
A Theory

We consider an attack, which has an additive structure:

xa = xr + ε, (12)
such that ∥ε∥ ≤ δ, (13)

where δ is a radius of the attack.

In the vanilla VAE setup we will get the latent code by sampling from qϕ(z|x). With our approach,
instead, we get a sample from the following distribution:

q(t)(z|x) =
∫

Q(t)(z|z0)qϕ(z0|x)dz0, (14)

where Q(t)(z|z0) is a transition kernel of MCMC with the target distribution π(z) = pθ(z|x) ∝
pθ(x|z)p(z).

Lemma 1 Consider true posterior distributions of the latent code z for a data point x and its
corrupted version xa. Assume also that ln pθ(z|x) is twice differentiable over x with continuous
derivatives at the neighbourhood around x = xr. Then the KL-divergence between these two
posteriors could be expressed using the small o notation of the radius of the attack, namely:

DKL [pθ(z|xr)∥pθ(z|xa)] = o(∥ε∥). (15)

Proof
Let us use definition of the KL-divergence:

DKL [pθ(z|xr)∥pθ(z|xa)] = Epθ(z|xr) ln
pθ(z|xr)
pθ(z|xa)

(16)

Let us introduce ln pθ(z|x) = g(x, z). Assume that this function is differentiable at x = xr. Then,
we can apply Taylor expansion to g(x, z) in the point xr which yields:

g(x, z) = g(xr, z) + (x− xr)T∇xg(x, z)
∣∣∣
xr

+R1(x,x
r). (17)

The remainder term in the Lagrange form can be written as

R1(x,x
r) = 1

2 (x− xr)T∇2
xxg(x+ θ(x− xr), z)(x− xr), θ ∈ (0, 1) (18)

Under the assumption that g is twice differentiable with the continuous derivatives on the segment
around x = xr the remainder term asymptotically converges to zero with x→ xr.

R1(x,x
r) = o(∥x− xr∥). (19)

Then, the log-ratio of two distributions is the following:

ln
pθ(z|xr)
pθ(z|xa)

= g(xr, z)− g(xa, z) (20)

= g(xr, z)−
(
g(xr, z) + (xa − xr)T∇xg(x, z)

∣∣∣
xr

+ o(∥xa − xr∥)
)
. (21)

= −εT∇xg(x, z)
∣∣∣
xr

+ o(∥ε∥). (22)

Notice that εT∇xg(x, z)
∣∣∣
xr

is the dot product between ε and∇xg(x, z)
∣∣∣
xr

, i.e., εT∇xg(x, z)
∣∣∣
xr

=

⟨ε,∇xg(x, z)
∣∣∣
xr
⟩.

We can now plug this into the KL-divergence definition (16):

DKL [pθ(z|xr)∥pθ(z|xa)] = Epθ(z|xr)

[
−⟨ε,∇x ln pθ(z|x)

∣∣∣
xr
⟩+ o(∥ε∥)

]
(23)

= −⟨ε,Epθ(z|xr)∇x ln pθ(z|x)
∣∣∣
xr︸ ︷︷ ︸

A(xr)

⟩+ o(∥ε∥) (24)
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Note that for (24) to hold we need to make sure that EzR1 = o(∥ε∥). As follows from (18), this
requirement is satisfied if Ez∇2

xxg(x+ θ(x− xr), z) is bounded around x = xr.

Let us take a closer to look at the term A(xr) in the equation above:

A(xr) = Epθ(z|xr)∇x ln pθ(z|x)
∣∣∣
xr

(25)

= Epθ(z|xr)∇x ln
pθ(x|z)p(z)

pθ(x)

∣∣∣
xr

(26)

= Epθ(z|xr)∇x ln pθ(x|z)
∣∣∣
xr
− Epθ(z|xr)∇x ln pθ(x)

∣∣∣
xr

(27)

=

∫
pθ(z|xr)

∇xpθ(x|z)
∣∣∣
xr

pθ(xr|z)
dz−

∫
pθ(z|xr)

