
3DB: A Framework for Debugging
Computer Vision Models

Guillaume Leclerc†
LECLERC@MIT.EDU

MIT ⇤

Hadi Salman†

HADY@MIT.EDU
MIT ⇤

Andrew Ilyas†
AILYAS@MIT.EDU

MIT

Sai Vemprala
SAIHV@MICROSOFT.COM

Microsoft Research

Logan Engstrom
ENGSTROM@MIT.EDU

MIT

Vibhav Vineet
VIVINEET@MICROSOFT.COM

Microsoft Research

Kai Xiao
KAIX@MIT.EDU

MIT

Pengchuan Zhang
PENZHAN@MICROSOFT.COM

Microsoft Research

Shibani Santurkar
SHIBANI@MIT.EDU

MIT

Greg Yang
GE.YANG@MICROSOFT.COM

Microsoft Research

Ashish Kapoor
AKAPOOR@MICROSOFT.COM

Microsoft Research

Aleksander Mądry
MADRY@MIT.EDU

MIT

Abstract

We introduce 3DB: an extendable, unified framework for testing and debugging
vision models using photorealistic simulation. We demonstrate, through a wide
range of use cases, that 3DB allows users to discover vulnerabilities in computer
vision systems and gain insights into how models make decisions. 3DB captures
and generalizes many robustness analyses from prior work, and enables one to
study their interplay. Finally, we find that the insights generated by the system
transfer to the physical world. We are releasing 3DB as a library1 alongside a set
of examples2, guides3, and documentation4.

1 Introduction

Modern machine learning models turn out to be remarkably brittle under distribution shift. Indeed,
in the context of computer vision, models exhibit an abnormal sensitivity to slight input rotations
and translations [18, 37], synthetic image corruptions [32, 38], and changes to the data collection
pipeline [49, 19]. Still, while brittleness is widespread, it is often hard to understand its root causes,
or even to characterize the precise situations in which this behavior arises.

How do we then comprehensively diagnose model failure modes? Stakes are often too high to
simply deploy models and collect “real-world” failure cases. There has thus been a line of work
in computer vision focused on identifying systematic sources of model failure such as unfamiliar

⇤Work partially completed while at Microsoft Research.
†Equal contribution.
1https://github.com/3db/3db
2https://github.com/3db/blog_demo
3https://3db.github.io/3db/usage/quickstart.html
4https://3db.github.io/3db/

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

Texture non-robustness Corruptions Geometric transformations Misleading backgrounds

Unfamiliar objects

Figure 1: Examples of vulnerabilities of computer vision systems identified through prior in-depth
robustness studies. Figures reproduced from [25, 5, 32, 38, 3, 18, 69, 52].

Texture Pose Background New objects CompositionCorruptions

Figure 2: The 3DB framework is modular enough to facilitate—among other tasks—efficient redis-
covery of all the types of brittleness shown in Figure 1. It also allows users to realistically compose
transformations (right) while still being able to disentangle the results.

object orientations [3], misleading backgrounds [74, 69], or shape-texture conflicts [25, 5]. These
analyses—a selection of which is visualized in Figure 1—reveal patterns or situations that degrade
performance of vision models, providing invaluable insights into model robustness. Still, carrying
out each such analysis requires its own set of (often complex) tools, usually accompanied by a
significant amount of manual labor (e.g., image editing, style transfer), expertise, and data cleaning.
This prompts the question:

Can we support reliable discovery of model failures in a systematic, automated, and unified way?

Contributions. In this work, we propose 3DB, a framework for automatically identifying and ana-
lyzing the failure modes of computer vision models. This framework makes use of a 3D simulator
to render realistic scenes that can be fed into any computer vision system. Users can specify a set
of transformations to apply to the scene—such as pose changes, background changes, or camera
effects—and can also customize and compose them. The system then performs a guided search,
evaluation, and aggregation over these user-specified configurations and presents the user with an
interactive, user-friendly summary of the model’s performance and vulnerabilities. 3DB is general
enough to enable users to, with minimal effort, re-discover insights from prior work on pose, back-
ground, and texture bias (cf. Fig. 2), among others. Further, while prior studies have largely been
focused on examining model sensitivities along a single axis, 3DB allows users to compose various
transformations and understand the interplay between them, while still being able to disentangle
their individual effects.

The remainder of this paper is structured into the following parts: in Section 2 we discuss the
design of 3DB, including the motivating principles, design goals, and concrete architecture used.
We highlight how the implementation of 3DB allows users to quickly experiment, stress-test, and
analyze their vision models. Then, in Section 3 we illustrate the utility of 3DB through a series of
case studies uncovering biases in an ImageNet-pretrained classifier. Finally, we show (in Section 4)
that the vulnerabilities uncovered with 3DB correspond to actual failure modes in the physical world
(i.e., they are not specific to simulation).

2 Designing 3DB

The goal of 3DB is to leverage photorealistic simulation to effectively diagnose failure modes of
computer vision models. To this end, the following set of principles guide the design of 3DB:

2

Generality. 3DB should support any type of computer vision model (i.e., not necessarily a neu-
ral network) trained on any dataset and task (i.e., not necessarily classification). Furthermore, the
framework should support diagnosing non-robustness with respect to any parameterizable three-
dimensional scene transformation.

