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Abstract

Adversarial robustness is a key desirable property of neural networks. It has been
empirically shown to be affected by their sizes, with larger networks being typically
more robust. Recently, Bubeck and Sellke [3] proved a lower bound on the Lipschitz
constant of functions that fit the training data in terms of their number of param-
eters. This raises an interesting open question, do—and can—functions with more
parameters, but not necessarily more computational cost, have better robustness?
We study this question for sparse Mixture of Expert models (MoEs), that make it
possible to scale up the model size for a roughly constant computational cost. We
theoretically show that under certain conditions on the routing and the structure
of the data, MoEs can have significantly smaller Lipschitz constants than their
dense counterparts. The robustness of MoEs can suffer when the highest weighted
experts for an input implement sufficiently different functions. We next empirically
evaluate the robustness of MoEs on ImageNet using adversarial attacks and show
they are indeed more robust than dense models with the same computational cost.
We make key observations showing the robustness of MoEs to the choice of experts,
highlighting the redundancy of experts in models trained in practice.

1 Introduction

Adversarial robustness refers to prediction robustness of a given machine learning model to adversarial,
but bounded, changes to the input. Neural networks trained with standard classification objectives have
been shown to have poor adversarial robustness [25], a property attributed to their overparametrization.
Conversely, in practice, larger models, that have more parameters and higher computation cost, have
shown better robustness [20, 26, 1, 12].

In a recent work, Bubeck and Sellke [3] studied this phenomenon from a theoretical perspective,
by analyzing the relationship between model size and its Lipschitz constant - which measures the
sensitivity of a function to changes in the input. In particular the authors proved that any function
with P parameters, that memorizes N input data points in D dimensions, has a Lipschitz constant

of at least O(
√

N ·D
P ). This shows that, on a given dataset, larger models can have better robustness

(smaller Lipschitz constant). Note that as this is only a lower bound, it does not guarantee that larger
models will indeed have a smaller Lipschitz constant. Interestingly, the result is agnostic to other
properties of the function, such as its computation cost, or specific architecture.

Given the above result it is natural to wonder: can one increase the model size, without increasing
the computation cost, and enjoy better robustness? An increasingly popular class of such models are
Mixture of Experts (MoE) [23]. MoE models have multiple expert sub-models, and a routing function
that selects for each input a small subset of the experts and routes the input only to them. Neural
networks with MoE layers, such as Switch Transformer [10] in NLP, and V-MoE [22] in Computer
Vision, have been shown to achieve superior performance in comparison to their dense counterparts,
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by allowing one to scale the model size without increasing the computation cost. In this paper we
study the following question: are MoE models more adversarially robust than dense models?

In general, sparse MoE models are not continuous, and hence not even smooth. Small changes to
the input can result in the router selecting a different expert for a given example. Unfortunately, in
some cases these experts may be very different, resulting in large changes to the output. Another
factor that affects the robustness of MoE models is the geometry of input data and its routing –how
the data is divided between experts. This decides what data an expert is trained on and hence their
robustness. Finally, it has been observed that –unless certain auxiliary losses are also applied to
encourage balancedness– the number of used experts tends to collapse to very few, and the remaining
ones are just ignored [22, 10]. Given these stability issues, it is a priori not clear if MoEs, despite
having more parameters, are more robust than dense models.

To theoretically study the effect of both of these factors, (1) router stability and (2) data routing,
on robustness we consider the smooth MoE models, where each expert output is weighted by their
routing probability. In particular, MoE models where all experts are simultaneously applied to every
input. We analyze models with fixed routing proving that MoEs with linear experts can achieve better
robustness if the data is well separated and routed accordingly. In the extreme case, MoEs with E
experts can have a smaller Lipschitz constant by a factor of 1/

√
E compared to equivalent dense

models. We also characterize the effect of the difference between experts in terms of robustness,
showing that MoEs can have a high Lipschitz constant when two experts are very different for
inputs that weigh the experts similarly and highly. We show that both these factors, data routing and
difference between relevant experts, characterize the Lipschitz constant of MoE models.

