
Algorithm 1: Double DRO policy optimization
Data: Dataset D = {Xi, Ai, Ri}, ⇡0, �c (reward/cost KL radius), �x (context KL radius)
Result: ⇡̂⇤

dro
, V̂ ⇤, ↵̂⇤

x
, ↵̂⇤

c
(n⇥k values)

// First DRO (rewards) (this step only needs to be done once):
1 if Binning then
2 RX,A  Bin values of Ri by unique (X,A) 2 X⇥A pairs.;
3 Solve for Q̂X,A for every unique (X,A) using Eq. 5;
4 else

// Using function approximation
5 {F}

m

i=1  Fit approximators to evaluate Ê[exp(�R/↵c)] using the method in Sec. 5;
6 Solve for Q̂Xi,a for every Xi 2 D, a 2 A using Eq. 12 // n⇥k total Q̂Xi,a values
// Policy Evaluation and Learning

7 ⇡  initial ⇡;
8 while ⇡ not converged do
9 J(↵x) = ↵x log

1
n

P
i
exp

⇣
�

P
a2A ⇡(a|Xi)Q̂Xi,a

↵x

⌘
+ ↵x�x;

10 V̂⇡ = �min↵x�0 J(↵x), ↵̂⇤
x
= argmin↵x�0 J(↵x)// Policy Evaluation

11 Update(⇡) (ex. for differentiable ⇡, fix ↵̂⇤
x

and perform gradient ascent.)
// Note the optimization problem on lines 3, 6, and 10 are all convex

and can be solved using gradient descent, bisection search, etc.

A Algorithm and Additional Experimental Details

A.1 Complete Algorithm

We give the pseudocode of our algorithm in Algorithm 1

A.2 Experiment Details

In this section we give additional details for our experiments not included in the main text. Each
experiment is run on an internal cluster machine with 4CPU and 16GB of memory. A single run of
each experiment runs between 10 minutes and 2 hours depending on dataset size.

For all experiments, our � vector is defined as:

�(X,A) = [X,OneHot(A)] (14)

A.2.1 Simulated Experiments

As mentioned in the main text, our simulated setting has 4 cgs, where cgs 1 and 3 (cg1,3), and cgs
2 and 4, (cg2,4) are the same. In addition to the cgs, there is also 4 other context features, Xf

i

randomly sampled from a uniform distribution. The first 2 features are randomly sampled from
Uniform([0, 0.4]) while the second 2 features are randomly sampled from Uniform([0.3, 0.7]). There
are 4 actions and each (cg, a) pair has a set of true reward generating parameters �⇤

(1,3),a and �⇤
(2,4),a

of length 4, and the observed reward is Ri = Bernoulli(�⇤T
Xi,a

Xf

i
). The �⇤’s are:

�⇤
(1,3),a =

8
>><

>>:

a0 : [0.5, 0.0, 0.5, 0.0]
a1 : [1.0, 0.0, 0.0, 0.0]
a2 : [0.0, 0.0, 1.0, 0.0]
a3 : [0.1, 0.1, 0.1, 0.1]

, �⇤
(2,4),a =

8
>><

>>:

a0 : [0.5, 0.0, 0.5, 0.0]
a1 : [0.0, 0.0, 0.0, 1.0]
a2 : [0.0, 1.0, 0.0, 0.0]
a3 : [0.1, 0.1, 0.1, 0.1]

We use a misspecified context for the experiments and the full context used is the cg concatenated
with the other features Xi = [cg,Xf

i
].
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For the Gaussian experiments, we use the same setup, but instead we first add gaussian noise to the
rewards and then clip them to [0, 1]: Ri = clip(�⇤T

Xi,a
Xf

i
+N (0, 0.1),min = 0,max = 1). For the

plot in the main text, the training dataset population split is as listed in Table 1 while the test dataset
population split between the coarse groups was shifted to (0.4, 0.1, 0.4, 01).

Reported results are averaged over 10 runs where we average over the randomization of the dataset
split, the initial policy parameters, and the gradient descent procedure.

A.2.2 Voting Experiments

The voting dataset of Gerber et al. [2008] is licensed under the Creative Commons Attribution-Non
Commercial-No Derivatives 3.0 license. The dataset contains 180002 datapoints, each a voter in
a different household across the state of Michigan. The researchers designed one control, and 4
treatment actions that involved mailing the selected individuals a letter ahead of the 2006 Michigan
primary election. The actions are:

• Nothing (control): No letter is sent
• Civic: A letter with "Do your civic duty"
• Hawthorne: A letter with "You are being studied"
• Self-History: A letter with the voter’s past voting participation record as well as that of the

other members of the household. The letter also mentioned a follow-up letter will be sent
with the household’s updated voting participation after the election

• Neighbors-History: A letter with the voting participation records of the individual, the other
members of the individual’s household, as well as the neighbors. The letter also mentioned
a follow-up letter will be sent after the election with everyone’s updated participation, so the
individual’s participation will be made known among the neighbors.

The data collection policy randomly sampled actions with probability 5
9 for the control action and 1

9
for the other actions. We use the binary indicator of voting outcomes as the reward. The neighbors
action was the best action for the population, with participants under that action voting at a rate of
around 10% higher than those under the control action. However all actions except the control require
effort and cost in the form of printing and mailing a letter. Therefore, for each non-control action, we
induce an "effort" cost by randomly flipping 0.09na of the positive outcomes to 0, where na for each
action is the number of participants that experienced that action. This lowers the average reward for
all non-control action by 0.09. We choose this cost to induce heterogeneous effects within the dataset.

