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Abstract

Thanks to the powerful representation capabilities, transformers have made impres-
sive progress in image restoration. However, existing transformers-based methods
do not carefully consider the particularities of image restoration. In general, im-
age restoration requires that an ideal approach should be translation-invariant to
the degradation, i.e., the undesirable degradation should be removed irrespective
of its position within the image. Furthermore, the local relationships also play
a vital role, which should be faithfully exploited for recovering clean images.
Nevertheless, most transformers either adopt local attention with the fixed local
window strategy or global attention, which unfortunately breaks the translation
invariance and causes huge loss of local relationships. To address these issues, we
propose an elegant stochastic window strategy for transformers. Specifically, we
first introduce the window partition with stochastic shift to replace the original
fixed window partition for training. Then, we design a new layer expectation
propagation algorithm to efficiently approximate the expectation of the induced
stochastic transformer for testing. Our stochastic window transformer not only
enjoys powerful representation but also maintains the desired property of transla-
tion invariance and locality. Experiments validate the stochastic window strategy
consistently improves performance on various image restoration tasks (derain-
ing, denoising and deblurring) by significant margins. The code is available at
https://github.com/jiexiaou/Stoformer.

1 Introduction

Image restoration aims to recover latent clean images from their noise-polluted counterparts, which
lays the foundation for various vision tasks. Generally, image restoration methods should satisfy a
constraint: an ideal approach should remove undesirable degradation irrespective of its position
within the image. In other words, maintaining the translation invariance is the fundamental require-
ment for image restoration, which makes convolutional neural networks (CNNs) well-suited for
this specific vision task [56, 23, 9, 73, 70, 61, 66, 58, 72, 6, 15]. In comparison with multi-layer
perceptrons (MLPs), the distinct characteristics of CNNs [26, 22, 17] are their built-in locality and
weight sharing, resulting in the desirable property of translation invariance. These two priors play
a vital role in image restoration, i.e., pixels within local regions tend to exhibit strong correlations
while translation invariance is one of the desiderata for the potential image restoration method.

On the other hand, transformer-based image restoration methods [2, 54, 33, 63] are not compatible
with the translation invariance and locality. The patterns that transformers adopted for recovering
high-resolution images can be summarized as small patch with global attention (e.g., 48× 48 for IPT
[2]) and large patch with local attention (e.g., Uformer [54] and SwinIR [33]). Nevertheless, neither
of these two patterns can meet the requirements of translation invariance or locality. Here we detail
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(a) The fixed window partition
breaks the translation invari-
ance.

(b) The fixed local window can-
not faithfully capture local rela-
tionships.

(c) The comparison of percentage of
captured locality between the fixed and
stochastic window strategy.

Figure 1: Illustration of broken translation invariance and lost locality of the fixed window strategy.

the latter pattern while the former one is included in the supplemental material. The latter pattern
partitions the feature map into fixed non-overlapped windows and self-attention is restricted inside
these local windows. However, we argue that the fixed partition strategy will break the translation
invariance and further lead to huge loss of local relationships. As shown in Figure 1(a), for the fixed
window partition strategy, translation invariance can only be ensured among specific partitioned
windows (blue windows)2 rather than general windows with arbitrary shifts (red windows), which
disagrees with the translation invariance. The reason behind this is that the fixed window partition
imposes the artificial prior to windows with specific shifts, which turns out to break the translation
invariance. Figure 1(b) intuitively illustrates that the fixed window partition cannot capture intact
local relationships. Without loss of generality, we consider the Euclidean distance, based on which
the neighbor space will be the region encompassed by a circle, in 2D plane to measure locality. For
a certain token (central red dot), many tokens (green dots) within its neighbor space (encompassed
by the red circle with radius r) cannot participate in the calculation of self-attention, which leads to
tremendous loss of local relationships. As the neighbor space expands, i.e., increasing radius r, the
loss will be more severe. Figure 1(c) quantitatively depicts the proportion of local relationships that
are captured by the fixed window partition over the total relationships existing in the neighbor space.
Ideally, when the feature map is divided into non-overlapping windows of size s× s, it is expected
that the relationships of token pairs with distance less than s can be faithfully captured. However, we
can observe that there exists significant loss of local relationships even within the neighbor space
whose radius is much smaller than s. A seemingly straightforward solution to this problem is to
adopt the sliding window strategy to scan the whole feature map using the local window like CNNs.
However, this strategy incurs huge overhead in terms of both memory and computing speed.