∇xpθ(x)
∣∣∣
xr

pθ(xr)
dz (28)

=

∫
pθ(z)

pθ(xr)
∇xpθ(x|z)

∣∣∣
xr
dz−

∇xpθ(x)
∣∣∣
xr

pθ(xr)

∫
pθ(z|xr)dz

︸ ︷︷ ︸
=1

(29)

=
1

pθ(xr)

[∫
p(z)∇xpθ(x|z)

∣∣∣
xr
dz−∇xpθ(x)

∣∣∣
xr

]
(30)

=
1

pθ(xr)

[
Ep(z)∇xpθ(x|z)

∣∣∣
xr
−∇xEp(z)pθ(x|z)

∣∣∣
xr

]
(31)

=
1

pθ(xr)

[
Ep(z)∇xpθ(x|z)

∣∣∣
xr
− Ep(z)∇xpθ(x|z)

∣∣∣
xr

]

︸ ︷︷ ︸
=0

= 0. (32)

where we use Bayes rule in 26, 29, log-derivative trick in 28.

We have shown that A(xr) = 0, therefore, from equation 24 we have:

DKL [pθ(z|xr)∥pθ(z|xa)] = −⟨ε,A(xr)⟩+ o(∥ε∥) = o(∥ε∥). (33)

■

Lemma 2 The Total Variation distance (TV) between the variational posterior with MCMC for a
given corrupted point xa, q(t)(z|xa), and the variational posterior for a given data point xr, qϕ(z|xr),
can be upper bounded by the sum of the following three components:

TV
[
q(t)(z|xa), qϕ(z|xr)

]
≤ TV

[
q(t)(z|xa), pθ(z|xa)

]
(34)

+
√

1
2DKL [pθ(z|xr)∥pθ(z|xa)] (35)

+
√

1
2DKL [qϕ(z|xr)∥pθ(z|xr)]. (36)

Proof
Total variation is a proper distance, thus, the triangular inequality holds for it. For the proof, we apply
the triangular inequality twice. First, we use the triangle inequality for TV

[
q(t)(z|xa), qϕ(z|xr)

]
,

namely:

TV
[
q(t)(z|xa), qϕ(z|xr)

]
≤ TV

[
q(t)(z|xa), pθ(z|xr)

]
+TV [pθ(z|xr), qϕ(z|xr)]. (37)

Second, we utilize the triangle inequality for TV
[
q(t)(z|xa), pθ(z|xr)

]
, that is:

TV
[
q(t)(z|xa), pθ(z|xr)

]
≤ TV

[
q(t)(z|xa), pθ(z|xa)

]
+TV [pθ(z|xa), pθ(z|xr)]. (38)

Combining the two gives us the following upper bound on the initial total variation:
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TV
[
q(t)(z|xa), qϕ(z|xr)

]
≤ TV

[
q(t)(z|xa), pθ(z|xa)

]
(39)

+TV [pθ(z|xa), pθ(z|xr)] (40)
+TV [pθ(z|xr), qϕ(z|xr)] (41)

Moreover, the Total Variation distance is a lower bound of the KL-divergence (by Pinsker inequality):

TV [p(x), q(x)] ≤
√

1
2DKL [p(x)∥q(x)]. (42)

Applying Pinsker inequality to 40 and 41 yields:

TV
[
q(t)(z|xa), qϕ(z|xr)

]
≤ TV

[
q(t)(z|xa), pθ(z|xa)

]
(43)

+
√

1
2DKL [pθ(z|xr)∥pθ(z|xa)] (44)

+
√

1
2DKL [qϕ(z|xr)∥pθ(z|xr)]. (45)

■

Theorem 1 The upper bound on the total variation distance between samples from MCMC for a
given corrupted point xa, q(t)(z|xa), and the variational posterior for the given real point x, qϕ(z|x),
is the following:

TV
[
q(t)(z|xa), qϕ(z|xr)

]
≤ TV

[
q(t)(z|xa), pθ(z|xa)

]
+

√
1
2DKL [qϕ(z|xr)∥pθ(z|xr)] + o(

√
∥ε∥).