For the experiment in the main text we take data from one city to use to train a policy deployed on
other cities. We choose the train and deployment cities to have a large context shift. For simplicity
we approximate a large context shift by choosing one context feature to examine, the ’p2004’ feature
which is an indicator if the individual voted in the 2004 primary election. We chose the one city with
the largest average ’p2004’ to be the training city and the 35 cities with the smallest ’p2004’ to be the
test cities. For computation efficiency and speed, we use a random sample of 25% of the training
data.

We additionally provide a experiment similar to that of the artificial shift in the Scene and Simulated
datasets that uses all the data. We set the ’coarse group’ using this p2004 features. From the subgroup
that did vote in the 2004 primary election, we partition 0.8 of the dataset into the training set and the
remaining 0.2 into the test set. Of the subgroup that did not vote, we partition 0.2 of the dataset into
the training set and the remaining 0.8 into the test set. This gives the coarse group composition of
(0.75, 0.25) in the training set and (0.15, 0.85) in the test set. While we choose this split, different
splits where there is a shift between the training distribution and test distribution also work. We use
the features of household size and gender as contexts. We illustrate the more difficult case where some
variables, such as the coarse group variable (whether the participants voted in the 2004 primaries),
are not available at test time.

We report results averaged across 30 runs.

A.2.3 Scene Experiments

The Scene classification dataset from the LibSVM library Chang and Lin [2011] is a multiclass-
supervised learning dataset. Datsets in the LibSVM library are licensed under the BSD 3-Clause. The
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features are processed features of the image and the labels correspond to various landscapes (such as
’mountains’, etc). As mentioned in the main text, we use a supervised-to-bandit conversion method
where we assume we do not observe the correct labels directly and instead each label is an action
and selecting a correct action/label gives positive reward (+1) while a wrong action/label gives no
reward (0). We assume we only observe 1 action per datapoint and we randomly sample the actions
we observe. We use the true labels to partition the dataset into coarse groups, we place datapoints
that contain labels 1, 2, and 3 into one group (cg0) and the others into another group (cg1). As in
the voting dataset we induce a train test split such that 0.1 of the datapoints in cg0 and 0.6 of the
datapoints in cg1 are in the train dataset with the rest in the test dataset. As in the voting dataset, we
assume this feature will not be available at test time.

Due the small dataset size, we use orthonormal random projection, P 2 Rd⇥dp to project the dataset
onto 3 dimensions. Let d = 294 be the original context feature length and dp = 3 be the desired
projected length. To create our random orthonormal projection matrix of size Rd⇥dp we first sample
a matrix of size Rd⇥dp where each item is sampled from Uniform([0, 1]). We then take the singular
value decomposition and calculate the left and right singular values U 2 Rd⇥dp and V 2 Rdp⇥dp .
We then calculate: P = UV .

Our reported results are averaged over 30 runs where each run randomizes across the datapoints in the
train-test splits, the initial policy parameters, the gradient descent steps during policy optimization,
and the random generated random projection matrix.

A.2.4 Reward Shift Experiment

Our simple environment for reward shift has two unique contexts (X0, X1), with X0 = [0, 1] and
X1 = [1, 0], and 3 actions. We assume the rewards are binary, but with different support for each (X ,
a) pair. The reward generation process is defined by a tuple of 3 values (r0, r1, p) with r1 � r0 and
Ri = (r1 � r0)Bernoulli(p) + r0.

X0 =

8
<

:

a0 : (0.0, 1.0, p)
a1 : (0.3, 0.5, p)
a2 : (0.1, 0.15, p)

, X1 =

8
<

:

a0 : (0.0, 1.0, p)
a1 : (0.0, 1.0, p)
a2 : (0.1, 0.15, p)

We induce a reward shift by setting p = 0.7 when generating the training data and p = 0.5 for the
test data.

A.3 Additional Results: Different dataset splits and hyperparameters

In Figure 2 we give some results from different dataset splits and hyperparameters. In Figure 2
(a) we give the plot similar to plots (b-e) in Figure 1 of the main text for the Simulated Bernoulli
experiment. In these plots, we fix the training and test distribution and examine different values of
the �/�x hyperparameter. We see FDRO can learn more robust policies that work well in the test
set under context shift. In Figure 2(b) and (c), we show the result of running different dataset splits.
Figure 2(b) considers a different training and test context distributions. It considers a shift of group
distribution from (0.63, 0.17) in the training set to (0.3, 0.7) in the test set. Figure 2(b) considers
a different number of groups. As opposed to 2 coarse groups, we now partition the dataset into 3
groups (with items with labels 0 and 1 in cg0, the remaining items with labels 2, 3 in cg1, and all
the remaining items in cg2). We see in both cases FDRO is able to learn more robust policies that
work well on the test context distribution compared to baselines. In Figure 2(d) and (e) we test out
different hyperparameters to generate plots similar to that of Figure 1(a) of the main text. Like in the
main text plot, we fix the �x and training distribution and generate test datasets with different shifted
group distributions. Also, as in the main text, while we fix �x for FDRO, we optimize the uncertainty
parameter at each test distribution for the baselines. We plot the performance of each algorithm as the
performance gain in the test dataset over baseline-IS. We see that for different �x hyperparameters,
FDRO can still perform better than baselines when there is shift. Setting a lower value of �x leads to
a smaller decrease in performance when there is very little shift; however, the benefits at large shifts
is also smaller.
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Figure 2: In these plots, we demonstrate FDRO can perform well even under different hyperparameter
and dataset configurations. The dotted line ’Middle’ serves as a constant horizontal reference across
the two panels in plots (a-d, g). All plots are plotted with 95% confidence intervals shaded. Reported
results and confidence intervals are averaged over 10 runs in all simulated domains and 30 runs in
Scene and Voting. Top Row: (a-c) We fix the train and test distributions and plot the performance
at different �/�x hyperparameters in the Scene domain. The plots show results from different
configurations than that in the main text, including different dataset splits (a), different number of
groups (b), and different number of features for random projection (c). We see FDRO is able to learn
more robust policies that does well in the test distribution in all cases. Middle Row: (d-f) We give
results for different configurations in the Simulated Bernoulli dataset. In (d) we give the two panel
plot with the parameters described in the main text. In (e,f) We vary the shift in the test distribution
and plot results as the performance gain over baseline-IS. Bottom Row: We give a plot for the voting
dataset with an artifically induced shift.
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Figure 3: We give additional results on hyperparameter sensitivity. The dotted line ’Middle’ serves
as a constant horizontal reference across the two panels in plots (a) we show sensitivity to �c by
showing performance Simulation Bernoulli at multiple values of �c (b) The extracted worst case
population of each cg of our FDRO for different �x. (c) We plot the reward for each action for the
joint formulation (baseline-DRO) at different values of the dual parameter ↵. As described in the text,
the order between the actions never changes.