In this work, we propose a novel stochastic window strategy to impart translation invariance to the
transformer and make it faithfully model local relationships. Specifically, instead of partitioning the
feature map into fixed non-overlapped windows, we choose to cover the whole feature map with a
stochastically shifted window partition (see Figure 2). By introducing stochastic shifts, all windows
are treated equally so that the translation invariance and locality can be ensured. As shown in Figure
1(c), our stochastic window strategy is able to capture complete local relationships until the radius of
neighbor space reaches the window size. It is noteworthy that unlike the sliding window strategy, the
time and memory overhead consumed for training stochastic window transformer is comparable to
the fixed window strategy. For testing, we further design the layer expectation propagation algorithm
to approximately marginalize the stochastic shifts, during which the translation invariance and locality
can also be ensured.

In conclusion, the contributions are threefold:

• We analyze the phenomena of translation invariance breaking and local relationships loss in
existing transformer-based image restoration approaches. To the best of our knowledge, this
is the first work to point out the importance of translation invariance for image restoration.

2These windows are processed using shared weights, e.g., WQ,WK ,WV for Q,K, V .
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• We propose a new stochastic window strategy, which comprises stochastic windows for train-
ing and layer expectation propagation for testing, to compensate for the broken translation
invariance of transformers and enable them to faithfully model local relationships.

• Extensive experiments on various tasks, e.g., deraining, denoising and deblurrring, validate
that the restoration performance can be consistently improved by equipping our stochastic
window strategy.

2 Related works

Image Restoration. Image Restoration [67, 11, 5, 36, 34, 38, 62, 40, 29, 28] aims to restore the
clean image from its degraded version. In recent years, remarkable progress against traditional model-
driven methods [4, 53, 16] has been achieved due to the development of deep learning technologies
[27], especially CNNs [26, 22, 17]. Instead of relying on preset image priors, learning based methods
directly learn to project from noisy to clean ones from a large collection of noisy-clean image pairs.
Numerous representative CNNs have sprung up across various classical image restoration tasks,
including image denoising [25, 60, 68, 66, 7, 74, 32], image super-resolution [72, 6, 15, 20, 75],
image deblurring [9, 23, 39, 23, 47, 65, 43, 42], image deraining [58, 50, 13, 64, 51, 41, 30, 14], etc.
In general, the translation invariance (derived from weight sharing) and locality have been hard-coded
into the inherent structure of CNNs so that it seems CNNs are well-suited for image restoration tasks.
However, compared with Transformer, CNNs are restricted by their limited flexibility.

Vision Transformer. Recently, with great success of transformer [49, 8] in the NLP field, Vision
Transformers [10, 48, 52, 35, 57, 59, 3] have also been prevalent in vision community. ViT [10] treated
image patches as token sequence and applied the vanilla transformer on it for image classification.
With the goal of bringing in reasonable priors into transformer to improve efficiency, Swin [35]
introduced local window based attention and established a hierarchical architecture. Inspired by the
key insights from high-level vision, a few transformers [2, 33, 54, 63, 55] for low-level vision have
arose. But most of them directly transfer high-level designs (e.g., local attention) into low-level vision
without careful consideration of its particularities. As we discuss above, unlike CNNs, transformers
do not possess the translation invariance and intact locality. In general, low-level tasks usually
require to accomplish pixel-level regression, where more strict locality and translation invariance
are expected. Besides, the CNNs-style sliding window strategy will incur huge burden in terms of
memory and computing speed. Therefore, an efficient mechanism to remedy the broken translation
invariance and locality of transformer is essential for low-level vision.