(46)

Proof
Combining Lemma 1 and 2 we get:

TV
[
q(t)(z|xa), qϕ(z|xr)

]
≤︸︷︷︸

Lemma 2

TV
[
q(t)(z|xa), pθ(z|xa)

]
(47)

+
√

1
2DKL [pθ(z|xr)∥pθ(z|xa)] (48)

+
√

1
2DKL [qϕ(z|xr)∥pθ(z|xr)] (49)

=︸︷︷︸
Lemma 1

TV
[
q(t)(z|xa), pθ(z|xa)

]
(50)

+
√

1
2o(∥ε∥) (51)

+
√

1
2DKL [qϕ(z|xr)∥pθ(z|xr)]. (52)

Note that
√

1
2o(∥ε∥) = o(

√
∥ε∥) that gives us the final expression:

TV
[
q(t)(z|xa), qϕ(z|xr)

]
≤ TV

[
q(t)(z|xa), pθ(z|xa)

]
+

√
1
2DKL [qϕ(z|xr)∥pθ(z|xr)] + o(

√
∥ε∥).

(53)

■
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B Background on MCMC

B.1 Sampling from an unnormalized density with MCMC

Markov Chain Monte Carlo (MCMC) is a class of methods that are used to obtain samples from
the density p(v) (also referred to as target), which is only known up to a normalizing constant.
That is, we have access to p̃(v), such that p(v) = p̃(v)

Z and Z is a typically unknown and hard to
estimate normalizing constant. Thus, we construct a Markov Chain with samples {v(t)}Tt=1 so that
they mimic the samples from p(v). To ensure they are proper samples, the stationary distribution of
the constructed Markov Chain should be the target distribution p(v).

The most popular way of constructing such Markov Chains is the Metropolis-Hastings (MH) method.
The majority of the MCMC methods used in practice can be formulated as a special case of the MH
[2]. In the MH method, we introduce a proposal distribution q(vt+1|vt) to obtain a new sample and
then accept it with the following probability:

A(vt,vt+1) = min{1, p(vt)q(vt+1|vt)
p(vt+1)q(vt|vt+1)}. (54)

If the point is not accepted, we reuse the previous point, i.e., vt+1 = vt. It can be proven that the
resulting chain of correlated samples converges in the distribution to the target density [2].

It is worth mentioning that the performance of the method strongly depends on the choice of the
proposal distribution. In higher dimensional spaces, it is especially important to incorporate the
information about the geometry of the target distribution into the proposal density to improve the
convergence time. The Hamiltonian Monte-Carlo (HMC) [31] is known to be one of the most efficient
MCMC methods. It uses gradient of a target distribution in the proposal to incorporate the information
about the geometry of the space.

The idea of the HMC is to introduce an auxiliary variable p with a known density (usually assumed
to be the standard Gaussian) and the joint distribution formulated as follows:

p(v,p) =
1

Z
exp(−U(v)) exp(−K(p)), (55)

with:

K(p) = −1

2
pTp, (56)

U(v) = − log p̃(v). (57)

We obtain samples (v,p) using the Hamiltonian dynamics [31] that describes how the v and p
change over time for the given Hamiltonian H(v,p) = U(v) +K(p), namely:

v̇ =
∂H

∂p
, (58)

ṗ = −∂H

∂v
. (59)

For the practical implementation, these continuous-time equations are approximated by discretizing
the time using L small steps of size η. The discretization method that is often used is called the
leapfrog.

B.2 The MCMC and Variational Autoencoders

In this paper, we use the MCMC to sample from the posterior distribution pθ(z|xa). That is, in our
case v = z and p̃(v) = pθ(x

a|z)p(z). The HMC is a widely applied method to sampling from
an unknown posterior distribution in deep learning (e.g. [24]). A lot of effort was already done in
combining variational inference with MCMC (and more specifically with HMC). Hamiltonian Varia-
tional Inference [36, 43] was proposed in order to obtain a more flexible variational approximation.
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Different approaches were proposed to use HMC during VAE training. [23] approximate the gradients
of the likelihood and avoid the use of variational approximation. [11] propose an unbiased estimate
for the ELBO gradient, which allows training Hamiltonian Variational Autoencoder. [35] propose an
alternative objective, which uses a contrastive divergence instead of standard KL-divergence.