A.4 Additional Discussion

We provide some additional points of discussion. In Figure 3a we plot performance at different values
of �c for the Simulated Bernoulli case and show performance to be similar across parameters.

A.4.1 Examining the Worst Case Context

The worst case distribution for DRO formulation with KL distance bounds is an softmax scaled
weighting of the datapoints [Hu and Hong, 2013]. with a temperature determined by optimal dual
variable ↵⇤. If we have discrete or easily discretized context features, we can examine the worst case
distribution of that feature. We plot the worst case distributions of the cg context feature of FDRO in
Figure 3b in the Bernoulli simulated environment. For each � value, the end user can examine the
estimated performance on the training distribution as well as the worst-case distribution of some of
the features to decide if the policy is reasonable.

Formally, from Hu et al. [2018], the worst case distribution is an exponentially/softmax reweighing
of the points:

pi =
exp((�

P
a2A ⇡̂⇤(a|Xi)Q̂X,A)/↵⇤

x
)

P
i
exp((�

P
a2A ⇡̂⇤(a|Xi)Q̂X,A)/↵⇤

x
)

(15)

where ↵⇤
x

is the optimal dual variable of ⇡̂⇤ in Equation 7. Consider the jth feature in the context
and assume this feature is either discrete, or easily discretized. We can calculate the worst case
distribution over values the feature takes on as:

P (X[j] = x) =
X

pi [Xi[j] = x] (16)

A.4.2 Utilizing unavailable features:

In two of the settings - voting and scene, we assumed there were context features in the train set
that are unavailable at deployment. This situation occurs when those features are unavailable at
deployment, or when they are sensitive features that should not be used for fairness considerations.
Even without using it for the policy, FDRO is still able to better utilize this information in the first
DRO step when calculating the worst case rewards Q̂X,A.

A.4.3 Additional Discussion: Equivalence of Solutions

As mentioned in the main text, we can compare baseline-DRO and FDRO by examining the KL-
divergence chain rule decomposition:

Dkl(p0(R,X)||p(R,X)) = Dkl(p0(X)||p(X)) + EPx0
[Dkl(p0(R|X)||p(R|X))]

19



Recall Dkl(p0(R,X)||p(R,X)) = �, Dkl(p0(X)||p(X)) = �x, Dkl(p0(R|X)||p(R|X)) = �c.
This informs us that we have the following relation between the baseline-DRO parameter � and the
FDRO ones �x and �c:

� = �x +
X

x

Px0�c

.

From this we can see that if we allow �c to vary with context X and action A, we can set parameters
of �x and �c(X,A) such that the FDRO will find the same solution as baseline-DRO. However this
increase in parameter may be difficult for the algorithm designer. Therefore we expect FRDO to be
particularly useful when there are independent shifts in the reward and context distributions, which is
a common setting– such as shifting locations (for hospitals or social welfare solutions).

We give a detailed example of what the worst case shift in rewards look like for a single action, and
how differs between the factored formulation (FDRO) and the joint formulation (baseline-DRO)
Figure 4. In this example, we consider a simple two context, discrete reward setting and examine
the worst case distributions for a single action. We compare with setting the single joint parameter
to � = 0.1 and setting the context shift parameter of the factored formulation to �x = 0.1, while
allowing for very little reward shift �c = 0. We can see the resulting worst case joint distribution is
different under the two formulations. We can additionally see for the factored formulation to achieve
the equivalent worst case distribution as the joint formulation, we need to set different reward shift
radius parameters (�c) for context X0 and context X1.

A.4.4 Additional Details: Why Joint DRO May Not Work for Binary Rewards

In the main text we mentioned the formulation from prior work [Si et al., 2020] that jointly considers
the context and reward distribution shift may lead to a degenerate result of finding the best policy
on the training context distribution under binary reward feedback. This empirical observation is
similar to a proven phenomena from the supervised learning literature in distributionally robust
optimization [Hu et al., 2018] under continuous inputs. The intuition behind this phenomena is that
DRO can be seen as weighing the datapoints based on the incurred loss/or incurred cost, where cost
are negative rewards. Under binary reward feedback, the lower reward points for each context action
pair are all upweighted equally and we empirically observe this leads to a learned policy equivalent
to that optimal for the training context distribution. In this section we provide a simple example and
additional details around this observation.