3 Stochastic Window Transformer for Image Restoration

Transformers have attained impressive performance for image restoration due to their strong represen-
tation ability. Given the quadratic complexity in both computation and memory usage, transformers for
image restoration tend to employ the local attention. Except for high-efficiency, local attention should
have been designed to model local relationships. However, as we analyzed before, local attention
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Figure 2: Window partition
with shift (ξh, ξw). s is the
spatial size of local window.

breaks the ideal translation invariance and further leads to huge loss
of local relationships. As shown in Figure 2, for a feature map, the
window partition with arbitrary shift (ξh, ξw) contains a comparable
quantity of local relationships and implies the translation invariance
among divided windows. In other words, all the window partitions are
equally informative in terms of translation invariance and locality and
should be treated equally. Therefore, it is unreasonable for the fixed
window strategy to express infinite favoritism towards the certain
partition (e.g., (0, 0) or ( s2 ,

s
2 )) while simply discarding others. In

this work, we propose the stochastic window strategy, by which all the
window partitions are treated fairly. The network can be trained based
on local attention but with stochastic rather than fixed shift. Therefore,
transformer with the stochastically shifted window can be trained as
efficiently as the fixed window. At test time, we propose the layer
expectation propagation algorithm to approximate the expectation
of the introduced stochastic shift, which also helps to maintain the
desired property of translation invariance and locality.
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3.1 Stochastic Window Strategy

Stochastic window strategy aims to impart the translation invariance to transformer and make it
faithfully exploit local relationships. Canonical transformer consists of alternate layers of self-
attention (SA) and MLP. In order to promote efficiency, transformer tends to employ local window
based attention and shifted window strategy is utilized to allow inter-window connections. Specifically,
the feature map is partitioned into non-overlapped windows and then SA is computed within local
windows. Suppose the window partition is denoted by Par(·; s, ξh, ξw), where size of the local
window is s and shift of the whole window partition is (ξh, ξw) (see Figure 2). With these notations,
the shifted window transformer can be reformulated as:

zl = SA(Par(xl−1; s, 0, 0)) + xl−1,

xl = MLP(zl) + zl,

zl+1 = SA(Par(xl; s,
s

2
,
s

2
)) + xl,

xl+1 = MLP(zl+1) + zl+1,

(1)

where zl and xl denote the output feature of SA and MLP for layer l, respectively. To keep notation
uncluttered, we overlook layer normalization in Equation (1). We figure out that all the window
partitions are equally informative and preserving only one configuration each layer will lead to the
broken translation invariance and tremendous loss of locality. The thought of informative equality
among all the window partitions leads us to the stochastic window transformer, which is computed
as:

zl = SA(Par(xl−1; s, ξ
l
h, ξ

l
w)) + xl−1, (ξlh, ξ

l
w) ∼ U(ℜs),

xl = MLP(zl) + zl,
(2)

where the set ℜs contains all possible shifts and U(·) denotes the uniform distribution. Given the
periodicity of the window partition, ℜs can be simplified as

ℜs := [0, . . . , s− 1]× [0, . . . , s− 1], (3)

where × means the Cartesian product. During training, (ξlh, ξ
l
w) are treated as i.i.d. random variables

and sampled from the uniform distribution U(ℜs). Suppose the total number of SA layer is N ,
stochastic shifts from different layers {(ξlh, ξlw)}

N−1
l=0 are deliberately designed to be independent

so that faithful locality and translation invariance can be ensured on layer level. By this treatment,
despite all possible shifts are taken into account for each individual layer, single forward propagation
only requires a set of sampled shifts {(ξlh, ξlw)}

N−1
l=0 so that the stochastic window transformer can

be trained efficiently. For testing, from Bayesian perspective, stochastic shifts should be averaged
according to their posterior distribution. Hence, the exact inference procedure is:

F (x)test =
∑

ξ0h,ξ
0
w,...,ξN−1

h ,ξN−1
w

F (x; ξ0h, ξ
0
w, . . . , ξ

N−1
h , ξN−1

w )U(ξ0h, ξ0w, . . . , ξ
N−1
h , ξN−1

w )

=
∑

(ξN−1
h ,ξN−1

w )

· · ·
∑

(ξ0h,ξ
0
w)

