisy version of this router:

pj(x) =
exp(〈sj ,x〉+ εj)∑E

j′=1 exp(
〈
s′j ,x

〉
+ εj′)

with εj ∼ N (µ = 0, σ = 1
E ). The quantity 〈sj ,x〉 is the routing logit for a given token and expert j.

Importance Loss. The importance of expert j for a batch of tokens X is simply defined as the sum
of the router weights assigned to that expert over the tokens in the batch:

Impj(X) =
∑
i

pj(xi) (11)

where X = [x1, . . . ,xn]> and pj(xi) is the routing weight assigned to the j-th expert for the i-th
token.

We use the squared coefficient of variation of the importance distribution over experts, Imp(X) :=
{Impj(X)}Ej=1:

LImp(X) =

(
std(Imp(X))

mean(Imp(X))

)2

(12)

Load Loss. For a given token, the load loss is based on the probability that the noisy logit of expert
j is among the top-k logits when a new Gaussian sample is drawn. Let’s define the k-th maximum
noisy logit for a given token x as:

τk(x) = k–maxj 〈sj ,x〉+ εj (13)

Then, the probability that the noisy logits of expert j are above the threshold if the noise is resampled,
is given by the expression:

πj(x) = P(〈sj ,x〉+ ε ≥ τk(x)) (14)

Analogous to the importance, the load of expert j is defined as the sum over the tokens in a given
batch:

Loadj(X) =
∑
i

πj(xi) (15)

And the load loss corresponds to the squared coefficient of variation of the load distribution, with
Load(X) := {Loadj(X)}Ej=1:

LLoad(X) =

(
std(Load(X))

mean(Load(X))

)2

(16)

Final Loss. The final loss used for training the models includes the classification loss (i.e. cross-
entropy) and both auxiliary losses with weights 0.005:

L = Lclassification + 0.005 LImp + 0.005 LLoad (17)

F Experiment Metrics

Precision at 1 and False discovery rate In multi-label datasets (such as JFT), the traditional
accuracy metric used for single-label classification is ill-defined. Usually, Precision at k, Recall at k,
and other more general metrics are used in this setting. In particular, we use the Precision at 1.

Let Y = [y1, . . . ,yN ]>,yi ∈ RC be the logits output by the model for a set of N examples, with
true labels Ŷ = [ŷ1, . . . , ŷN ]>, ŷi ∈ {0, 1}C . Precision at 1 is defined as:

P@1 =
1

N

N∑
i=1

δ[ŷi,argmaxc yi,c
= 1] (18)
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where arg maxc yi,c is essentially the index of the class with the highest logit, for a given example i,
and δ is the Kronecker delta function. That is, the non-zero elements of the sum are those examples
for which the highest logit corresponds to one of the true labels of such example. The false discovery
rate is defined as 1− P@1.

Observe than when the examples have a single label, precision at 1 is equivalent to the accuracy, and
the false discovery rate is equivalent to the error rate.

Rate of routing changes Given two sets A and B, the intersection over union (IoU) is defined as:

IoU =
card(A ∩B)

card(A ∪B)
(19)

If the two sets are equal, IoU is 1. If the two sets do not share any element, IoUis0.

We use this metric in section 4.3 to compare how much the set of selected experts change when
adversarial attacks are peformed on V-MoE models. Thus, the rate of routing changes is defined as
1− IoU.
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