Consider a simplified version of the Simulated Bernoulli setting described above, however in this
setting, let cg be the only context feature. Additionally in this case there are only 2 actions {a0, a1}.
a0 achieves medium reward for all contexts (Bernoulli(0.4)), while a1 achieves high reward for cg1,3
(Bernoulli(0.5)) and low reward for cg2,4 (Bernoulli(0.3)). Consider optimizing for the parameters, ✓,
of a linear contextual bandit policy of the form argmaxa �(x, a)

T ✓ where �(x, a) concatenates the
context with a one hot encoding of the action. This representation attempts to fit a linear dependence
on context when the relationship is very nonlinear. Due to this misspecification, this ends up being
equivalent to optimizing a non-contextual bandit which chooses the single best action. Consider the
case where cg1,3 comprises a large majority (0.8) of the training context distribution, Px,train. In this
case, action a0 is optimal for Px,train. If we are certain only the context distribution will shift, as we
expand the uncertainty set around Px,train, we expect best worst-case action to eventually shift to the
action that is good for both groups, a1. However due to binary rewards, we empirically see the joint
formulation upweights the lower rewards for each action equally. We demonstrate this in Figure 3(c),
where we examine the re-weighted rewards for each action in the joint formulation, which the joint
method uses with weighted importance sampling to optimize the policy. We look at the reward values
under different values of the dual variable ↵. Notice that for decreasing ↵, while the re-weighted
rewards are lower, the order of the benefit of the rewards does not change. Therefore in this example,
there is no value of � that will result in a policy different from that optimal for the training context
distribution. Our method which decomposes context and reward generation shift mitigates this issue.

B Proofs

Throughout the proofs, we will define a new variable C, or costs, for convenience, with C = �R and
Ci = �Ri for every i.
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Figure 4: A detailed example of what the worst case shift in rewards look like for a single action. We
choose a simple two context, discrete reward setting. We see that even under the same amount of KL
shift (� = 0.1), the difference in results under the factored approach and the joint formulations are
different. We also give the equivalent parameters for FDRO to be equivalent to the solutions of the
joint formulation.
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B.1 The Convexity and Derivatives of the Policy Evaluation steps

We first prove the convexity of the objectives inside the minimization of equations 6 and 7 and give
their derivatives as mentioned in the main text. We first give this intermediate result:

Lemma 1 (Convexity of DRO formulation). Consider a set of n values, {Bi} for i = 1, ..., n and

function

f(↵) = ↵ log

 
X

i

1

n
exp

✓
Bi

↵

◆!
+ ↵�

Then f(↵) is convex in ↵ for ↵ > 0

Proof.

f(↵) = ↵ log

 
X

i

1

n
exp

✓
Bi

↵

◆!
+ ↵�

= ↵ log

 
X

i

exp

✓
Bi

↵

◆!
+ ↵� + ↵ log

✓
1

n

◆

First recall a classic result from convex optimization that states a function f(x, y) = yg(x
y
) is convex

for y > 0 if an only if g is convex. [Boyd et al., 2004]

Note the expression g(B) = log (
P

i
exp (Bi)) takes on the form of a log-sum-exp which is convex.

Therefore the function f(B,↵) = ↵g
�
B

↵

�
= ↵ log

P
i

�
exp

�
Bi
↵

��
is convex, and consequently

convex in ↵ when ↵ > 0.

The linear combination of convex function is still convex, so we have the desired result.

Now we return to proving the convexity of equations 6 and 7. We first reproduce them here with new
intermediate variables ẐX,A and Ĵ(⇡,↵x) that represent the objective inside the optimization:

ẐX,A(↵c) = ↵c log

0

@ 1

mxa

X

Rj2RX,A


exp

✓
�Rj

↵c

◆�1

A+ ↵c�c (17)

Ĵ(⇡,↵x) = ↵x log
X

i

1

n
exp

 
�
P

a2A ⇡(a|Xi)Q̂Xi,a

↵x

!
+ ↵x�x (18)

With these variables, we have:

Q̂X,A = � min
↵c�0

n
ẐX,A(↵c)

o
and V̂ (⇡) = � min

↵x�0

n
Ĵ(⇡,↵x)

o
(19)

We can directly apply Lemma 1 to ẐX,A(↵c) and Ĵ(⇡,↵x) as defined above with Bj = Rj and
Bj =

P
a2A ⇡(a|Xj)Q̂Xj ,a respectively to obtain both ẐX,A(↵c) and Ĵ(⇡,↵x) are convex.

We also give the gradient of ẐX,A(↵c) and Ĵ(⇡,↵x):

Remark 1 (Gradient of DRO formulation). The gradient
@f(↵)
@↵

of f(↵) given in Lemma 1 is:

@f(↵)

@↵
= �

P
i
Bi exp

�
Bi
↵

�

↵
P

i
exp

�
Bi
↵

� + log

 
X

i

exp

✓
Bi

↵

◆!
+ �

We now prove the main lemmas and theorems from the main text.
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B.2 Collection of Useful Results From Prior Work

We first collect results from prior work we will use for proofs of Theorems 1, 2 and 3.