We next evaluate robustness experimentally by using adversarial attacks [20]. We experimentally
show that on the ImageNet dataset [6], MoEs are more robust than dense models that have the
same computation cost. Interestingly, we observe that adversarial attacks result in significant routing
changes of the inputs, but do not result in lower robustness than dense models. This suggests that
in practice, MoEs are robust to the choice of the experts to an extent. We next perform standard
adversarial training of both the dense and the MoE models and again observe that MoEs are more
robust against adversarial attacks.

The main contributions of the current work are as follows:

1. We propose a simple theoretical framework to understand the robustness of Mixture of
Experts (MoE) models. We provide general and non-trivial sufficient conditions under which
MoEs are provably more robust than their dense counterparts for the linear experts setting.

2. We perform extensive experiments to demonstrate that in practice MoEs indeed enjoy
better robustness than dense models to norm bounded adversarial attacks. We also uncover
intriguing properties of adversarial attacks for MoE models and show that even for robust
MoE models, the attacks very often change the routing of data points, thereby pointing to a
high degree of redundancy in such models.

2 Preliminaries

2.1 Mixture of Experts

Mixture of Experts combine the outputs of (sub-)models, i.e., the experts, via a weighted sum of their
outputs [14, 15, 28, 9]. Sparse Mixture of Experts condition the weights of the sum in the inputs, and
activate only K (out of E) experts, where K is typically a very small integer compared to E (such
as K = 1 or K = 2) [23, 10]. This form of conditional computation models allows one to easily
increase the number of parameters in the model (roughly) independently of its compute cost [21].
This approach has been recently applied to significantly increase the model size and quality of models
used in Natural Language Processing [23, 18, 19, 10, 8] and Computer Vision applications [22, 27].

More concretely, we define the sparse and smooth (or dense) versions of mixtures of experts below.
While previous empirical works have sometimes selected more than one expert per input (K > 1),
for simplicity we constrain ourselves to the case where only one expert is selected for each input
(K = 1). Recently, practical models also tend to this setup to match the FLOPs of dense models [10].

Sparse MoEs. In these models only one expert is selected for a given example x based on its routing
probabilities pi(x). These models are not continuous functions of the input. A small change in the
input can lead to large changes in the output, due to changes in selected experts. A sparse MoE layer
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is defined as:

f(x) =

E∑
i=1

1{pi(x)≥pj(x),∀j 6=i} fi(x). (1)

Here fi(x) are the individual expert functions. 1 is the indicator function that takes the value of
1 if the condition is satisfied and 0 else. Note that to do tie breaking in the above definition, in
case multiple experts have the same maximum probability, we simply sample uniformly one of the
experts with the maximum probability. In practice, MoE models can have multiple sparse layers in
combination with dense layers. Further, random noise is sometimes added to the pi’s [23, 22].

We refer to MoEs with only 1 expert as dense models. In dense models, which are the standard in
neural networks literature, same function is applied to all input examples. In sparse MoEs introduced
above, different part of network / expert is applied to each input example depending on which expert
selected. This flexibility allows us to train larger sparse MoEs, that have the same computational cost
as the dense models, as only a part of MoE is activated/selected for each input, with better accuracy
than dense models [10, 22].

Smooth MoEs. To theoretically analyze robustness, we consider a smooth mixture of expert models,
as they are continuous functions. In this case, the output of each expert fi, is weighted according to
its routing probabilities:

f(x) =

E∑
i=1

pi(x)fi(x). (2)

The routing probabilities pi(x) are usually computed by a routing layer, e.g., pi(x) = σ(Sx)i, where
σ is the softmax and S ∈ RE×D is a trainable variable. Such linear routing layers are the common
choice for MoE models in practice [10].

Though these models have recently been shown to achieve state of art performance for tasks in
NLP [10] and vision [22], there have not been many works analyzing their robustness. Recently,
Allingham et al. [2] empirically studied robustness of MoEs to natural perturbations in data (e.g.,
evaluation across different corrupted versions of CIFAR10 [17] and ImageNet [6]), and showed MoEs
are more robust for these natural perturbations than the corresponding dense models. To the best of
our knowledge ours is the first work theoretically analyzing robustness of MoEs, and empirically
exploring it in the context of adversarial perturbations.