Compositionality. Corruptions and transformations rarely occur in isolation—3DB should allow
users to investigate robustness along many different axes simultaneously.

Physical realism. The vulnerabilities extracted from 3DB should correspond to models’ behavior in
the real (physical) world, and, in particular, not depend on artifacts of the simulation process itself.

User-friendliness. 3DB should be simple to use and should relay insights to the user in an easy-
to-understand manner. Even non-experts should be able to look at the result of a 3DB experiment
and easily understand what the weak points of their model are, as well as gain insight into how the
model behaves more generally.

Scalability. 3DB should be performant and parallel.

2.1 Capabilities and workflow

To achieve the goals articulated above, we design 3DB modularly, i.e., as a combination of swap-
pable components. This combination allows the user to specify transformations they want to test,
search over the space of these transformations, and aggregate the results of this search in a concise
way. More specifically, the 3DB workflow revolves around five steps (visualized in Figure 3):

Setup. The user collects one or more 3D meshes that correspond to objects the model is trained to
recognize, as well as a set of environments to test against.

Search space design. The user defines a search space by specifying a set of transformations (which
3DB calls controls) that they expect the computer vision model to be robust to (e.g., rotations, trans-
lations, zoom, etc.). Controls are grouped into “rendered controls” (applied during the rendering
process) and “post-processor controls” (applied after the rendering as a 2D image transformation).

Policy-guided search. After the user has specified a set of controls, 3DB instantiates and renders a
myriad of object configurations derived from compositions of the given transformations. It records
the behavior of the ML model on each constructed scene for later analysis. A user-specified search

policy over the space of all possible combinations of transformations determines the scenes for 3DB

to render.

Step V: AnalysisStep I: Objects and Envs Step II: Select controls

Rendered
‣ 3D transforms
‣ Camera settings
‣ Lighting transforms
‣ Occlusion transforms
‣ Texture swaps

Default Objects

HDRI Backgrounds

Studio environment

OR design and import: AND/OR custom control:

Post-processed
‣ ImageNet-C
‣ Background shifts

Any blender object
or environment

Bu
ilt

-in
Cu

st
om

Step III: Set Search Policy

Step IV: Load a model

+

Parameters

Render state
New state+

Grid search (random or
deterministic)

OR custom policy:

Any search algorithm

Any classification or
detection model

OR custom model type:

Model: Images Outputs�
Evaluator: Out Metadata�

+

Per-object analysis

Failure modes

Aggregate analysis

Fa
ct

or

Env
Zoom

Tilt
Z-pos

Variation

Figure 3: An overview of the 3DB workflow: First, the user specifies a set of 3D object models
and environments to use for debugging. The user also enumerates a set of (in-built or custom)
transformations, known as controls, to be applied by 3DB while rendering the scene. Based on a
user-specified search policy over all these controls (and their compositions), 3DB then selects the
exact scenes to render. The computer vision model is finally evaluated on these scenes and the
results are logged in a user-friendly manner in a custom dashboard.

3

Model loading. The only remaining step before running a 3DB analysis is loading the model that
the user wants to analyze (e.g., a pre-trained classifier or object detector).

Analysis and insight extraction. Finally, 3DB is equipped with a model dashboard (cf. Ap-
pendix C) that can read the generated log files and produce a user-friendly visualization of the
generated insights. By default, the dashboard has three panels. The first of these is failure mode
display, which highlights configurations, scenes, and transformations that caused the model to mis-
behave. The per-object analysis pane allows the user to inspect the model’s performance on a specific
3D mesh (e.g., accuracy, robustness, and vulnerability to groups of transformations). Finally, the ag-
gregate analysis pane extracts insights about the model’s performance averaged over all the objects
and environments collected and thus allows the user to notice consistent trends and vulnerabilities
in their model.

Each of the aforementioned components (the controls, policy, renderer, inference module, and log-
ger) are fully customizable and can be extended or replaced by the user without altering the core
code of 3DB. For example, while 3DB supports more than 10 types of controls out-of-the-box, users
can add custom ones (e.g., geometric transformations) by implementing an abstract function that
maps a 3D state and a set of parameters to a new state. Similarly, 3DB supports debugging classi-
fication and object detection models by default, and by implementing a custom evaluator module,
users can extend support to a wide variety of other vision tasks and models. We refer to Appendix B
for more on 3DB design principles, implementation, and scalability.

3 Debugging and analyzing models with 3DB

In this section, we illustrate through case studies how to analyze and debug vision models with
3DB. In each case, we follow the workflow outlined in Section 2.1—importing the relevant objects,
selecting the desired transformations (or constructing custom ones), selecting a search policy, and
finally analyzing the results.

In all our experiments, we analyze a ResNet-18 [30] trained on the ImageNet [53] classification
task (its validation set accuracy is 69.8%). Note that 3DB is classifier-agnostic (i.e., ResNet-18 can
be replaced with any PyTorch classification module), and even supports object detection tasks. For
our analysis, we collect 3D models for 16 ImageNet classes (see Appendix F for more details on
each experiment). We ensure that in “clean” settings, i.e., when rendered in simple poses on a plain
white background, the 3D models are correctly classified at a reasonable rate (cf. Table 1) by our
pre-trained ResNet.