We will utilize Hoeffding’s inequality:

Lemma 2 (Hoeffding’s Inequality). Let Z1, ...Zn be independent bounded random variables with

Zi 2 [a, b] for all i, where �1 < a  b <1. Then:

P
 
1

n

nX

i=1

(Zi � E[Zi]) � t

!
 exp

✓
�

2nt2

(b� a)2

◆
(20)

and

P
 
1

n

nX

i=1

(Zi � E[Zi])  t

!
 exp

✓
�

2nt2

(b� a)2

◆
(21)

for all t � 0

Distributionally Robust Optimization with KL divergence [Hu and Hong, 2013]
We also use a result from the DRO literature in stochastic optimization from Hu and Hong [2013].
The distributionally robust optimization formulation from stochastic optimization literature considers
optimizing the model variables ✓ 2 ⇥ (for example, parameters of a logisitic regression model) to
achieve the best worst-case future performance (ex. performance on the test set). The goal is to use
the observed random values ⇠ (ex. (input, label) pairs of the training data) to optimize a cost function
L(✓, ⇠) (ex.classification loss) when evaluated in the unknown test distribution. The test distribution
is assumed to be within an uncertainty set, P⇠0 . In this work, we focus on ambiguity sets defined as a
bound on the Kullback-Leibler (KL) divergence from the data generation distribution P⇠0 . The DRO
optimization problem is:

✓⇤ = argmin
✓2⇥

max
P⇠2P⇠

EP⇠ [L(✓, ⇠)], where P⇠ = {P⇠ : Dkl(P⇠||P0)  �}

The inner maximization over P⇠ is difficult to solve directly as it is a constrained optimization
problem in probability space. However Hu and Hong [2013] show through strong duality that this
can be transformed into a much easier unconstrained convex minimization over a scalar:

Lemma 3 (Theorem 1 from Hu and Hong [2013]:). Assume L(✓, ⇠) takes on a finite set of values

or is bounded almost surely. Then through strong duality, the inner maximization is equivalent to

solving the following optimization problem:

max
P⇠2P⇠

EP⇠ [L(✓, ⇠)] = min
↵�0

↵ logEP0 [exp(L(✓, ⇠)/↵)] + ↵�

Uniform Convergence of Stochastic Optimization [Shalev-Shwartz et al., 2009]
We will also make use of the following uniform convergence result from Shalev-Shwartz et al. [2009]
of the optimization of convex objectives.

Consider the following stochastic minimization problem:

w⇤ = argmin
w2W

F (w) (22)

Where f(w;Z) denote the loss objective and F (w) = EZ [f(w,Z)]. Define the empirical objective
and minimizer as F̂ (w) = 1

n

P
n

i=1 f(w; zi) and ŵ = argminw F̂ (w).

Then the following result guarantees uniform convergence of F (w) over w:

Lemma 4 (Uniform Convergence of Stochastic Convex Optimization (Theorem 5 of Shalev-Shwartz
et al. [2009])). Let the following conditions hold:

1. f(w, z) is convex in w

2. W ⇢ Rd
is bounded by B
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3. f(w, z) is L-Lipschitz w.r.t w

Then with probability of at least 1� �, for all w 2W:

���F (w)� F̂ (w)
���  O

 
LB

r
d log(n) log(d/�)

n

!
(23)

We also use Si et al. [2020]’s result on the upper bound on ↵:

Lemma 5 (Lemma 11 of Si et al. [2020]). Let variable B be bounded between 0 and M, then the

optimal ↵ in the objective:

inf
↵�0

↵ logEPB [exp(B/↵)] + ↵�

is upper bounded: ↵⇤
M/�.

B.3 Proof of Theorem 1

We first restate Theorem 1:

Theorem 1 (Strong Duality). The optimization problem in equation 2 is equivalent to solving:

V (⇡) = � min
↵x>0

⇢
↵x logEX⇠Px0


exp

✓
E⇡ [�QX,A]

↵x

◆
+ ↵x�x

��
, (4)

where QX,A = � min
↵c>0

⇢
↵c logER⇠Pr0|X,A


exp

✓
�R

↵c

◆�
+ ↵c�c

�
. (5)

The proof of Theorem 1 directly follows from applying Lemma 3 twice. Notice that because rewards,
R, are bounded [0, RM ], the assumption of Lemma 3 is satisfied for QX,A. Similarly, QX,A are also
bounded [0, RM ] so the assumption is also satisfied for V (⇡).

B.4 Policy Evaluation and Learning convergence

We first prove the probability of convergence for Q̂X,A for each (X,A) pair separately. We then
apply the union bound to bound the probability they hold jointly for all (X,A) pairs. We then use
this result along with local Lipschitz continuity to prove the rest of the results.

We start with proving PAC uniform convergence for Q̂X,A:

Lemma 6 (PAC convergence of QX,A (first DRO layer)). Given a (X,A) pair, when n �
(p

0
(x,a))2

2 log(2/�) ,

the following result holds with probability at least 1� � and all ↵c 2 [↵
c
/2, 2↵̄c]:

���QX,A � Q̂X,A

���  O

 
c

r
log(n) log(2/�)

n

!
(24)

where

c =
32(Rmax)3

�2
c
↵2
c
exp(�Rmax/↵c

)p
0
(x, a)

(25)

and p
0
(x, a) is the lowest probability (X,A) pair: p

0
(x, a) = min(x,a) p0(x, a), and ↵

c
is the

minimum value for ↵c and satisfies ↵
c
> 0.