Load balancing loss To prevent MoEs from collapsing and always selecting the same expert for all
inputs, it is customary during training to add a load balancing loss, that encourages equal fraction of
inputs being routed to different experts. We define and present these losses in detail in appendix E.

2.2 Adversarial robustness

Adversarial robustness models the susceptibility of a function to adversarial perturbations to its
input [25, 20]. More concretely, given a function f , loss function `, and an input x ∈ RD, we can
write the adversarial loss incurred at x with label y as follows.

max
z:‖z‖≤ε

`(f(x + z),y). (3)

Here ε is the attack radius per input. For the norm constraint (‖z‖), popular choices in practice, are
`∞ and `2 norms [20, 4]. Adversarial accuracy is the accuracy of the model on data with perturbations
that satisfy the above equation, i.e., when the loss function ` is the 0/1 classification loss.

Since optimizing equation 3 for neural networks is computationally hard, popular methods to find
adversarial examples use local search approaches such as gradient ascent. The Fast Gradient Signed
Method (FGSM) is perhaps the simplest one, with only one gradient update step [11]. For `∞ bounded
perturbations the FGSM update is the following:

x + z = x + ε sgn (∇x`(f(x),y)). (4)

sgn() is the sign function. The Projected Gradient Descent (PGD) method is a stronger attack that
does multiple (τ ) gradient ascent steps to find the perturbation [20]. The update rule for `∞ bounded
perturbations is as follows, starting with x0 = x.

xt+1 = Πx+C
[
xt + α sgn (∇x`(f(x),y))

]
,∀t ∈ [0, τ − 1]. (5)
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α is chosen to be ε
τ . Here C is the constraint set {z : ‖z‖∞ ≤ ε} and Π is the projection operator.

Existing works have established that neural networks are sensitive to adversarial attacks resulting
in a significant drop in their accuracy [25]. Interestingly, increasing the size of neural networks,
thereby increasing their capacity, leads to an improvement in adversarial accuracy, showing that larger
neural networks are more robust [20, 26, 1, 12]. In a recent work, Bubeck and Sellke [3] studied this
phenomenon theoretically. They proved a lower bound on the Lipschitz constant of any function that
fits the training data that scales inversely 1√

P
with the number of function parameters P . However it

is not clear if functions that have more parameters, but not necessarily more computation cost (e.g.
MoEs), can achieve better robustness. In this paper we analyze adversarial robustness of MoEs, both
theoretically and experimentally.

Notation. We use small bold letters, e.g., x, to denote vectors and capital bold letters to denote
matrices, e.g., W . Scalars are denoted with plain letters. [N ] denotes the integer set from 1 to N . ‖.‖
denotes the `2 norm unless specified otherwise.

3 Robustness analysis

In this section, we present our main results regarding the robustness of the mixture of expert models.
We first present a bound on the Lipschitz constant of MoEs for general expert functions fi. While
this is an upper bound for general functions it still highlights the two key components that affect the
robustness of MoE models.

3.1 Router stability

In this section, we compute the Lipschitz constant of smooth MoEs with learnable routing. Let,

f(x) =

E∑
i=1

pi(x)fi(x) where pi(x) =
exp(〈si,x〉)∑E
j=1 exp(〈sj ,x〉)

(6)

and {si}i∈[E], with each si in RD, are learnable variables that decide the routing of an example to
different experts. We then prove the following upper bound on the Lipschitz constant of the MoE
models with learnable routing.
Lemma 1. Let {fi}i∈[E] be smooth functions with Lipschitz constants {Lfi}i∈[E] and let Lf be the
Lipschitz constant of f . Let s̄(x) =

∑
j pj(x)sj . Then f(x) in equation 6 satisfies,

‖∇xf(x)‖ ≤
E∑
i=1

pi(x)Lfi +

∥∥∥∥ E∑
i=1

pi(x)fi(x)(si − s̄(x))

∥∥∥∥,
and hence

Lf ≤ max
i∈[E]
{Lfi}+ sup

x

∥∥∥∥ E∑
i=1

pi(x)fi(x)(si − s̄(x))