F (x; ξ0h, ξ
0
w, . . . , ξ

N−1
h , ξN−1

w )U(ξ0h, ξ0w) · · ·U(ξN−1
h , ξN−1

w ),

(4)

where F (·) denotes the function of the overall transformer and U is the uniform distribution. The
derivation of Equation (4) follows {(ξlh, ξlw)}

N−1
l=0 are independent. Apparently, according to Equation

(4), the single exact inference requires forward propagation exponential times so that the compu-
tational overhead of exact inference grows exponentially with the depth N , which is prohibitively
expensive. Consequently, we turn to seek an approximate inference, which should also guarantee
the translation invariance and intact locality, to replace the costly exact inference. Inspired by the
approximation in Dropout [46], we propose the general layer expectation propagation algorithm to
approach the original exact inference process. The layer expectation propagation is formulated as:

ztestl =
∑

(ξlh,ξ
l
w)

SA(Par(xtest
l−1; s, ξ

l
h, ξ

l
w))U(ξlh, ξlw) + xtest

l−1

= E
(ξlh,ξ

l
w)∼U

[
SA(Par(xtest

l−1; s, ξ
l
h, ξ

l
w))

]
+ xtest

l−1,

xtest
l = MLP(ztestl ) + ztestl .

(5)
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Figure 3: (a) The overall architecture of Stoformer††; (b) the structure of Stoformer†† block. StoWin-
MSA is multi-head self-attention with stochastic window partition.

According to Equation (5), the single approximate inference merely requires one forward propaga-
tion of the expected signal, which accelerates inference considerably. We then examine whether
the stochastic window strategy is able to keep the translation invariance and model intact local
relationships.

Translation Invariance. During training, the stochastic window strategy treats arbitrarily shifted
window equally and eliminates the particularity of certain windows introduced by the fixed window
partition (blue windows in Figure 1(b)). Therefore, the stochastic window strategy can maintain
the translation invariance during training. For testing, by the layer expectation propagation, each
individual token is able to aggregate information from its neighbor space with shared weights like
CNNs. Consequently, the translation invariance can also be well maintained. We also provide
experimental evidence to support the translation invariance in Section 4.2.

Locality. We have argued that the fixed window partition will lead to huge loss of local relationships
since the majority of equally informative window partitions are simply discarded. As shown in Figure
1(b), there exists some token pairs whose distance is small enough but they are not present in the
same local window, which results in tremendous loss of locality. In contrast, with the stochastic
window strategy, the window partition is randomly shifted, which will guarantee that any token pair
will attend in the same window as long as their distance is smaller than the window size s. As shown
in Figure 1(c), the stochastic window strategy can capture intact local relationships when the radius
of neighbor space is not larger than window size while the fixed window partition suffers from severe
loss of local relationships. For testing, the proposed layer expectation propagation also considers all
the shifted window partitions so that intact locality can be ensured as well.

Implicit Model Ensemble. Compared with the typical fixed window strategy (in particular, the
shifted window strategy), we can observe significant performance improvements from extensive
experiments. In addition to the explanation from the compensation of the lost local information and
the broken translation invariance, another explanation for performance improvements is that training
with the stochastic window can be seen as training an ensemble of the fixed window transformer
implicitly [18]. Each self-attention layer contains w2 window partition, which results in w2N possible
network combinations. For each training mini-batch, one of the w2N networks is sampled and
then updated. For testing phase, all the networks are implicitly integrated using the proposed layer
expectation propagation.

3.2 Network Architecture

The proposed stochastic window transformer provides an effective and efficient way to integrate
the well-acknowledged priors, i.e., locality and translation invariance, into transformer. For image
restoration tasks which require pixel-level regression, faithfully exploiting these priors is especially
important. To validate the effectiveness of the proposed stochastic window strategy, we integrate it
with the widely-used U-shaped architecture [44, 21]. The resulting transformer, named Stoformer††,
not only enjoys the intrinsically strong representation ability of Transformer but also maintains the
ideal translation invariance and intact local relationships. Figure 3 illustrates the overall architecture.
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(a) Input (b) Fixed window strategy (c) VDN (d) Stochastic window strategy

Figure 4: Toy Experiment. The stochastic window strategy (d) helps to remedy the broken translation
invariance caused by the fixed window partition (b).