In this work we are not changing the training procedure, instead, we propose to only use HMC during
evaluation.

A possible extension to discrete latent spaces Some VAEs operate on discrete latent spaces, a
very popular example would be a VQ-VAE [40]. However, the classical HMC that we use in our
experiments is not able to sample from a discrete distribution. Therefore, other MCMC methods
should be used in this case, such as population-based MCMC [4], modifications of HMC[32] or
Langevin Dynamics [45].

B.3 Mode optimization

In this work we hypothesise that adversarial attacks move latent codes to the region of low probability
and we use HMC to get a sample from the high posterior probability region. However, another
strategy can be to find the posterior mode instead. Here we explain, what was our motivation to not
use this approach.

Posterior modes similarity Ideally, we would like to obtain a sample from the variational posterior
qϕ(z|xr), because our decoder was trained to produce reconstructions from such latent codes. At the
same time, VAE was trained to match this variational posterior to the true one pθ(z|xr). However,
both these distributions are not available to us, since we observe attacked point xa instead of the
reference xr.

Instead, we sample from pθ(z|xa) and show theoretically that the resulting samples are close (in
terms of total variation distance) to the "goal" ones. However, that does guarantee that their modes
are the same. Therefore, obtaining the mode of pθ(z|xa) is not necessarily a mode of qϕ(z|xr). Thus,
the fact that the HMC allows us to “wander” around that mode may be beneficial.

Concentration of measure During reconstruction, we get a sample from q(z|x) and pass it to the
decoder, thus, a mode can actually be a bad latent code for these purposes. Instead, ideally, we want
to get a sample from the typical set where most of the probability mass is concentrated. In theory, the
HMC allows us to do that.

Randomness The HMC adds a source of randomness to our defence strategy that potentially makes
it harder to attack. This is supported by our experiment in Section 4.4
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C Additional results

C.1 Posterior ratio

We motivate our method by the hypothesis that the adversarial attack "shifts" a latent code to the
region of a lower posterior density, while our approach moves it back to a high posterior probability
region. In Section 3 we theoretically justify our hypothesis, while here we provide an additional
empirical evidence.

In order to verify our claim that applying an MCMC method allows us to counteract attacks by
moving a latent code from a region of a lower posterior probability mass to a region of a higher
density, we propose to quantify this effect by measuring the ratio of posteriors for z1 and z2. The
true posterior p(z|xr) is not available due to the cumbersome marginal distribution p(xr), however,
we can calculate the ratio of posteriors because the marginal will cancel out, namely:

PR(z1, z2) =
pθ(z1|xr)
pθ(z2|xr) (60)

= pθ(x
r|z1)p(z1)

pθ(xr|z2)p(z2)
. (61)

In our case, we are interested in calculating the posterior ratio between the reference and adversarial
latent codes (z1 = zr, z2 = za) as the baseline, and the posterior ratio between the reference and
adversarial code after applying the HMC (z1 = zr , z2 = zaHMC). The lower the posterior ratio,
the better. For practical reasons, we use the logarithm of the posterior ratio (the logarithm does not
change the monotonicity and turns products to sums):

log PR(z1, z2) = log pθ(x
r|z1) + log p(z1)− log pθ(x

r|z2)− log p(z2). (62)

We present results on the log-posterior-ratio calculated on the MNIST dataset. In Figure 7 we show a
plot with two histograms: one with the posterior ratio between the reference and adversarial latent
codes (z1 = zr, z2 = za) in blue, and the second histogram of the posterior ratio between the
reference and adversarial code after applying the HMC (z1 = zr , z2 = zaHMC) in orange.