∥∥∥∥. (7)

The above Lemma bounds the Lipschitz constant of MoE models with two terms that depend on (1)
data routing, and (2) router stability. The first term above is from the individual Lipschitz constant
of the experts. This depends on how the data is partitioned or routed to different experts, which
we will discuss in more detail in the next section. The second term arises from the router used to
compute probabilities for different experts. One may wonder if we can make this term arbitrarily
large by increasing the norm of x. This is not the case as increasing the norm of x usually results in
the collapse of the routing probabilities to a single expert. This makes pi(x)(si − s̄(x)) zero for all
experts i ∈ [E].

To study the above more concretely, we consider the case of E = 2 experts. In this setting the second
term above reduces to ‖p1(x)f1(x)(s1 − s̄(x)) + (1 − p1(x))f2(x)(s2 − s̄(x))‖. Now, in the
extreme case, where p1(x) is either 0 or 1, the above term collapses to 0 as pi(x)fi(x)(si− s̄(x)) is
0 in that case. This is also expected as for examples that are routed to an expert with high probability,
the main dominating factor is the individual expert Lipschitz constant, as small perturbations do not
cause much change to the probabilities.
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A more interesting setting is when p1(x) is 1
2 . In this setting, small perturbations to the input can

cause the model to drastically change the weight between the experts, and the above term reduces to
‖ 14 · (f1(x)− f2(x)) · (s1 − s2)‖. Hence MoE models can suffer from large Lipschitz constants if
the two experts are very different for points on the boundary, i.e., if |f1(x)− f2(x)| � 0. Alternately
if f1(x) ≈ f2(x) for points on the boundary (i.e. p1(x) ≈ 1

2 ) then this term is small.

We will later see in the experiments that MoEs trained in practice often have good router stability and
changes to routing do not result in much degradation of the final accuracy.

3.2 Data routing

In this section we will study the effect of data routing on the Lipschitz constant of the individual
experts – the first term in RHS of equation 7 (lemma 1). In particular we will try to address how
large can maxi∈[E]{Lfi} be in comparison to the Lipschitz constant of a dense model trained on
the same data. Towards this end, we will theoretically analyze the robustness of MoE models with a
pre-determined fixed routing and linear experts, in the light of the structure of the data.

3.2.1 Setup

We consider the setting of fixed routing, where we assume the routing of individual examples to
experts is pre-determined and fixed. Moreover, we consider linear models as experts.

More specifically, we consider N input points of dimension D stacked in the matrix X ∈ RN×D,
together with the corresponding vector of targets y ∈ RN . In the dense case (i.e., no experts), we
would like to find a linear model w∗ ∈ RD that minimizes

min
w∈RD

‖Xw − y‖2. (8)

The least-squares solution [13] for this problem that minimizes the MSE loss is w∗ = (X>X)†X>y.
Here † denotes the pseudo inverse. On the other hand, for mixture of experts, let the dataset be split
into E subsets S1, · · · ,SE , with Xi,yi denoting the data in set Si. Now let the data from the set Si
be routed to the expert i. Below we write the objective for each expert:

min
wi∈RD

‖Xiwi − yi‖2 for i ∈ [E]. (9)

Similarly, let w∗i = (X>i Xi)
†X>i yi be the optimal solution for expert i that minimizes the MSE.

3.2.2 Analysis

Before introducing our analysis relating the Lipschitz constant of the dense and MoE models, we first
present two examples to better understand how routing affects Lipschitz constants. In particular we
consider a simple setting with E = 2 experts. Let X> = [X>1 ,X

>
2 ], be the data routed to the two

experts. Recall that the Lipschitz constant of the function f(X) = Xw is ‖w‖.
Case X1 ⊥X2. In this setting we get

‖w∗‖ = ‖(X>X)†X>y‖ = ‖(X>1 X1)†X>1 y1 + (X>2 X2)†X>2 y2‖ = ‖w∗1 + w∗2‖
≥ max(‖w∗1‖, ‖w∗2‖)

The second equality follows from the folowing steps - 1) XTX = XT
1 X1 + XT

2 X2, 2) (XT
1 X1 +

XT
2 X2)† = (XT

1 X1)† + (XT
2 X2)†, and 3) (XT

1 X1)†XT
2 = 0, where steps 2 and 3 follow from

the orthogonality of X1 and X2 (see [16]). Hence, experts have smaller Lipschitz constant when
data routed to different experts lies in orthogonal subspaces.