Proof We first rewrite the objective in terms the total number of samples, n, across all state, action
pairs, as opposed to the number of samples mxa for the (X,A) pair:

Q̂X,A = � min
↵c>0

8
<

:↵c log

0

@ 1

mxa

X

Rj2RX,A


exp

✓
�Rj

↵c

◆�1

A+ ↵c�c

9
=

; (26)

= � min
↵c>0

(
↵c log

 
1

p0(x, a)n

nX

i=1


xa exp

✓
�Ri

↵c

◆�!
+ ↵c�c

)
(27)
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Where xa is the indicator function that is 1 if both Xi = x and Ai = a, and 0 otherwise. We use the
fact

P
Rj2RX,A

h
exp

⇣
�Rj

↵c

⌘i
=
P

n

i=1

h
xa exp

⇣
�Ri
↵c

⌘i

Consider the value of QX,A for a single (X,A) pair. Consider the function Fxa(↵c) =
E[ xa exp(Ci/↵c)] with fxa(↵c, Ci) = xa exp(Ci/↵c). Then fxa(↵c, Ci) is upper bounded by 1
and lower bounded by 0. Additionally note that fxa(↵c, Ci) is locally L-Lipschitz with respect to ↵c

on [↵
c
/2, 2↵̄c]:

@fxa(↵c)

↵c

= � xaCi exp(Ci/↵c)

↵2
c

(28)
����
@fxa(↵c)

↵c

���� 
4Rmax

↵2
c

(29)

Additionally, from Lemma 5, we have ↵̄c = Rmax/�c. Therefore, we can directly apply Lemma 4 to
Fxa(↵c) and F̂xa = 1

n

P
n

i=1 fxa(↵c, Ci) with d = 1, B = 2↵̄c = 2Rmax/�c and L = 4Rmax/↵2
c

and conclude uniform convergence in ↵c on the range [↵
c
/2, 2↵̄c]: with probability 1� �0:

sup
↵c2[↵c/2,2↵̄c]

���Fxa(↵c)� F̂xa(↵c)
���  O

 
8(Rmax)2

�c↵2
c

r
log(n) log(1/�0)

n

!
(30)

Now define, Gxa(↵c) = ↵c log
⇣

Fxa(↵c)
p0(x,a)

⌘
+ ↵c�c. Note that QX,A = min↵c�0 Gxa(↵c)

sup
↵c

���Gxa(↵c)� Ĝxa(↵c)
��� = sup

↵c

���↵c(log(F (↵c))� log(F̂ (↵c)))
��� (31)

 2↵̄cL sup
↵c

���F (↵c)� F̂ (↵c)
��� (32)

 O

 
2↵̄c

8(Rmax)2L

�c↵2
c

r
log(n) log(�/2)

n

!
(33)

Where the second line utilizes the fact that log is locally L-Lipschitz and:

L =
1

min{inf↵c F̂ (↵c), inf↵c F (↵c)}

We now derive the quantity L. First note the expression exp(Ci/↵c) � exp(�Rmax/↵c
). With this

we can write:

Fxa(↵c) = p0(x, a)E[exp(Ci/↵c)|Xi = x,Ai = a] (34)
� p0(x, a) exp(�Rmax/↵c

) (35)
and (36)

F̂xa(↵c) =
1

n

nX

i=1

xa exp(Ci/↵c) (37)

� exp(�Rmax/↵c
)
1

n

nX

i=1

xa (38)

= exp(�Rmax/↵c
)p̂0(x, a) (39)

Where p̂0(x, a) =
1
n

P
n

i=1 xa is the empirical probability of observing (X,A) in the dataset. Now
we need to lower bound p̂0(x, a). Let us lower bound the probability it is less than half of the true
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value p0(x, a)/2:

P

✓
p̂0(x, a) 

p0(x, a)

2

◆
= P

✓
�p̂0(x, a) � �

p0(x, a)

2

◆
(40)

= P

✓
p0(x, a)� p̂0(x, a) � p0(x, a)�

p0(x, a)

2

◆
(41)

= P

✓
p0(x, a)� p̂0(x, a) �

p0(x, a)

2

◆
(42)

(1)
 exp

 
�2n

✓
p0(x, a)

2

◆2
!

(43)

= exp

✓
�
np0(x, a)2

2

◆
(44)

Where step (1) applies Hoeffding inequality on the binary random variables xa and with t = p0(x,a)
2

We can now calculate the minimum number of timesteps such that P
⇣
p̂0(x, a) 

p0(x,a)
2

⌘
 �0:

exp

✓
�
p0(x, a)2

2n

◆
 �0 �����!

Solve for n
n �

2 log(1/�0)

p0(x, a)2
(45)

Therefore for n � 2 log(1/�0)
p0(x,a)2

, with probability 1� � we have p̂0(x, a) �
p0(x,a)

2 . We therefore have:

L =
2

exp
⇣

�Rmax
↵c

⌘
p0(x, a)

�
2

exp
⇣

�Rmax
↵c

⌘
p
0
(x, a)

(46)

We can now put everything together for the constant from equation 33:

c = 2↵̄c

8(Rmax)2L

�c↵2
c

=
32(Rmax)3

�2
c
↵2
c
exp

⇣
�Rmax

↵c

⌘
p
0
(x, a)

(47)

Let ↵̂c = argmin↵c
Ĝxa(↵c). Note that Q̂X,A = Ĝxa(↵̂c). Let ↵⇤

c
= argmin↵c

Gxa(↵c). Note that
QX,A = Gxa(↵⇤

c
).