3.3 Implementation Details

Loss Function. The loss function adopted for training is the Charbonnier loss [1], whose mathematical
expression is:

L(I ′, I) =
√

||I ′ − I||2 + ϵ2, (6)

where I ′ and I are the restored and ground-truth image respectively. The constant ϵ is empirically set
to 10−3.

Training Detail. Stoformer†† employs a four-level encoder-decoder structure. The numbers of
StoBlock are {1, 2, 8, 8} for level-1 to level-4 of Encoder and the blocks for Decoder are mirrored.
The number of channel is set to 32 and the window size is 8× 8. We train the network with Adam
optimizer (β1 = 0.9, β2 = 0.999) with the initial learning rate 3 × 10−4 gradually reduced to
1× 10−6 with the cosine annealing. The training samples are augmented by the horizontal flipping
and rotation of 90◦, 180◦, or 270◦. Please refer to the supplemental material for task-specific settings.

4 Experiments

4.1 Experimental Setup

In this section, we validate the effectiveness of the stochastic window strategy. Except the previous
state-of-the-art methods are included for comparisons, we also elaborate four Stoformer variants:
Stoformer♢♢, Stoformer†♢, Stoformer♢†, Stoformer††. The first symbol aims to indicate whether
the stochastic window is adopted for training(†: the stochastic window; ♢: the fixed window) and the
second symbol represents whether the layer expectation propagation is adopted for testing(†: layer
expectation propagation; ♢: the fixed window). In all experiments, we use the shifted window to
specify the fixed window (Equation (1)). These variants are identical except for the aforementioned
window strategy. In particular, Stoformer♢♢ is reduced to the traditional fixed window transformer
and Stoformer†† is the proposed stochastic window transformer.

4.2 Toy Experiment

To illustrate the broken translation invariance of the fixed window strategy and the remedy of our
proposed stochastic window strategy to this effect, a toy experiment is performed: we add a Gaussian
noise patch with σ = 50 whose spatial size is 64 × 64 to an 8-bit pure color image with spatial
size 256 × 256, the pixel value of which is constantly set to the medium value 127. We move the
Gaussian noise patch with stride 1 and obtain total 192 × 192 = 36864 noisy images. Then we
denoise these noisy images using the fixed and stochastic window transformer, respectively and
the PSNR distributions with respect to (ξh, ξw) are normalized to the fixed range [0, 1] and plotted
in Figure 4. To further highlight the translation invariance of stochastic window transformer, we
also include a typical CNNs-based denoiser VDN [60], which can ensure the translation invariance
well due to inherent structure of CNNs, as the inference. Figure 4 indicates clearly that there are
great variations, especially for the interior, in the PSNR distribution of fixed window transformer
while stochastic window transformer flattens the distribution significantly. Both stochastic window
transformer and VDN contain the relatively uniform distribution for the interior, which indicates
that the stochastic window strategy helps to maintain the desired translation invariance quite well.
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Figure 5: Visual comparison of image deblurring on the GoPro.

It is worth noting that all these distributions have variations on the image boundary, which can be
attributed to the difference of the contexts of the image boundary.

4.3 Experiments on Image Deraining

Table 1: Quantitative results of image
deraining on the SPA-Data.

Method SPA-Data
PSNR SSIM

GMM [31] 34.30 0.9428
DDN [13] 36.97 0.9604
SPANet [51] 40.24 0.9811
JORDER-E [58] 40.78 0.9811
RCDNet [50] 41.47 0.9834
SPAR [40] 44.10 0.9872
Uformer [54] 47.84 0.9925
Stoformer♢♢ 47.80 0.9925
Stoformer♢† 46.95 0.9917
Stoformer†♢ 48.85 0.9935
Stoformer†† 48.97 0.9938

Table 2: Quantitative results of image deblurring. Sto-
formers are trained only on GoPro dataset.