Case X1 = −X2 and y1 = y2. In this case, we see that:

‖w∗‖ = ‖(X>X)†X>y‖ = ‖(X>1 X1 + X>2 X2)†X>y‖
= ‖(X>1 X1 + X>2 X2)†(X>1 y1 −X>1 y1)‖ = 0 ≤ min(‖w∗1‖, ‖w∗2‖).

Hence experts have worse Lipschitz constant when the data routed to different experts is aligned.
These two simple examples illustrate under which conditions experts have an advantage over a single
dense model, and when they do not.
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We now present our main result. To capture this relation between the data geometry and the routing,
we introduce the following quantities. Let {Ui}i∈[E] be the projection matrices onto orthogonal
subspaces in RD. One way to construct them is by first taking the singular vectors of X>X and
assigning them to the set i with the largest projection. This guarantees that Ui is orthogonal to Uj

with j 6= i, and they have greatest alignment with subspace spanned by Xi.

We first define a quantity to capture how well Ui captures the span of the data subset Xi.

Definition 1 (In-subspace distance: ε1). ∃ε1 ≥ 0, ‖UiU
>
i (X>X)† − (X>i Xi)

†‖2 ≤ ε1,∀i ∈ [E].

Here ‖.‖2 for a matrix denotes the spectral norm. ε1 is small when, ∀i,Ui captures Xi perfectly.

Next we define the projection distance between data from two different subsets.

Definition 2 (Cross-subspace distance: ε2). ∃ε2 ≥ 0 such that for any z in the span of X>j , we have
‖(X>i Xi)

†z‖ ≤ ε2‖z‖,∀i 6= j.

Here ε2 is small if the data in different subsets Xi lies in orthogonal subspaces.

Theorem 1. Let w∗ be the minimizer of equation 8 and {w∗i }i∈[E] be the minimizers of equation 9.
Then,

‖w∗‖2 ≥
E∑
i=1

(b‖w∗i ‖ − ε1‖X>y‖ − ε2
∑
j 6=i

‖X>j yj‖c+)2,

where b·c+ denotes the projection onto non-negative numbers.

The above result lower bounds the Lipschitz constant of the dense model ‖w∗‖ in terms of Lipschitz
constants of the experts ‖w∗i ‖ in the MoE model. We present the proof of this theorem in appendix A.

In the case where ε1 = ε2 = 0, we obtain the following bound ‖w∗‖ ≥
√∑E

i=1 ‖w∗i ‖2. Assuming
a balanced setting where all experts have the same norm parameters, we get the scaling ‖w∗‖ ≈
O(
√
E) ·maxi∈[E]{‖w∗i ‖}. Hence in this setting, experts have a Lipschitz constant that is smaller

by a factor of 1√
E

compared to dense models. This happens when the data lies in E orthogonal
subspaces and the data from each subspace is routed to the same expert. This shows that MoE models
can have significantly smaller Lipschitz constant than their dense counterparts, while having the same
computation cost. For MoEs in practice, data routed to different experts does display some clustering
of the features (see Figure 7 in Riquelme et al. [22]).

As data in different partitions Xi gets more aligned, ε1 and ε2 increase, and reduce the gap between
the Lipschitz constant of the dense and the MoE models. This reduces the gap in the Lipschitz
constant of the dense model and the experts. In the extreme case, if all the datapoints are the same,
then ε1 and ε2 are large, eliminating this difference. In appendix D, we give a complementary result
relating the Lipschitz constants of the experts to that of the dense model when both ε1 and ε2 can
possibly be large.

Connections to Bubeck and Sellke [3]. Bubeck and Sellke [3] proved a universal lower bound on
the Lipschitz constant of a function required to δ-memorize N training samples in D dimension.

Lf ≥ Ω̃

(
δ

√
ND

P

)
.