Table 1: Accuracy of a pre-trained ResNet-18, for each of the 16 ImageNet classes considered,
on the corresponding 3D model we collected, rendered at an unchallenging pose on a white back-
ground (“Simulated” row); and the subset of the ImageNet validation set corresponding to the class
(“ImageNet” row).

banana baseball bowl drill golf ball hammer lemon mug

Simulated accuracy (%) 96.8 100.0 17.5 63.3 95.0 65.6 100.0 13.4
ImageNet accuracy (%) 82.0 66.0 84.0 40.0 82.0 54.0 76.0 42.0

3.1 Sensitivity to image backgrounds

We begin our exploration by using 3DB to confirm ImageNet classifiers’ reliance on background
signal, as pinpointed by several recent in-depth studies [72, 74, 69]. Out-of-the-box, 3DB can ren-
der 3D models onto HDRI files using image-based lighting; we downloaded 408 such background
environments from hdrihaven.com. We then used the pre-packaged “camera” and “orientation”
controls to render (and evaluate our classifier on) scenes of the pre-collected 3D models at ran-
dom poses, orientations, and scales on each background. Figure 4 shows random example scenes
generated by 3DB for the “coffee mug” model.

Analyzing a subset of backgrounds. In Figure 6, we visualize the performance of a ResNet-18
classifier on the 3D models from 16 different ImageNet classes—in random positions, orientations,
and scales—rendered onto 20 of the collected HDRI backgrounds. One can observe that background

4

Figure 4: Renderings of the
mug 3D model in different en-
vironments, labeled with a pre-
trained model’s top prediction.

Figure 5: (Top) Best and (Bottom) worst background en-
vironments for classification of the coffee mug, and their
respective accuracies (averaged over camera positions and
zoom factors).

Figure 6: Visualization of accuracy on controls from Section 3.1. (Left) We compute the accuracy
of the model conditioned on each object-environment pair. For each environment on the x-axis, we
plot the variation in accuracy (over the set of possible objects) using a boxplot. We visualize the
per-object accuracy spread by including the median line, the first and third quartiles box edges (the
interval between which is called the inter-quartile range, IQR), the range, and the outliers (points
that are outside the IQR by 3/2|IQR|). (Right) Using the same format, we track how the classified
object (x-axis) impacts variation in accuracy (over different environments) on the y-axis.

dependence indeed varies widely across different objects—for example, the “orange” and “lemon”
3D models depend much more on background than the “tennis ball.” We also find that certain
backgrounds yield systemically higher or lower accuracy; for example, average accuracy on “gray
pier” is five times lower than that of “factory yard.”

Analyzing all backgrounds with the mug model. The previous study broadly characterizes the
classifier’s sensitivity to different models and environments. Now, to gain a deeper understanding of
this sensitivity, we focus our analysis only a single 3D model (a “coffee mug”) rendered in all 408
environments. The highest-accuracy backgrounds had tags such as skies, field, and mountain, while
the lowest-accuracy backgrounds had tags indoor, city, and building.

At first, this observation seems to be at odds with the idea that the classifier relies heavily on con-
text clues to make decisions. After all, the backgrounds where the classifier seems to perform well
(poorly) are places that we would expect a coffee mug to be rarely (frequently) present in the real
world. Visualizing the best and worst backgrounds in terms of accuracy (Figure 5) suggests a pos-
sible explanation for this: the best backgrounds tend to be clean and distraction-free. Conversely,
complicated backgrounds (e.g., some indoor scenes) often contain context clues that make the mug
difficult for models to detect. Comparing a “background complexity” metric (based on the number
of edges in the image) to accuracy (Figure 7) supports this explanation: mugs overlaid on more
complex backgrounds are more frequently misclassified by the model. In fact, some specific back-
grounds even result in the model “hallucinating” objects; for example, the second-most frequent
predictions for the pond and sidewalk backgrounds were birdhouse and traffic light respectively,
despite the fact that neither object is present in the environment.

Zoom/background interactions case study: the advantage of composable controls. Finally, we
leverage 3DB’s composability to study interactions between controls. In Figure 8, we plot the mean
classification accuracy of our “orange” model while varying background and scale factor. We, for
example, find that while the model is highly accurate at classifying “orange” at 2x zoom, the same

5

Figure 7: Relation between the complexity of
a background and its average accuracy. Here
complexity is defined as the average pixel value
of the image after applying an edge detection
filter.

Figure 8: 3DB’s focus on composability enables
us to study robustness along multiple axes si-
multaneously. Here we study average model ac-
curacy (computed over pose randomization) as
a function of both zoom level and background.

zoom factor induces failure in a well-lit mountainous environment (“kiara late-afternoon”)—a fine-
grained failure mode that we would not catch without explicitly capturing the interaction between
background choice and zoom.

3.2 Texture-shape bias

Figure 9: Cue-conflict images generated by
Geirhos et al. [25] (top) and 3DB (bottom).