We observe that the histogram has moved to the left after applying the HMC. This indicates that
posterior of the adversarial (in the denominator) is increasing when the HMC is used. This is precisely
the effect we hoped for and this result provides an empirical evidence in favor of our hypothesis.

100 200
0

20

40

60 logPR(zr, za)

logPR(zr, zaHMC)

Figure 7: Histograms of the log posterior ratios without HMC (blue) and with HMC (orange)
evaluated on MNIST dataset.

Experimental Details For this experiment we construct 500 adversarial attacks with the radius
0.1 on the encoder of the VAE trained on MNIST dataset. We run 500 HMC steps with the same
hyperparameters as mentioned in Table 8 to obtain zaHMC .

Statistical Analisys We performed a two-sample Kolmagorov-Smirnov test with the null hypothesis
that two histograms are drawn from the same distribution. As an alternative hypothesis is that the
underlying distributions are different. Choosing the confidence level of 95% results in the rejection
of the null hypothesis (p-value is equal to 0.029) in favour of the alternative: two histograms were
not drawn from the same distribution.
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C.2 Detailed results for β-VAE and β-TCVAE

In this section we report extended results for MNIST, FashionMNIST and ColorMNIST datasets.
We train VAE, β-VAE and β-TCVAE on three datasets: MNIST, FashionMNIST and ColorMNIST.
Then, we compare the robustness to adversarial attack with and without HMC. We present all the
result with the standard error in Table 4. On Figures 8, 9 we show visually how HMC improve the
robustness for each dataset and model.

Table 4: Robustness results on MNIST, Fashion MNIST and Color MNIST datasets. We perform
unsupervised attack with radius 0.1 (top) and 0.2 (bottom). We attack the encoder (left) and the
downstream classification task (right). Higher values correspond to more robust models.

MSSSIM[x̃r, x̃a] ↑ ADVERSARIAL ACCURACY ↑
MNIST FASHION MNIST COLOR MNIST MNIST FASHION MNIST COLOR MNIST

DIGIT COLOR

∥ε
∥ in

f
=

0.
1

VAE 0.70 (0.02) 0.59 (0.03) 0.36 (0.03) 0.08 (0.04) 0.00 (0.01) 0.04 (0.03) 0.06 (0.03)

+ HMC 0.88 (0.01) 0.66 (0.03) 0.96 (0.01) 0.25 (0.03) 0.14 (0.02) 0.16 (0.02) 0.68 (0.03)

β-VAE 0.75 (0.01) 0.52 (0.03) 0.50 (0.04) 0.11 (0.04) 0.00 (0.02) 0.08 (0.04) 0.21 (0.06)

+ HMC 0.84 (0.01) 0.64 (0.03) 0.92 (0.03) 0.30 (0.03) 0.13 (0.02) 0.14 (0.02) 0.66 (0.04)

β-TCVAE 0.70 (0.02) 0.52 (0.03) 0.35 (0.02) 0.05 (0.03) 0.01 (0.01) 0.08 (0.04) 0.06 (0.03)

+ HMC 0.79 (0.02) 0.66 (0.03) 0.96 (0.01) 0.25 (0.04) 0.13 (0.02) 0.22 (0.03) 0.81 (0.02)

∥ε
∥ in

f
=

0.
2 VAE 0.36 (0.03) 0.47 (0.03) 0.19 (0.02) 0.05 (0.03) 0.01 (0.01) 0.02 (0.02) 0.06 (0.03)

+ HMC 0.76 (0.02) 0.54 (0.03) 0.90 (0.01) 0.19 (0.03) 0.13 (0.02) 0.11 (0.02) 0.62 (0.03)

β-VAE 0.50 (0.03) 0.41 (0.03) 0.38 (0.04) 0.01 (0.01) 0.00 (0.01) 0.05 (0.03) 0.18 (0.05)

+ HMC 0.69 (0.03) 0.50 (0.03) 0.87 (0.01) 0.16 (0.03) 0.12 (0.02) 0.15 (0.02) 0.56 (0.04)