It then follows:

Gxa(↵̂c)� Ĝxa(↵̂c)  O

 
c

r
log(n) log(1/�0)

n

!
(48)

Gxa(↵̂c)� Ĝxa(↵̂c) +Gxa(↵
⇤
c
)  Gxa(↵

⇤
c
) +O

 
c

r
log(n) log(1/�0)

n

!
(49)

Gxa(↵
⇤
c
)� Ĝxa(↵̂c)  Gxa(↵

⇤
c
)�Gxa(↵̂c) +O

 
c

r
log(n) log(1/�0)

n

!
(50)

QX,A � Q̂X,A  Gxa(↵
⇤
c
)�Gxa(↵̂c)| {z }
0

+O

 
c

r
log(n) log(1/�0)

n

!
(51)

QX,A � Q̂X,A  O

 
c

r
log(n) log(1/�0)

n

!
(52)

Similarly we can start with Gxa(↵⇤
c
)� Ĝxa(↵⇤

c
)  O

✓
c
q

log(n) log(1/�0)
n

◆
and prove the other side

Q̂X,A �QX,A  O

✓
c
q

log(n) log(1/�0)
n

◆
.
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By setting �0 = �/2, and taking the union bound over the two sides, the desired lemma result
follows.

Note about ↵
c
: In this work we only consider cases where ↵c > 0. ↵c is strictly bounded away

from 0 by some ↵
c
> 0. This occurs either when rewards have continuous support, or, in the case of

discrete reward support, when �c is small enough such that the uncertainty set does not include the
distribution with all mass at a single support value.

Since we are considering the case of discrete, finite context and action sets, we can now take a union
bound over all (X,A) pairs and achieve joint uniform convergence over all (X,A) pairs to arrive at
the following result:

Lemma 7 (Uniform convergence over all (X,A)). When n � (2 log(2|X |A|/�)
(p

0
(x,a))2 , the following holds

with probability of at least 1� �:

max
(X,A)

���QX,A � Q̂X,A

���  O

 
c

r
log(n) log (2|X ||A|/�)

n

!
(53)

Where

c =
32(Rmax)3

�2
c
↵2
c
exp

⇣
�Rmax

↵c

⌘
p
0
(x, a)

(54)

With this, we continue the proof, recall our goal is to optimize the distributionally robust objective:

V̂ = min
⇡,↵x�0

n
Ĵ(⇡,↵x)

o
and V (⇡) = min

⇡,↵x�0
{J(⇡,↵x)} (55)

Where

Ĵ(⇡,↵x) = ↵x logE
"
exp

 
�Q̂avg

X,⇡

↵x

!#
+ ↵x�x (56)

J(⇡,↵x) = ↵x logE
"
exp

 
�Qavg

X,⇡

↵x

!#
+ ↵x�x (57)

And for a fixed policy ⇡ and a context X

Q̂avg

X,⇡
=
X

a

⇡(a|X)Q̂X,a and Qavg

X,⇡
=
X

a

⇡(a|X)QX,a (58)

We will next show the following result which gives uniform convergence of J(⇡,↵x) in ⇡ and ↵x.

Lemma 8 (Uniform convergence of optimization objective). With probability of at least 1� � and

with n � (2 log(2|X |A|/�)
(p

0
(x,a))2 :

sup
⇡,↵x

���Ĵ(⇡,↵x)� J(⇡,↵x)
���  O

0

BB@c

vuut log(n) log
⇣

2|X ||A|
�

⌘

n

1

CCA (59)

Proof: For all steps, assume n � (2 log(2|X |A|/�)
(p

0
(x,a))2 . Because

P
a
⇡(a|X) = 1, Qavg

X,⇡
is a weighted

average of QX,A.

���Q̂avg

X,⇡
�Qavg

X,⇡

���  max
���QX,A � Q̂X,A

���  O

0

BB@c

vuut log(n) log
⇣

2|X ||A|
�

⌘

n

1

CCA (60)
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Additionally because Lemma 7 holds for simultaneously all (X,A) pairs, and every Q̂avg

i,⇡
depends on

the same set of QX,A, we have the above result holds with probability with 1� � for all i. Formally,
with probability 1� �:

max
X

���Q̂avg

X,⇡
�Qavg

X,⇡

���  max
���QX,A � Q̂X,A

���  O

0

BB@c

vuut log(n) log
⇣

2|X ||A|
�

⌘

n

1

CCA (61)

Then we have:

sup
���Ĵ(⇡,↵x)� J(⇡,↵x)

��� = ↵x sup

�����logE
"
exp

 
�Q̂avg

X,⇡

↵x

!#
� logE

"
exp

 
�Qavg

X,⇡

↵x

!#����� (62)

= ↵x sup

��������

0

BB@logE

2

664

exp

✓
�Q̂

avg
i,⇡

↵x

◆

exp
⇣�Q

avg
i,⇡

↵x

⌘

3

775

1

CCA

��������
(63)

= ↵x sup

�����

 
logE

"
exp

 
Qavg

i,⇡
� Q̂avg

i,⇡
)

↵x

!#!����� (64)

 ↵x

0

@logE

2

4exp

0

@
supi

���Qavg

i,⇡
� Q̂avg

i,⇡

���
↵x

1

A

3

5

1

A (65)

 ↵x

0

BB@log

0

BB@exp

0

BB@

O

✓
c

q
log(n) log( 2|X||A|

� )
n

◆

↵x

1

CCA

1

CCA

1

CCA (66)

= O

0

BB@c

vuut log(n) log
⇣

2|X ||A|
�

⌘

n

1

CCA (67)

Which is the desired result.