Figure 10: Model accuracy on previously
correctly-classified images after their texture is
altered via 3DB, as a function of texture-type.

We now demonstrate how 3DB can be straightforwardly extended to discover more complex failure
modes in computer vision models. Specifically, we will show how to rediscover the “texture bias”
exhibited by ImageNet-trained convolutional neural networks (CNNs) [25] in a systematic and (near)
photorealistic way. Geirhos et al. [25] fuse pairs of images—combining texture information from
one with shape and edge information from the other—to create so-called “cue-conflict” images.
They then demonstrate that on these images (cf. Figure 9), ImageNet-trained CNNs typically predict
the class corresponding to the texture component, while humans typically predict based on shape.

Cue-conflict images identify a concrete difference between human and CNN decision mechanisms.
However, the fused images are unrealistic and can be cumbersome to generate (e.g., even the sim-
plest approach uses style transfer [24]). 3DB gives us an opportunity to rediscover the influence of
texture in a more streamlined fashion.

Specifically, we implement a control (now pre-packaged with 3DB) that replaces an object’s texture
with a random (or user-specified) one. We use this control to create cue-conflict objects out of eight

6

Figure 11: (Left) We compute the accuracy of the model for each object-orientation pair. For each
object on the x-axis, we plot the variation in accuracy (over the set of possible orientations) using a
boxplot. We visualize the per-orientation accuracy spread by including the median line, the first and
third quartiles box edges, the range, and the outliers. (Right) Using the same format as the left hand
plot, we plot how the classified object (on the x-axis) impacts variation in accuracy (over different
zoom values) on the y-axis.

3D models5 and seven animal-skin texture images6 (i.e., 56 objects in total). We test our pre-trained
ResNet-18 on images of these objects rendered in a variety of poses and camera locations. Figure 9
displays sample cue-conflict images generated using 3DB.

Our study confirms the findings of Geirhos et al. [25] and indicates that texture bias indeed extends to
(near-)realistic settings. For images that were originally correctly classified (i.e., when rendered with
the original texture), changing the texture reduced accuracy by 90-95% uniformly across textures
(Figure 10). Furthermore, we observe that the model predictions usually align better with the texture
of the objects rather than their geometry (See Figure 21 in the Appendix).

3.3 Orientation and scale dependence

Image classification models are brittle to object orientation in both real and simulated settings [37,
18, 6, 3]. As was the case for both background and texture sensitivity, reproducing and extending
such observations is straightforward with 3DB. Once again, we use the built-in controls to render
objects at varying poses, orientations, scales, and environments before stratifying on properties of
interest. Indeed, we find that classification accuracy is highly dependent on object orientation (Fig-
ure 11 left) and scale (Figure 11 right). However, this dependence is not uniform across objects. As
one would expect, the classifier’s accuracy is less sensitive to orientation on more symmetric objects
(like “tennis ball” or “baseball”), but can vary widely on more uneven objects (like “drill”).

For a more fine-grained look at the importance of object orientation, we can measure the classi-
fier accuracy conditioned on a given part of each 3D model being visible. This analysis is once
again straightforward in 3DB, since each rendering is (optionally) accompanied by a UV map which
maps pixels in the scene back to locations on on the object surface. Combining these UV maps
with accuracy data allows one to construct the “accuracy heatmaps” shown in Figure 12, wherein
each part of an object’s surface corresponds to classifier accuracy on renderings in which the part
is visible. The results confirm that atypical viewpoints adversely impact model performance, and
also allow users to draw up a variety of testable hypotheses regarding performance on specific 3D
models (e.g., for the coffee mug, the bottom rim is highlighted in red—is it the case that mugs are
more accurately classified when viewed from the bottom)? These hypotheses can then be investi-

5Object models: mug, helmet, hammer, strawberry, teapot, pitcher, bowl, lemon, banana and spatula
6Textures: cow, crocodile, elephant, leopard, snake, tiger and zebra

Figure 12: Model sensitivity to pose. The heatmaps denote the accuracy of the model in predicting
the correct label, conditioned on a specific part of the object being visible in the image. Here, red
and blue denotes high and low accuracy respectively.

7

(a)
(b)

(c)

Figure 13: Testing classifier sensitivity to context: Figure (a) shows the correlation of the liquid
mixture in the mug on the prediction of the model, averaged over random viewpoints (see Figure
20b for the raw frequencies). Figure (b) shows that for a fixed viewpoint, model predictions are
unstable with respect to the liquid. Figure (c) shows examples of rendered liquids (water, black
coffee, milk, and mixtures).

gated further through natural data collection, or—as we discuss in the upcoming section—through
additional experimentation with 3DB.

3.4 Case study: using 3DB to dive deeper

Our heatmap analysis in the previous section (cf. Figure 12) showed that classification accuracy for
the mug decreases when its interior is visible. What could be causing this effect? One hypothesis
is that in the ImageNet training set, objects are captured in context, and thus ImageNet-trained
classifiers rely on this context to make decisions. Inspecting the ImageNet dataset, we notice that
coffee mugs in context usually contain coffee. Thus, the aforementioned hypothesis would suggest
that the model relies, at least partially, on the contents of the mug to correctly classify it. Can we

leverage 3DB to confirm or refute this hypothesis?