β-TCVAE 0.45 (0.03) 0.42 (0.03) 0.20 (0.02) 0.03 (0.02) 0.02 (0.02) 0.05 (0.03) 0.05 (0.03)

+ HMC 0.65 (0.03) 0.52 (0.03) 0.87 (0.01) 0.16 (0.04) 0.11 (0.02) 0.14 (0.02) 0.72 (0.03)
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Figure 8: Improvement of the Reconstruction Similarity after the proposed defence. We fix the attack
radius to be equal to (a) 0.1 and (b) 0.2. Higher values correspond to a more robust representations.
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Figure 9: Improvement of the Adversarial Accuracy after proposed defence. We fix the attack radius
to be equal to (a) 0.1 and (b) 0.2.
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C.3 What if the attacker knows the defence strategy?

In our experiments we relied on the assumption that attack does not take into account the defence
strategy that we use. We believe that it is reasonable, since defence requires access to the decoder
part of the model (pθ(x|z)), which is not necessarily available to the attacker.

However, one may assume that the defence strategy is known to the attacker. In this case, it is
reasonable to verify whether the robustness results change. In the conducted experiment we show
that it is vastly more complicated to attack the encoder with taking the MCMC defence into account.
We train the unsupervised attack (3). The attack has access to the encoder and MCMC defence:

f(x) = q(t)(z|x) =
∫

Q(t)(z|z0)qϕ(z0|x)dz0, (63)

where Q(t)(z|z0) is MCMC kernel.

Then, given the attack radius δ, we train the attack using the following objective:

ε∗ = arg max
∥ε∥inf<δ

∥z̃a − z̃r∥2, (64)

z̃a ∼ q(t)(z|xr + ε), (65)

z̃r ∼ q(t)(z|xr). (66)

The similarity results of these attacks are plotted in Figure 11. We observe that the reconstructed
reference and adversarial points have approximately the same similarity (measured by MSSSIM) as
the initial points xr and xa, which indicates that the attacks were unsuccessful.

However, if we use the same objective, but omit the MCMC step (e.g t = 0 in eq. 65 and 66), then,
as observed in Figure 10, the attack becomes much more successful (Figure 10 (a)), but we can fix it
with the proposed defence (Figure 10 (b)).

It is interesting to compare how the attacked points look in both cases, especially as we increase
the radius of the attack. In Figure 12, we plot attack on two reference points for radius values in
{0.1, 0.6, 0.8, 1.0}. When the attacker does not use MCMC (left), it just learns to add more and more
noise to the image, which eventually makes it meaningless.

When we use MCMC during an attack, the situation is different. The adversarial input is almost
indistinguishable from the reference point for a small radius. After each gradient update, the attacker
runs a new MCMC, which moves point closer to the region of high posterior probability, but may
follow a different trajectory every time. Eventually, it makes it harder to learn an additive perturbation
ε. However, as we increase the attack radius, we observe a very interesting effect. Instead of
meaningless noise, the attacker learns to change the digit. For instance, we see how 4 is transformed
into 0 in the first example and into 9 in the second. This way, the attacker ensures that the MCMC
will move the latent far away from the reference latent code, which now has a different posterior
distribution.
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(a) No defence (b) MCMC defence
Figure 10: Adversarial attack, if attacker does not use MCMC. We report similarity of the reference
and adversarial point before forward pass (blue) and after forward pass (orange).
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Figure 11: Adversarial attack, if attacker uses MCMC. We report similarity of the reference and
adversarial point before forward pass (blue) and after forward pass (orange).
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Figure 12: Examples of adversarial point and their reconstructions, when attacker does not use
MCMC (left) and when attacker uses MCMC(right).
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C.4 Which attack radius should be considered?