Method GoPro HIDE
PSNR SSIM PSNR SSIM

Nah et al. [39] 29.08 0.914 25.73 0.874
DeblurGAN [23] 28.70 0.858 24.51 0.871
DeblurGAN-v2 [24] 29.55 0.934 26.61 0.875
DBGAN [69] 31.10 0.942 28.94 0.915
IPT [2] 32.52 - - -
MPRNet [62] 32.66 0.959 30.96 0.939
SPAIR [40] 32.06 0.953 30.29 0.931
Stoformer♢♢ 32.80 0.959 30.73 0.937
Stoformer♢† 31.62 0.950 29.94 0.928
Stoformer†♢ 33.17 0.963 30.91 0.940
Stoformer†† 33.24 0.964 30.99 0.941

We validate the stochastic window strategy on image deraining task. Specifically, except the elaborate
four Stoformer variants, existing seven deraining methods are included: GMM [31], DDN [13],
SPANet [51], JORDER-E [58], RCDNet [50], SPAIR [40], Uformer [54]. All these methods are
evaluated on SPA-Data [51] and the performance comparison is shown in Table 1. Due to the limited
space, visualization of image deraining is included in the supplement material.

4.4 Experiments on Image Denoising

We conduct denoising experiments on the additive white Gaussian Noise benchmark datasets, which
include Set12 [66], BSD68 [37], Urban100 [19], Kodak24 [12] and McMaster [71]. Following
previous works [66, 60, 67], a single model is trained to tackle with various noise levels. Tables 3
and 4 report PSNR scores of existing methods as well as Stoformer variants for color and grayscale
image denoising, respectively. The supplemental material contains visualization of image denoising.

4.5 Experiments on Image Deblurring

We also perform deblurring experiments on the benchmark datasets (GoPro [39] and HIDE [45]).
The model is trained only on the GoPro dataset and directly evaluated on the HIDE. Table 2 presents
PSNR and SSIM scores of different deblurring methods and Stoformers. Figure 5 presents an image
deblurring example from GoPro [39]. More visual results are provided in the supplemental material.

Remark. From above experiments on various image restoration tasks, we can make the following
observations and analyses:
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Table 3: Gaussian color image denoising. A single model is learned for various noise levels.
Method CBSD68 Kodak24 McMaster Urban100

σ = 15 σ = 25 σ = 50 σ = 15 σ = 25 σ = 50 σ = 15 σ = 25 σ = 50 σ = 15 σ = 25 σ = 50
IRCNN [67] 33.86 31.16 27.86 34.69 32.18 28.93 34.58 32.18 28.91 33.78 31.20 27.70
FFDNet [68] 33.87 31.21 27.96 34.63 32.13 28.98 34.66 32.35 29.18 33.83 31.40 28.05
DnCNN [66] 33.90 31.24 27.95 34.60 32.14 28.95 33.45 31.52 28.62 32.98 30.81 27.59
VDN [60] 33.90 31.35 28.19 - - - - - - - - -
FuncNet [36] 34.28 - - 35.25 - - - - - - - -
DRUNet [70] 34.30 31.69 28.51 35.31 32.89 29.86 35.40 33.14 30.08 34.81 32.60 29.61
Restormer [63] 34.39 31.78 28.59 35.44 33.02 30.00 35.55 33.31 30.29 35.06 32.91 30.02
Stoformer♢♢ 34.34 31.73 28.52 35.32 32.91 29.83 35.53 33.35 30.34 35.04 32.83 29.66
Stoformer♢† 34.30 31.73 28.50 35.22 32.90 29.80 35.40 33.22 30.18 35.00 32.78 29.61
Stoformer†♢ 35.10 32.40 29.13 35.50 33.08 30.00 36.00 33.83 30.80 35.37 33.14 30.00
Stoformer†† 35.13 32.47 29.16 35.53 33.12 30.03 36.03 33.86 30.84 35.42 33.19 30.06

Table 4: Gaussian grayscale image denoising. A single model is learned for various noise levels.