For the linear model considered above, this reduces to Ω̃
(
δ
√
N
)

as the number of parameters is

D. As MoEs have E times more parameters, they have a lower bound of Ω̃
(
δ
√

N
E

)
, i.e., the lower

bound on the Lipschitz constant of MoEs is smaller by a factor of
√

1
E . Our result shows that this

lower bound is in fact achievable, and hence tight, when the data lies in E orthogonal subspaces and
data from each subspace is routed to the same expert.
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4 Experiments

4.1 Setup

We compare the robustness of Vision Transformer (ViT) [7] and Vision MoE (V-MoE) [22] models
against adversarial attacks. In particular, we use the ViT-B/32 and V-MoE-B/32 models through
all the experiments. These models have the same backbone architecture but the latter replaces
one in every two feedforward layers with a sparse Mixture of Experts, selecting K = 2 out of
E = 32 feedforward experts that are applied on each token1. One could argue that the router in the
V-MoE model introduces an overhead that should be accounted for. Thus, we have trained a bigger
version of the dense ViT-B/32 (which we coin ViT-B++/32) that reaches roughly the same predictive
performance as the V-MoE model, but has higher cost. The cost of evaluating an image on the dense
ViT models is 8.9 and 17.9 GFLOPs and runtime cost, respectively; and 12.4 GFLOPs on the V-MoE
model. Appendix B contains additional experimental details.

We pre-train our models on the private dataset JFT-300M [24] for 7 epochs (517 859 steps with a batch
size of 4 096 images), using an image resolution of 224× 224 pixels, and standard data augmentation
(inception crop and horizontal flips). Since JFT-300M is a multi-label dataset, we minimize the
sigmoid cross-entropy loss. V-MoE also adds auxiliary losses to encourage a balanced load for all
experts; we used the same recipe as in [22]. In both cases we use Adam (β1 = 0.9, β2 = 0.999),
with a peak learning rate of 8 · 10−4, reached after a linear warm-up of 104 steps and then linearly
decayed to a final value of 10−5. Weight decay of 0.1 was used on all parameters. This is the same
pre-training protocol as that used in [7, 22].

After pre-training, the models are fine-tuned on ImageNet [6], at a resolution of 384× 384 pixels and
the same data augmentations as before, for a total of 104 steps, using a batch size of 4 096 images.
SGD with Momentum (µ = 0.9) is used for fine-tuning, with a peak learning rate of 0.03, reached
after a linear warm-up of 500 steps, and followed with cosine decay to a final value of 10−5. The
norm of the flattened vector of gradients is clipped to a maximum value of 10. Since ImageNet
images have a single label, we minimize the softmax cross-entropy loss during fine-tuning. The same
fine-tuning protocol was adopted in [7, 22].

We evaluate the adversarial robustness of both the pre-trained and fine-tuned models, by means of PGD
adversarial attacks [20]. We maximize the corresponding loss (sigmoid or softmax cross-entropy),
varying the `∞ norm constraint on the input image, for a total of τ = 40 steps.

4.2 Adversarial robustness of V-MoEs

During pre-training the ViT-B/32 model achieves a precision at 1 of 39.3%, and the V-MoE-B/32
achieves a precision-at-1 of 43.5% (conversely, the false discovery rate at 1 is 60.7% and 56.5%,
respectively). After fine-tuning, the classification error achieved by each model on ImageNet is 19.3%
and 17.8%, respectively.

Figure 1 shows in solid lines the false discovery rate (left) and the classification error rate (right) as a
function of the `∞ constraint. Despite the fact that the V-MoE model contains a router that makes
discrete choices among the experts conditioned on the input, which could potentially lead to a severe
weakness against the adversarial attacker, we can observe that it follows the same trend as the base
dense ViT model. It is able to preserve a lower error over a wide range of `∞ values. A larger version
of the dense model matching the quality of the V-MoE has a much higher cost.