We can now show convergence in policy evaluation. We first rewrite the objectives, V̂ (⇡) and V̂ (⇡),
using J(⇡,↵x) and Ĵ(⇡,↵x). Given a fixed policy ⇡:

V̂ (⇡) = min
↵x�0

n
Ĵ(⇡,↵x)

o
and V (⇡) = min

↵x�0
{J(⇡,↵x)} (68)

We now restate the theorem:

Theorem 2 (Convergence of policy evaluation). For n � (2 log(2|X |A|/�)
(p

0
(x,a))2 , the following holds for any

⇡ with probability of at least 1� �:

���V (⇡)� V̂ (⇡)
���  O

0

BB@c

vuut log(n) log
⇣

2|X ||A|
�

⌘

n

1

CCA where c =
32(Rmax)3

�2
c
↵2
c
exp(�Rmax

↵c
)p

0
(x, a)

(8)

and p
0
(x, a) = min(x,a) p0(x, a) � ✏⇡✏X is the minimum over probability of occurrence of (X,A)

pairs, and ↵
c

is the minimum value for ↵c.

Proof For all steps, assume n � (2 log(2|X |A|/�)
(p

0
(x,a))2 . Define:

↵̂x = argmin
↵x�0

n
Ĵ(⇡,↵x)

o
and ↵⇤

x
= argmin

↵x�0
{J(⇡,↵x)} (69)
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It then follows:

J(⇡, ↵̂x)� Ĵ(⇡, ↵̂x)  O

0

BB@c

vuut log(n) log
⇣

2|X ||A|
�

⌘

n

1

CCA (70)

J(⇡, ↵̂x)� Ĵ(⇡, ↵̂x) + J(⇡,↵⇤
x
)  J(⇡,↵⇤

x
) +O

0

BB@c

vuut log(n) log
⇣

2|X ||A|
�

⌘

n

1

CCA (71)

J(⇡,↵⇤
x
)� Ĵ(⇡, ↵̂x)  J(⇡,↵⇤

x
)� J(⇡, ↵̂x) +O

0

BB@c

vuut log(n) log
⇣

2|X ||A|
�

⌘

n

1

CCA

(72)

V (⇡)� V̂ (⇡)  J(⇡,↵⇤
x
)� J(⇡, ↵̂x)| {z }

0 by definition of ↵⇤
x

+O

0

BB@c

vuut log(n) log
⇣

2|X ||A|
�

⌘

n

1

CCA (73)

V (⇡)� V̂ (⇡)  O

0

BB@c

vuut log(n) log
⇣

2|X ||A|
�

⌘

n

1

CCA (74)

We can also show the other side:

Ĵ(⇡,↵⇤x)� J(⇡,↵⇤
x
)  O

0

BB@c

vuut log(n) log
⇣

2|X ||A|
�

⌘

n

1

CCA (75)

Ĵ(⇡,↵⇤x)� J(⇡,↵⇤
x
) + Ĵ(⇡, ↵̂x)  Ĵ(⇡, ↵̂x) +O

0

BB@c

vuut log(n) log
⇣

2|X ||A|
�

⌘

n

1

CCA (76)

Ĵ(⇡, ↵̂x)� J(⇡,↵⇤
x
)  Ĵ(⇡, ↵̂x)� Ĵ(⇡,↵⇤x) +O

0

BB@c

vuut log(n) log
⇣

2|X ||A|
�

⌘

n

1

CCA

(77)

V̂ (⇡)� V (⇡)  Ĵ(⇡, ↵̂x)� Ĵ(⇡,↵⇤x)| {z }
0 by definition of ↵̂x

+O

0

BB@c

vuut log(n) log
⇣

2|X ||A|
�

⌘

n

1

CCA

(78)

V̂ (⇡)� V (⇡)  O

0

BB@c

vuut log(n) log
⇣

2|X ||A|
�

⌘

n

1

CCA (79)

Combining these two shows the result gives the desired result.

Now lastly consider the case of policy learning. Define

V ⇤ = min
⇡,↵x

J(⇡,↵x) and V̂ ⇤ = min
⇡,↵x

Ĵ(⇡,↵x) (80)
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Additionally define optimal parameters:

(⇡⇤,↵⇤
x
) = argmin

⇡,↵x

J(⇡,↵x) and (⇡̂, ↵̂x) = argmin
⇡,↵x

Ĵ(⇡,↵x) (81)

Finally, recall the the set of ✏-optimal policies ⇧⇤
✏
= {⇡ : V (⇡) � V ⇤

� ✏}.

We first restate the theorem:

Theorem 3 (Convergence of Policy Learning). For n � (2 log(2|X |A|/�)
(p

0
(x,a))2 , the following holds with

probability of at least 1� �:

���V̂ ⇤
� V ⇤

���  O

0

BB@c

vuut log(n) log
⇣

2|X ||A|
�

⌘

n

1

CCA (9)

Equivalently this says

P (⇡̂ 2 ⇧⇤
✏
) > 1�O

✓
2|X ||A| exp

✓
�

n✏2

log(n)c2

◆◆
(10)

Proof : This proof is similar to the proof of policy evaluation of the previous theorem. The first side
of the inequality

J(⇡̂, ↵̂x)� Ĵ(⇡̂, ↵̂x)  O
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BB@c

vuut log(n) log
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2|X ||A|
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The other side of the inequality:
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1
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V̂ ⇤
� V ⇤
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0 by definition of (⇡̂,↵̂x)

+O
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Combining these two shows the result gives the desired result.
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