Method BSD68 Urban100 Set12
σ = 15 σ = 25 σ = 50 σ = 15 σ = 25 σ = 50 σ = 15 σ = 25 σ = 50

DnCNN [66] 31.62 29.16 26.23 32.28 29.80 26.35 32.67 30.35 27.18
FFDNet [68] 31.63 29.19 26.29 32.40 29.90 26.50 32.75 30.43 27.32
IRCNN [67] 31.63 29.15 26.19 32.46 29.80 26.22 32.76 30.37 27.12
DRUNet [70] 31.91 29.48 26.59 33.44 31.11 27.96 33.25 30.94 27.90
Restormer [63] 31.95 29.51 26.62 33.67 31.39 28.33 33.35 31.04 28.01
Stoformer♢♢ 31.94 29.51 26.62 33.60 31.38 27.90 33.26 31.02 27.96
Stoformer♢† 31.89 29.46 26.59 33.48 31.09 27.85 33.18 30.96 27.92
Stoformer†♢ 32.57 30.06 27.03 34.19 31.84 28.58 33.83 31.51 28.40
Stoformer†† 32.57 30.06 27.07 34.24 31.92 28.72 33.85 31.53 28.46

• Stoformer♢♢ vs. Stoformer♢†: Without the stochastic window strategy for training, directly
applying the layer expectation propagation will degrade performance dramatically, which
reveals that the performance gain cannot simply attribute to feature ensemble at test time
and the stochastic window for training matters.

• Stoformer♢♢ vs. Stoformer†♢: Even without the layer expectation propagation algorithm
for testing, the stochastic window partition for training alone is also conductive to boost per-
formance. This is reasonable since a large amount of local information lost by Stoformer♢♢
is re-exploited by Stoformer†♢.

• Stoformer†† vs. Others: Equipped with the stochastic window for training and layer expec-
tation propagation for testing (Stoformer††), the model achieves the highest performance.

4.6 Analytic Experiments

Complexity Analysis. We provide a detailed analysis about the time and space complexity of the
stochastic window strategy based on a single attention layer. Specifically, we compare our stochastic
window strategy with fixed and sliding window strategy for training and testing, respectively. For
training, our strategy is as efficient as the fixed window for both speed and memory cost, as shown
in Table 5. But the fixed window loses translation invariance and locality. The sliding window can
fulfill the translation invariance and locality while suffer from huge memory burden, which often
incurs OOM. In contrast, the stochastic window enjoys efficient training while maintains translation
invariance and locality. For testing, as shown in Table 6, the fixed window can inference efficiently
but suffer from the broken translation invariance and locality loss. Compared with the sliding window,
our stochastic window strategy requires more computations but less memory cost.

Table 5: Time and space complexity for training. B: batch size, (H,W,C): feature size, s: local
window size, h: number of heads.

Strategy Time Complexity Space Complexity Trans. Inva. & Locality
Fixed window Θ(BHWCs2 +BHWC2) Θ(BHWC +BHWhs2) %

Sliding window Θ(BHWCs2 +BHWC2) Θ(BHWCs2 +BHWhs2) !

Stochastic window Θ(BHWCs2 +BHWC2) Θ(BHWC +BHWhs2) !

8



Table 6: Time and space complexity for testing. B: batch size, (H,W,C): feature size, s: local
window size, h: number of heads.

Strategy Time Complexity Space Complexity Trans. Inva. & Locality
Fixed window Θ(BHWCs2 +BHWC2) Θ(BHWC +BHWhs2) %

Sliding window Θ(BHWCs2 +BHWC2) Θ(BHWCs2 +BHWhs2) !

Stochastic window Θ(BHWCs4 +BHWC2) Θ(BHWC +BHWhs2) !

Eliminating Blocking Artifacts. Since the fixed window strategy implies infinite preference towards
specific window partition, the learned feature map will consequently contain annoying blocking
artifacts. In contrast, the proposed stochastic window strategy treats all window partitions equally,
facilitating to keep translation invariance and model locality. Therefore, the blocking artifacts
should be significantly eliminated by the stochastic window strategy. Figure 6 provides experimental
evidence to support our inference. Specifically, the learned feature map by the fixed window strategy
(Figure 6(b)) contains obvious blocking artifacts while the stochastic window strategy (Figure 6(c))
can remove these side effects as expected. It is surprising that with the stochastic window strategy,
the feature is divided into non-overlapping local windows for further processing but in turn nearly no
blocking artifacts are preserved. Please refer to the supplemental material for more visualization.