To test this, we implement a custom control that can render a liquid inside the “coffee mug” model.
Specifically, this control takes water:milk:coffee ratios as parameters, then uses a parametric Blender
shader (cf. Appendix G) to render a corresponding mixture of the liquids into the mug. We used the
pre-packaged grid search policy, (programmatically) restricting the search space to viewpoints from
which the interior of the mug was visible.

The results of the experiment are shown in Figure 13. It turns out that the model is indeed sensitive to
changes in liquid, supporting our hypothesis: model predictions stayed constant (over all liquids) for
only 20.7% of the rendered viewpoints (cf. Figure 13b). The 3DB experiment provides further sup-
port for the hypothesis when we look at the correlation between the liquid mixture and the predicted
class: Figure 13a visualizes this correlation in a normalized heatmap (for the unnormalized version,
see Figure 20b in the Appendix G). We find that the model is most likely to predict “coffee mug”
when coffee is added to the interior (unsurprisingly); as the coffee is mixed with water or milk, the
predicted label distribution shifts towards “bucket” and “cup” or “pill bottle,” respectively. Overall,
our experiment suggests that current ResNet-18 classifiers are indeed sensitive to object context—in
this case, the fluid composition of the mug interior. More broadly, this illustration highlights how a
system designer can quickly go from hypothesis to empirical verification with minimal effort using
3DB. (In fact, going from the hypothesis to Figure 13 took less than a day of work for one author.)

4 Physical realism

The previous sections have demonstrated various ways in which we can use 3DB to obtain insights
into model behavior in simulation. Our overarching goal, however, is to understand when models
will fail in the physical world. Thus, we would like for the insights extracted by 3DB to corre-
spond to naturally-arising model behavior, and not just artifacts of the simulation itself. To this
end, we now test the physical realism of 3DB: can we understand model performance (and uncover
vulnerabilities) on real photos using only a high-fidelity simulation?

To answer this question, we collected a set of physical objects corresponding to 3D models, and set
up a physical room with a corresponding 3D environment. We used 3DB to identify strong points
and vulnerabilities of an ImageNet classifier in this environment, mirroring our methodology from

8

Figure 14: (Top) Agreement, in terms of model correctness, between model predictions within
3DB and model predictions in the real world. For each object, we selected five rendered scenes
found by 3DB that were misclassified in simulation, and five that were correctly classified; we
recreated and deployed the model on each scene in the physical world. The positive (resp., negative)

predictive value is rate at which correctly (resp. incorrectly) classified examples in simulation were
also correctly (resp., incorrectly) classified in the physical world. (Bottom) Comparison between
example simulated scenes generated by 3DB (first row) and their recreated physical counterparts
(second row). Border color indicates whether the model was correct on this specific image.

Section 3. We recreated each scenario found by 3DB in the physical room, and took photographs
that matched the simulation as closely as possible. Finally, we evaluated the physical realism of
3DB by comparing models’ performance on the photos to what 3DB predicted.

Setup. We used a studio room shown in Appendix Figure 18b for which we obtained a fairly accurate
3D model (cf. Appendix Figure 18a). We leverage the YCB [13] dataset to guide our selection of
real-world objects, for which 3D models are available. We supplement these by sourcing additional
objects (from amazon.com) and using a 3D scanner to obtain corresponding meshes.

We next used 3DB to analyze the performance of a pre-trained ImageNet ResNet-18 on the collected
objects in simulation, varying over a set of realistic object poses, locations, and orientations. For
each object, we selected 10 rendered situations: five where the model made the correct prediction,
and five where the model predicted incorrectly. We then tried to recreate each rendering in the
physical world. First we roughly placed the main object in the location and orientation specified
in the rendering, then we used a custom-built iOS application (see Appendix D) to more precisely
match the rendering with the physical setup.

Results. Figure 14 visualizes a few samples of renderings with their recreated physical counterparts,
annotated with model correctness. Overall, we found a 85% agreement rate between the model’s
correctness on the real photos and the synthetic renderings—agreement rates per class are shown in
Figure 14. Thus, despite imperfections in our physical reconstructions, the vulnerabilities identified
by 3DB turned out to be physically realizable vulnerabilities (and conversely, the positive examples
found by 3DB are usually also classified correctly in the real world). We found that objects with
simpler/non-metallic materials (e.g., the bowl, mug, and sandal) tended to be more reliable than
metallic objects such as the hammer and drill. It is thus possible that more precise texture tuning of
3D models object could increase agreement further (although a more comprehensive study would
be needed to verify this).

5 Related work

In this section, we give a brief overview of existing work in robustness, interpretability, and sim-
ulation that provide the context for our work. We refer the reader to Appendix A for a detailed
discussion of prior work.

Model Robustness. The brittleness of current ML models has drawn the attention to analyze the
robustness and reliability of these models. A long line of research focus on analyzing model robust-
ness to adversarial examples [61, 20, 70, 21, 20, 12, 5, 68, 47, 44]. Another line of research involves

9

analyzing robustness to non-adversarial corruptions [18, 25, 32, 38, 74, 69, 23, 52]. A more closely
related line of research to ours analyzes the impact of factors such as object pose and geometry by
applying synthetic perturbations in three-dimensional space [28, 57, 29, 3, 35].