In out experiments, we use attacks with the radius 0.1 and 0.2 for all the models except for CelebA
dataset, where radii 0.05 and 0.1 were considered. Here, we provide additional experiment to justify
this choice. In Figure 13 (a) we show the similarity between the reference point and the adversarial
point. We observe that for CelebA the similarity drops faster than for the MNIST. Further, if we look
at the example plotted in Figure 14, we can clearly notice that with the radius 0.2 CelebA image is
already containing a lot of noise. At the same time, we observe (Figure 13 (b)) that reconstruction
similarity, which indicates the success of the attack, drops relatively fast when the radius of the attack
increases.
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(a) Reference and adversarial point similarity (b) Reconstruction similarity

Figure 13: Average images similarity (a) before it is passed to VAE and (b) after image is encoded
and decoded back. We consider unsupervised attack on the encoder with the radiuses ranging from
0.01 to 0.5 for MNIST and CelebA datasets.
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C.5 How many HMC steps are required for a defence?

One of the main hyperparameters of the proposed approach is number of steps of MCMC that the
defender does. We have conducted experiments with MNIST and Color MNSIT dataset to see how
the robustness metrics change when we increase number of HMC steps from 0 to 200. As we can
see from the Figure 15, there is always a considerable jump between 0 steps (no defence) and 100
steps (lowest number of steps considered). However, as we continue making steps, we do not observe
further improvement of the metrics.
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(a) Reconstruction similarity. (b) Adversarial Accuracy (digit classification task).

Figure 15: Example of the reference point (leftmost column) and adversarial points for different
raduises of the attack.
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C.6 Comparison of objective functions

This section compares different objective functions that can be used to construct adversarial attacks
on VAE. In general, in both supervised and unsupervised setting, we need to measure the difference
between variational posterior in the adversarial point q(z|xa) and a point from the dataset (either a
target or reference point). We consider a Gaussian encoder, and the simplest way to compare two
Gaussian distributions is to measure the distance between their means. To take into account the
variances, we can use the KL-divergence. It is a non-symmetric metric. Thus, we have two options: to
use the forward or reverse KL. Finally, it is also possible to consider the symmetrical KL divergence
that is an average between the two.
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Figure 16: Comparison of different objectives function used to train an attack. Arrows represent the
direction of the successful attack.

In Figure 16, we measure how successful the attacks are in terms of the proposed metrics. We use
arrows in the plot titles to indicate desirable values of the metric for a successful attack. We compare
supervised and unsupervised attacks on VAE trained on MNIST and fashion MNIST datasets. We
observe that there is no single objective function that consistently outperforms others.

C.7 Inference Time

Even though our approach does not require changing the training procedure, it has influence on
the inference time. In practice, this can be a limiting factor. Therefore, in Table 5 we report the
computational overhead during the inference time. We measure the inference time in seconds per test
point without HMC (T = 0) and for different budgets (T = {100, 500, 1000}).

Table 5: Inference wall-clock time of the VAE for various number of MCMC steps (T ).
T 0 100 500 1000

VAE
MNIST 0.0001 0.0099 0.0505 0.1011
COLOR MNIST 0.0001 0.0110 0.0553 0.1111

NVAE
CELEBA 0.429 6.512 31.551 63.031
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D Details of the experiments

D.1 Training VAE models

Architecture We use the same fully convolutional architecture with latent dimension 64 for MNIST,
FashionMNISt and ColorMNIST datasets. In Table 6, we provide detailed scheme of the architecture.
We use Conv(3x3, 1->32) to denote convolution with kernel size 3x3, 1 input channel and 32
output channels. We denote stride of the convolution with s, padding with p and dilation with d.
The same notation applied for the transposed convolutions (ConvTranspose). ColorMNIST has 3
input channels, so the first convolutional layer in the encoder and the last of the decoder are slightly
different. In this cases values for ColorMNIST are report in parenthesis with the red color.

Table 6: Convolutional architecture for VAE trained on MNIST, Fashion MNIST and ColorMNIST
datasets.