(a) Input (b) Fixed window strategy (c) Stochastic window strategy

Figure 6: The stochastic window strategy can eliminate the blocking artifacts.

Trade-off in Layer Expectation Propagation. Although the layer expectation propagation accel-
erates inference significantly, the strict conduction still requires to take average of s × s features
yielded by self-attention. Here, we investigate the influence of the number of averaged features to
model performance. Figure 7 shows the trend of model performance and FLOPs of testing 3 on a
256× 256 image with respect to the number of averaged features each layer. Figure 7 reveals that
PSNR first rises rapidly and then tends to saturate with the increasing of the averaged feature number
while FLOPs increases linearly with that number, which provides a promising trade-off between
performance and FLOPs. For instance, we can decrease the averaged feature number from 64 to 8 to
keep relatively high performance and efficient inference as well.

Boosting Model Generalization. Figure 8 presents the loss curve on SPA-Data during training and
the PSNR curve on the test set is plotted in Figure 9. Compared with the fixed window strategy, our
proposed stochastic window strategy attains higher PSNR on the test set with similar training error,
which demonstrates that the stochastic window strategy boosts model generalization. This can be
anticipated since the stochastic window strategy can exploit complete local relationships, which are
discarded by the fixed window strategy.

5 Limitation and Discussion

In this work, we propose the stochastic window strategy and extensive experiments validate the
effectiveness on several image restoration tasks, including image deraining, denoising and deblurring.
Our experiments are mainly based on the widely-used U-shaped architecture. We will further validate
the stochastic strategy on more architectures (e.g., isotropic and multi-stage architecture). Indeed, the
performing improvements can be positively anticipated due to the desired translation invariance and

3Note that the transformer with the stochastic window strategy can be trained as efficiently as the fixed
window strategy.
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Figure 7: Trade-off between per-
formance and FLOPs of testing.

Figure 8: Training loss on the
training set of SPA-Data.

Figure 9: PSNR score on the test
set of SPA-Data.

locality. Since the importance of translation invariance and locality is quite general, we also plan
to extend the stochastic window strategy based transformer to more low-level vision tasks, such as
image super-resolution, JPEG deblocking, and video restoration. Local attention based transformers,
e.g., Swin Transformer [33], have achieved remarkable success on several CV tasks, including image
classification, dense prediction, and semantic segmentation. However, they also compute attention
based on specific local windows and cannot treat all the local windows fairly. The consequences are
that unexpectable information loss occurs during feature processing and the translation invariance is
also absent. Our proposed stochastic window strategy can provide an effective mechanism towards
this problem. Therefore, it is also promising to extend the strategy to other tasks where local attention
based transformers have exhibited competitive performance.

6 Conclusion

In this paper, we analyze the deficiencies of existing transformers for image restoration. We figure
out that the fixed window strategy will inevitably lead to the broken translation invariance and loss of
locality. To tackle with these issues, the novel stochastic window strategy is proposed. Specifically,
we utilize the window partition with stochastic shift to replace the fixed window partition for training,
which can ensure the translation invariance and intact locality. For testing, we propose the efficient
layer expectation propagation to approximately take expectation of the introduced stochastic shift.
Based on this strategy, we conduct extensive comparison experiments on various image restoration
tasks to validate the effectiveness of the proposed stochastic window strategy.

Broader Impacts

Nowadays, image acquisition system inevitably suffers from various degradation, ranging from
inherent noise of capturing instruments, the shaking during shooting, to unpredictable weather
condition. Hence, image restoration itself has important value of research and application. Our
proposed stochastic window strategy can make transformer more sophisticated in restoring degraded
images. However, from a societal point of view, negative consequences may also come along. For
example, the deviation from the actual image textures caused by image restoration technology may
affect fair judgment in medical and criminal situations. In these cases, it is necessary to combine
expert knowledge to make rational decisions.
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