Interpretability and model debugging. 3DB can be cast as a method for debugging vision mod-
els that provides users fine-grained control over the rendered scenes and thus enables them to find
specific modes of failure (cf. Sections 3 and 4). Model debugging is also a common goal in in-
tepretability, where methods generally seek to provide justification for model decisions based on
either local features (e.g., saliency maps) [58, 14, 60, 50, 22, 74, 27] or global ones (i.e., general
biases of the model) [7, 41, 71, 63].

Simulated environments. Finally, there has been a long line of work on developing simulation
platforms as a source of additional training data [11, 8, 36, 73, 15, 31, 51, 55, 59, 17, 42, 64, 48, 65,
66, 67, 54]. 3DB shares some components with many of these works (e.g., a rendering engine), but
has a very different goal and set of applications, i.e., diagnosing specific failures in existing models.

6 Conclusion

In this work, we introduced 3DB, a unified framework for diagnosing failure modes in vision models
based on high-fidelity rendering. We demonstrate the utility of 3DB by applying it to a number
of model debugging use cases—such as understanding classifier sensitivities to realistic scene and
object perturbations, and discovering model biases. Further, we show that the debugging analysis
done using 3DB in simulation is actually predictive of model behavior in the physical world. Finally,
we note that 3DB was designed with extensibility as a priority; we encourage the community to build
upon the framework so as to uncover new insights into the vulnerabilities of vision models.

Limitations. One limitation of 3DB is the need for high-quality 3D models for objects of interest in
order to achieve photorealistic images. This requires 3D model artists and/or effective photogram-
metry techniques. Additionally, creating fully realistic scenes may require more complexity than
just combining a single object with a background, which is what we focus on in this paper. 3DB

does support multiple objects, and the user can programmatically specify how different objects are
located relative to each other; we hope to explore this more in the future.

Acknowledgements

Work supported in part by the NSF grants CCF-1553428 and CNS-1815221, the Google PhD Fel-
lowship, the Open Philanthropy Project AI Fellowship, the NDSEG PhD Fellowship, and the Mi-
crosoft Corporation. This material is based upon work supported by the Defense Advanced Research
Projects Agency (DARPA) under Contract No. HR001120C0015.

Research was sponsored by the United States Air Force Research Laboratory and the United States
Air Force Artificial Intelligence Accelerator and was accomplished under Cooperative Agreement
Number FA8750-19-2-1000. The views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official policies, either expressed or im-
plied, of the United States Air Force or the U.S. Government. The U.S. Government is authorized to
reproduce and distribute reprints for Government purposes notwithstanding any copyright notation
herein.

10

References
[1] Julius Adebayo et al. “Sanity checks for saliency maps”. In: Neural Information Processing

Systems (NeurIPS). 2018.
[2] Julius Adebayo et al. “Debugging Tests for Model Explanations”. In: 2020.
[3] Michael A Alcorn et al. “Strike (with) a pose: Neural networks are easily fooled by strange

poses of familiar objects”. In: Conference on Computer Vision and Pattern Recognition

(CVPR). 2019.
[4] David Alvarez-Melis and Tommi S Jaakkola. “On the robustness of interpretability methods”.

In: arXiv preprint arXiv:1806.08049 (2018).
[5] Anish Athalye et al. “Synthesizing Robust Adversarial Examples”. In: International Confer-

ence on Machine Learning (ICML). 2018.
[6] Andrei Barbu et al. “ObjectNet: A large-scale bias-controlled dataset for pushing the limits

of object recognition models”. In: Neural Information Processing Systems (NeurIPS). 2019.
[7] David Bau et al. “Network dissection: Quantifying interpretability of deep visual representa-

tions”. In: Computer Vision and Pattern Recognition (CVPR). 2017.
[8] Charles Beattie et al. “Deepmind lab”. In: arXiv preprint arXiv:1612.03801 (2016).
[9] Harkirat Singh Behl et al. “Autosimulate: (quickly) learning synthetic data generation”. In:

European Conference on Computer Vision. Springer. 2020, pp. 255–271.
[10] Blender Online Community. Blender - a 3D modelling and rendering package. Blender Foun-

dation. Stichting Blender Foundation, Amsterdam, 2020. URL: http://www.blender.
org.