In addition, we also fine-tuned the base ViT and V-MoE models on ImageNet using PGD adversarial
training. We use the same recipe as above but we perform a PGD attack of 10 steps on the input images,
with fixed `∞ = 8

255 , before computing the gradients of the model parameters and updating them.
The classification error on the original ImageNet dataset achieved by each model after adversarial
fine-tuning is 51.7% and 49.8%, for both models respectively. Figure 1 (right) shows in dashed lines
the classification error when these models are evaluated against an adversarial attacker using different
`∞ constraints. As the `∞ increases, the benefit of adversarial fine-tuning to preserve accuracy is
shown in both cases. Once again, both models report similar trends, and the V-MoE model shows
better robustness for a wide range of `∞ values.

1Token refers to an element in the sequence input, which is obtained by projecting input image patches [7]
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Figure 1: False discovery rate on JFT-300M (left) and classification error rate on ImageNet (right) as
a function of the `∞ used in the adversarial attacks. Dashed lines depict models fine-tuned with PGD
adversarial training. Although the V-MoE model contains several sparse MoE layers making discrete
choices on their respective inputs, it shows lower error under adversarial attacks than the base ViT
model. A much bigger and slower ViT model is needed to roughly match the V-MoE.

4.3 Effect of the adversarial attacks on the selected experts

As described in section 3.1, in the region close to the decision boundary of the router, if two experts
have very different outputs, the Lipschitz constant of the MoE model could be much higher than that
of a similar dense model. If the index of the selected experts changes significantly, but the model still
shows a reasonably high accuracy under adversarial attacks (compared to a dense model), this would
suggest that the outputs of the two selected sets of experts do not differ much.

Figure 2 shows the rate of changes in the router as a function of the `∞ used in the adversarial attack,
on the different layers of the V-MoE-B/32 model that have a MoE layer. For each token processed by
the model, we compute the intersection-over-union (IoU) of the selected set of experts before and
after the adversarial attack. We average the IoU across all processed tokens and define the rate of
routing changes as the complement of the average IoU.

In dashed lines we report the rate of changes of a V-MoE model fine-tuned using PGD adversarial
training. Not only the model has a better accuracy against adversarial attacks when the `∞ increases,
as reported in figure 1, but the rate of routing changes is also generally lower across all layers.
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Figure 2: Rate of changes in the selection of experts as a function of the `∞ used in the adversarial
attacks on ImageNet against a V-MoE model. The dashed line depicts a V-MoE model fine-tuned
with PGD adversarial training. A significant fraction of experts change in each MoE layer. Given that
figure 1 shows the V-MoE model keeping its advantage over the dense ViT, we hypothesize that the
output of different experts for inputs close to the decision boundary of the router is similar.

Despite the fact that a significant fraction of choices change on each layer as the `∞ increases,
figure 1 shows that the V-MoE model still keeps its advantage against adversarial attacks over the
ViT model. This suggests that in the regions close to a decision boundary of the router, the two
corresponding experts have a similar output, hence preventing the full V-MoE model from being
less robust in practice. Conversely, the fact that the V-MoE model has a better base quality than the
ViT counterpart, suggests that the experts are not equivalent for regions far away from the decision
boundary, otherwise it would be reduce to a dense model.
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4.4 Attacking the router’s auxiliary losses

Sparse MoE models usually employ auxiliary losses to balance the load among all experts. In
particular, in the implementation of V-MoEs, if the load of the experts is highly unbalanced, the
experts receiving significantly more tokens than the average could ignore all tokens that exceed the
expert’s capacity, potentially leading to a significantly worse performance. The question is whether an
adversarial attacker can exploit this property in practice. Figure 3 (left) shows the false discovery rate
on JFT-300M, for a V-MoE model when the router’s auxiliary losses are maximized in the adversarial
attack, together with the corresponding cross-entropy loss. We use the same weight for the auxiliary
losses as the one used to train the models. The figure shows that attacking the auxiliary loss does not
offer any significant advantage for the attacker. The results are analogous in terms of the classification
error on ImageNet (not shown here in interest of space).
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Figure 3: (Left) False discovery rate on JFT-300M for a ViT-B/32 and a V-MoE-B/32 models (with
32 experts). Dashed lines represent the results when the attacker targets both the cross-entropy and
the auxiliary losses used by the V-MoE routers to balance the load among experts in each layer. The
auxiliary losses of V-MoE do not present a disadvantage against an adversarial attacker. (Center and
Right) False discovery rate on JFT-300M and classification error rate on ImageNet for a ViT-B/32
and several V-MoE-B/32 models (with increasing number of total experts). On JFT-300M the quality
of the model against adversarial attacks improves as more experts are used. After fine-tuning on
ImageNet, the number of experts becomes increasingly redundant.