Encoder Decoder

Conv(3x3, 1(3)->32, s=2, p=1) ConvTranspose(3x3,64->128,s=1,p=0, d=2)
ReLU() ReLU()
Conv(3x3, 32->64, s=2, p=1) ConvTranspose(3x3,128->96,s=1,p=0)
ReLU() ReLU()
Conv(3x3, 64->96, s=2, p=1) ConvTranspose(3x3,96->64,s=1,p=1)
ReLU() ReLU()
Conv(3x3,96->128,s=2,p=1) ConvTranspose(4x4,64->32,s=2,p=1)
ReLU() ReLU()
µz ← Conv(3x3,128->64,s=2,p=1) ConvTranspose(4x4,31->1(3),s=2,p=1)
log σ2

z ← Conv(3x3,128->64,s=2,p=1) µx ← Sigmoid() (Identity())

Optimization We use Adam to perform the optimization. We start from the learning rate 5e− 4
and reduce it by the factor of 2 if the validation loss does not decrease for 10 epochs. We train a
model for 300 epochs with the batch size 128. In Table 7, we report the values of the test metrics for
VAEs trained on MNIST, Fashion MNIST and Color MNIST.

For calculating the FID score, we use torchmetrics library: https://torchmetrics.
readthedocs.io/en/latest/references/modules.html#frechetinceptiondistance.

Table 7: Test performance of the β-VAE and β-TCVAE with different values of β. Negative
loglikelihood is estimated with importance sampling (k = 1000) as suggested in [9].

MNIST FASHION MNIST COLOR MNIST
β − log p(x) MSE − log p(x) MSE − log p(x) MSE FID

1 88.3 578.6 232.8 814.3 54.87 261.3 2.09

β
-V

A
E 2 89.3 824.2 234.1 1021.1 55.6 365.6 2.4

5 100.6 1485.1 241.8 1457.8 63.6 586.1 2.5
10 126.8 2498.9 248.7 1842.3 88.7 936.2 2.4

β
-T

C
V

A
E 2 89.3 828.4 233.6 980.4 55.8 366.4 3.0

5 96.7 1325.4 238.2 1024.6 63.0 574.8 2.0
10 107.2 1686.1 247.5 1570.0 76.5 806.2 2.2

26

https://torchmetrics.readthedocs.io/en/latest/references/modules.html#frechetinceptiondistance
https://torchmetrics.readthedocs.io/en/latest/references/modules.html#frechetinceptiondistance


D.2 Adversarial Attacks and Defence Hyperparameters

In Table 8, we report all the hyperparameter values that were used to attack and defend VAE models.

In all the experiments we randomly select reference points from the test dataset. We also ensure that
the resulting samples are properly stratified — include an even number of points from each of the
classes. For each reference point, we train 10 adversarial inputs with the same objective function but
different initialization.

We use projected gradient descent to learn the adversarial attacks. Optimization parameters were the
same for all the datasets and models. They are presented in Table 8.

We choose HMC to defend the model against the trained attack. We perform T steps of HMC with
the step size η and L leapfrog steps. Where indicated, we adapt the step size after each step of HMC
using the following formula:

ηt = ηt−1 + 0.01 · αt−1 − 0.9

0.9
· ηt−1, (67)

where αt is the acceptance rate at step t. This way we increase the step size if the acceptance rate is
higher than 90% and decrease it otherwise. When adaptive steps size is used, a value in the table
indicates the η0.

Table 8: Full list of hyperparameters for attack construction and the defence.

VAE NVAE
MNIST Fashion MNIST Color MNIST MNIST CelebA

# of reference points 50 50 50 50 20
# of adversarial points 500 500 500 500 200
Radius norm (∥ · ∥p) inf inf inf inf inf
Radius {0.1, 0.2} {0.1, 0.2} {0.1, 0.2} {0.1, 0.2} {0.05, 0.1}

Optimization (PGD)

Optimizer SGD
Num. steps 50
ε initialization N (0, 0.2 · I)
Learning rate (lr) 1

Defence (HMC)

Num. steps (T ) 500 1000 1000 2000 1000
Step size η 0.1 0.05 0.05 1e-4 1e-4
Num. Leapfrog steps (L) 20 20 20 20 1
Adaptive step size True True True True False
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