[11] Greg Brockman et al. “Openai gym”. In: arXiv preprint arXiv:1606.01540 (2016).
[12] Tom B. Brown et al. Adversarial Patch. 2018. arXiv: 1712.09665 [cs.CV].
[13] Berk Calli et al. “Benchmarking in manipulation research: The YCB object and model set

and benchmarking protocols”. In: arXiv preprint arXiv:1502.03143 (2015).
[14] Piotr Dabkowski and Yarin Gal. “Real time image saliency for black box classifiers”. In:

Neural Information Processing Systems (NeurIPS). 2017.
[15] Maximilian Denninger et al. “BlenderProc”. In: arXiv preprint arXiv:1911.01911 (2019).
[16] Jeevan Devaranjan, Amlan Kar, and Sanja Fidler. “Meta-Sim2: Unsupervised Learning of

Scene Structure for Synthetic Data Generation”. In: European Conference on Computer Vi-

sion. Springer. 2020, pp. 715–733.
[17] Alexey Dosovitskiy et al. “CARLA: An open urban driving simulator”. In: arXiv preprint

arXiv:1711.03938 (2017).
[18] Logan Engstrom et al. “Exploring the Landscape of Spatial Robustness”. In: International

Conference on Machine Learning (ICML). 2019.
[19] Logan Engstrom et al. “Identifying Statistical Bias in Dataset Replication”. In: International

Conference on Machine Learning (ICML). 2020.
[20] Kevin Eykholt et al. “Physical Adversarial Examples for Object Detectors”. In: CoRR (2018).
[21] Volker Fischer et al. “Adversarial examples for semantic image segmentation”. In: Arxiv

preprint arXiv:1703.01101. 2017.
[22] Ruth C Fong and Andrea Vedaldi. “Interpretable explanations of black boxes by meaningful

perturbation”. In: International Conference on Computer Vision (ICCV). 2017.
[23] Nic Ford et al. “Adversarial Examples Are a Natural Consequence of Test Error in Noise”.

In: arXiv preprint arXiv:1901.10513. 2019.
[24] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. “Image style transfer using convo-

lutional neural networks”. In: computer vision and pattern recognition (CVPR). 2016.
[25] Robert Geirhos et al. “ImageNet-trained CNNs are biased towards texture; increasing shape

bias improves accuracy and robustness.” In: International Conference on Learning Represen-

tations (ICLR). 2019.
[26] Amirata Ghorbani, Abubakar Abid, and James Zou. “Interpretation of neural networks is

fragile”. In: AAAI Conference on Artificial Intelligence (AAAI). 2019.
[27] Yash Goyal et al. “Counterfactual visual explanations”. In: arXiv preprint arXiv:1904.07451

(2019).

11

[28] Abdullah Hamdi and Bernard Ghanem. “Towards Analyzing Semantic Robustness of Deep
Neural Networks”. In: arXiv preprint arXiv:1904.04621 (2019).

[29] Abdullah Hamdi, Matthias Muller, and Bernard Ghanem. “SADA: Semantic Adversarial Di-
agnostic Attacks for Autonomous Applications”. In: arXiv preprint arXiv:1812.02132 (2018).

[30] Kaiming He et al. Deep Residual Learning for Image Recognition. 2015.
[31] Christoph Heindl et al. “BlendTorch: A Real-Time, Adaptive Domain Randomization Li-

brary”. In: arXiv preprint arXiv:2010.11696 (2020).
[32] Dan Hendrycks and Thomas G. Dietterich. “Benchmarking Neural Network Robustness to

Common Corruptions and Surface Variations”. In: International Conference on Learning

Representations (ICLR). 2019.
[33] Dan Hendrycks et al. “Natural adversarial examples”. In: arXiv preprint arXiv:1907.07174

(2019).
[34] Sandy Huang et al. “Adversarial Attacks on Neural Network Policies”. In: ArXiv preprint

arXiv:1702.02284. 2017.
[35] Lakshya Jain et al. “Analyzing and Improving Neural Networks by Generating Semantic

Counterexamples through Differentiable Rendering”. In: arXiv preprint arXiv:1910.00727

(2020).
[36] Arthur Juliani et al. Unity: A General Platform for Intelligent Agents. 2020. arXiv: 1809.

02627 [cs.LG].
[37] Can Kanbak, Seyed-Mohsen Moosavi-Dezfooli, and Pascal Frossard. “Geometric robustness

of deep networks: analysis and improvement”. In: Conference on Computer Vision and Pat-

tern Recognition (CVPR). 2018.
[38] Daniel Kang et al. “Testing Robustness Against Unforeseen Adversaries”. In: ArXiv preprint

arxiv:1908.08016. 2019.
[39] Amlan Kar et al. “Meta-sim: Learning to generate synthetic datasets”. In: Proceedings of the

IEEE/CVF International Conference on Computer Vision. 2019, pp. 4551–4560.
[40] Hiroharu Kato, Yoshitaka Ushiku, and Tatsuya Harada. “Neural 3D Mesh Renderer”. In: Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2018.
[41] Been Kim et al. “Interpretability beyond feature attribution: Quantitative testing with concept

activation vectors (tcav)”. In: International conference on machine learning (ICML). 2018.
[42] Eric Kolve et al. “Ai2-thor: An interactive 3d environment for visual ai”. In: arXiv preprint

arXiv:1712.05474 (2017).
[43] Jernej Kos, Ian Fischer, and Dawn Song. “Adversarial examples for generative models”. In:

IEEE Security and Privacy Workshops (SPW). 2018.
[44] Juncheng Li, Frank R. Schmidt, and J. Zico Kolter. “Adversarial camera stickers: A physical

camera-based attack on deep learning systems”. In: Arxiv preprint arXiv:1904.00759. 2019.
[45] Tzu-Mao Li et al. “Differentiable Monte Carlo Ray Tracing through Edge Sampling”. In:

SIGGRAPH Asia 2018 Technical Papers. 2018.
[46] Zachary C Lipton. “The Mythos of Model Interpretability: In machine learning, the concept

of interpretability is both important and slippery.” In: (2018).
[47] Hsueh-Ti Derek Liu et al. “Beyond Pixel Norm-Balls: Parametric Adversaries Using An Ana-

lytically Differentiable Renderer”. In: International Conference on Learning Representations

(ICLR). 2019.
[48] Xavier Puig et al. “Virtualhome: Simulating household activities via programs”. In: Proceed-

ings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018.
[49] Benjamin Recht et al. “Do ImageNet Classifiers Generalize to ImageNet?” In: International

Conference on Machine Learning (ICML). 2019.
[50] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “" Why should I trust you?" Ex-

plaining the predictions of any classifier”. In: International Conference on Knowledge Dis-

covery and Data Mining (KDD). 2016.
[51] Mike Roberts and Nathan Paczan. Hypersim: A Photorealistic Synthetic Dataset for Holistic

Indoor Scene Understanding. arXiv 2020.
[52] Amir Rosenfeld, Richard Zemel, and John K. Tsotsos. “The Elephant in the Room”. In: arXiv

preprint arXiv:1808.03305. 2018.

12

[53] Olga Russakovsky et al. “ImageNet Large Scale Visual Recognition Challenge”. In: Interna-

tional Journal of Computer Vision (IJCV). 2015.
[54] Manolis Savva et al. “Habitat: A platform for embodied ai research”. In: Proceedings of the

IEEE International Conference on Computer Vision. 2019.
[55] Shital Shah et al. “Airsim: High-fidelity visual and physical simulation for autonomous vehi-

cles”. In: Field and service robotics. Springer. 2018, pp. 621–635.
[56] Vaishaal Shankar et al. “Do Image Classifiers Generalize Across Time?” In: arXiv preprint

arXiv:1906.02168 (2019).
[57] Michelle Shu et al. “Identifying Model Weakness with Adversarial Examiner”. In: AAAI Con-

ference on Artificial Intelligence (AAAI). 2020.
[58] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. “Deep inside convolutional

networks: Visualising image classification models and saliency maps”. In: arXiv preprint

arXiv:1312.6034 (2013).
[59] Yunlong Song et al. “Flightmare: A Flexible Quadrotor Simulator”. In: arXiv preprint

arXiv:2009.00563 (2020).
[60] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. “Axiomatic attribution for deep networks”.

In: International Conference on Machine Learning (ICML). 2017.
[61] Christian Szegedy et al. “Intriguing properties of neural networks”. In: International Confer-

ence on Learning Representations (ICLR). 2014.
[62] Antonio Torralba and Alexei A Efros. “Unbiased look at dataset bias”. In: CVPR 2011. 2011.
[63] Eric Wong, Shibani Santurkar, and Aleksander Madry. “Leveraging Sparse Linear Layers for

Debuggable Deep Networks”. In: International Conference on Machine Learning (ICML).
2021.

[64] Yi Wu et al. “Building generalizable agents with a realistic and rich 3d environment”. In:
arXiv preprint arXiv:1801.02209 (2018).

[65] Fei Xia et al. “Gibson env: Real-world perception for embodied agents”. In: Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition. 2018.
[66] Fei Xia et al. “Interactive Gibson Benchmark: A Benchmark for Interactive Navigation in

Cluttered Environments”. In: IEEE Robotics and Automation Letters (2020).
[67] Fanbo Xiang et al. “SAPIEN: A simulated part-based interactive environment”. In: Proceed-

ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020.
[68] Chaowei Xiao et al. “MeshAdv: Adversarial Meshes for Visual Recognition”. In: Computer

Vision and Pattern Recognition (CVPR). 2019.
[69] Kai Xiao et al. “Noise or signal: The role of image backgrounds in object recognition”. In:

arXiv preprint arXiv:2006.09994 (2020).
[70] Cihang Xie et al. “Adversarial examples for semantic segmentation and object detection”.

In: Proceedings of the IEEE International Conference on Computer Vision. 2017, pp. 1369–
1378.

[71] Chih-Kuan Yeh et al. “On Completeness-aware Concept-Based Explanations in Deep Neural
Networks”. In: Advances in Neural Information Processing Systems (NeurIPS) (2020).

[72] Jianguo Zhang et al. “Local features and kernels for classification of texture and object cate-
gories: A comprehensive study”. In: International journal of computer vision. 2007.

[73] Yuke Zhu et al. “robosuite: A modular simulation framework and benchmark for robot learn-
ing”. In: arXiv preprint arXiv:2009.12293 (2020).

[74] Zhuotun Zhu, Lingxi Xie, and Alan Yuille. “Object Recognition without and without Ob-
jects”. In: International Joint Conference on Artificial Intelligence. 2017.

13

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] See conclusion.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See

conclusion.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main exper-

imental results (either in the supplemental material or as a URL)? [Yes] See supple-
mentary material.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] See Appendix F.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Appendix B.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data
you’re using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifi-
able information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

14