4.5 Increasing the model size by increasing the total number of experts

In section 1 we asked if, given that the lower bound on the Lipschitz constant given by Bubeck and
Sellke [3] is agnostic to the computational cost of the function, could we make a model more robust
by increasing its model size without increasing the total cost? Here we measure how much increasing
the total number of experts in a V-MoE model helps against adversarial attacks. Notice that increasing
the total number of experts E does not make the V-MoE model more expensive. Figure 3 (center and
right) shows the false discovery rate on JFT-300M and the classification error on ImageNet for an
increasing number of experts. All V-MoE models select K = 2 experts for each token.

On the one hand, increasing the total number of experts improves the robustness on JFT-300M up to
E = 16 experts. The curves for E = 16 and E = 32 are highly overlapping, thus any difference is
most likely due to noise in the training and fine-tuning process. On the other hand, when the V-MoEs
are fine-tuned on ImageNet, all models with more than two experts achieve roughly the same accuracy
under adversarial attacks.

This shows that, although the results presented in section 3 showing better robustness of MoEs require
some assumptions, the conclusions hold to some extent in real scenarios. Increasing the number of
parameters by growing the number of experts is an effective way of improving the model’s robustness.

4.6 Robustness against AutoPGD attacks

We conducted additional experiments using a more sophisticated adversarial attack, AutoPGD [5],
which selects the step size to use in each update of the attack. We also increased the number of
steps performed in the attack, using τ = 100 steps. Figure 4a shows the results achieved by two
dense (ViT-B/32 and ViT-B++/32) models and a sparse model (V-MoE-B/32). Although AutoPGD is
slightly more effective as an adversarial attack against all methods (for example, with `∞ = 10−3 the
false discovery rate on JFT-300M of ViT-B/32 is 0.744 using PGD and 0.757 using AutoPGD), the
trend of all models is identical to that represented in figure 1.
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(b) Rate of changes in the selection of experts as a
function of the `∞ used in the adversarial attacks on
ImageNet against a V-MoE model.

Figure 4b shows the rate of routing changes in the different MoE layers in the V-MoE-B/32 model.
This figure is analogous to figure 2 which shows the results for the standard PGD attack. Compared
to it, AutoPGD is able to change a higher fraction of the selected experts. For example, the maximum
fraction of changes in Layer 1 using PGD was near 0.2, while AutoPGD increases it up to around 0.5.

AutoPGD offers the same conclusion as the PGD attacks: models using sparse MoE layers offer
better robustness against adversarial attacks (per GFLOP) than dense models, despite the fact that the
router itself can be quite sensible to these attacks.

5 Conclusion

In this work we analyzed the adversarial robustness of MoEs showing their advantage over dense
models, with more experts leading to better robustness, both theoretically and empirically. We showed
how the properties of the data and its routing plays and important role in learning robust MoEs.
While there is some evidence that routing learned by MoEs in practice display some clustering of
the features in some layers of the model (see Figure 7 in Riquelme et al. [22]), it is currently not
explicitly encouraged during training. Hence developing smarter routing strategies that take data
geometry into account can be an interesting direction of future work. Currently our analysis is limited
to linear models, extending this to general models and deriving the dependency of optimal routing on
them is another promising research direction.

We have also shown that, for inputs that weigh two experts similarly, if the two expert values are
very different, then the MoEs can suffer from higher Lipschitz constant. However, for models trained
in practice, we saw their predictions to be relatively stable, despite significant changes in choice of
experts, highlighting potential redundancy of learned experts. However too much redundancy, with
all experts learning similar functions is a waste of capacity and can affect model performance. Hence
it is an interesting research problem to balance robustness and accuracy of MoEs by controlling the
redundancy of experts.
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