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A Real Scenes with Spike and Flow Datasets

A.1 Details of the Scenes

We propose the real scenes with spike and flow (RSSF) dataset for training and evaluating spike-based
optical flow. The dataset is generated based on data in Slow Flow [2] dataset that is captured by
high-speed cameras. There are 31 scenes for training and 10 scenes for testing. The scenes for
training are shown in Fig. 8, and the scenes for testing are shown in Fig. 9. The detailed statistics
of each scene in RSSF are shown in Tab. 5. There are three kinds of training scenes with different
resolutions and numbers of spike frames. There are a total of 9.6k+ flow fields and 193k+ spike
frames in the training dataset. As for the 11 scenes in the evaluation dataset, we select the first 200
flow fields to balance the weights of different scenes. To standardize the evaluation data, we use
center clipped to make the width of each spike frame and flow field to be 1024 and make the height
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of images whose height exceeds 768 to be 768. The totals of flow fields and spike frames are 2.2k
and 44.22k respectively. Noted that the “Number of Flow Fields” only counts the flow in dt = 20
case. The number of flow fields in dt = 40 and dt = 60 cases is similar with that in dt = 20 case.
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Figure 8: Scenes for generating the training set of RSSF. The indexes of the scenes are on the left.
The faces wholly facing the camera are masked.
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Figure 9: Scenes for generating the evaluation set of RSSF. The indexes of the scenes are on the left.
The faces wholly facing the camera are masked.

A.2 Statistics of Flow Fields

To analyze the RSSF dataset further, we gather several statistics of the training and evaluation set of
RSSF respectively. As shown in Fig 10. We gather the motion, speed, direction and derivatives of the
flow fields w(x, y) = (u(x, y), v(x, y)) in dt = 20 case. The formulations are as follows:

speed of flow: s(x, y) =
√

[u(x, y)]2 + [v(x, y)]2 (9)

direction of flow: θ(x, y) = arctan

(
v(x, y)

u(x, y)

)
(10)

spatial derivatives of flow:
∂{u, v}
∂{x, y}

(x, y) =
∂u

∂x
(x, y),

∂v

∂x
(x, y),

∂u

∂y
(x, y),

∂v

∂y
(x, y) (11)

temporal derivatives of flow:
∂{u, v}

∂t
(x, y) = u(x, y)− upre(x, y), v(x, y)− vpre(x, y) (12)

The upre and vpre denote the flow between the previous pair of spike frames in dt = 20 case.
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Table 5: Statistics of the training and evaluation set of real scenes with spike and flow (RSSF) dataset.
The numbers of flow fields and spike frames that are not in the “sum” line are statistics for each scene.
The data in the “sum” line are totals for all the scenes. Noted that the “Number of Flow Fields” only
counts the flow fields in dt = 20 case.

Scene Indexes Number of
Flow Fields Resolution Number of

Spike Frames
Number of

Scenes

Training
Dataset

1, 2, 3, 14, 15, 16,
17, 18, 19, 25, 26,
27, 28, 29, 30

239 1280 x 1024 4800 15

4, 5, 6, 7, 8, 9, 10,
11, 12, 13 340 1280 x 720 6820 10

20, 21, 22, 23, 24 531 1024 x 576 10640 5

Sum 9640 – 193400 30

Evaluation
Dataset

1, 6, 7, 8, 10, 11 200 1024 x 768 4020 6

2, 3, 4, 5 200 1024 x 720 4020 4

9 200 1024 x 576 4020 1

Sum 2200 – 44220 11
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Figure 10: Statistics of the flow fields in dt = 20 case. The vertical axis is the ratio of the number of
pixels in each bin to the total number of pixels, and the vertical axis is in the logarithmic domain.

B Details of the Method

B.1 Details of the Network

Details of the encoder. The structures of the feature encoder and context encoder are the same.
Both of the feature extraction modules of them are composed of a series of convolution layers.
The structure is shown in Fig. 11. The difference between the feature extraction modules of the
feature encoder (FE) and the context encoder (CE) is that the output feature dimension of the feature
extraction module of FE is 216, while that of the CE is 256. The feature extraction for getting the
primary feature Fp can be formulated as:

Fp,i = F [Di] (13)
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Figure 11: Illustration of the detailed structure of the feature extraction module in the feature and
context encoder.

where Di is the DSFT transform of the i-th spike sub-stream. The kernel size of the convolution
layers for getting the query, key, and value feature in the spatial information aggregation module is
1× 1, and the output dimension is the same as the primary feature.

Details of the recurrent decoder. Suppose that the start moment of the flow is ts, and the sampling
cycle of the flow is T . The motion features extracted from the local correlations {Li}Ni=1 are {Mi}Ni=1.
The updating procedure of the two ConvGRUs in the recurrent decoder can be formulated as:

xk = Cat
(
FC,M1, . . . ,MN

)
(14)

zk = Sigmoid (Conv (Cat (hk−1, xk) ,Wz,k)) (15)
rk = Sigmoid (Conv (Cat (hk−1, xk) ,Wr,k)) (16)
qk = Tanh (Conv (Cat (rk ⊙ hk−1, xk) ,Wq,k)) (17)
hk = (1− zk)⊙ hk−1 + zk ⊙ qk (18)

where Cat denotes the concatenation operation in the channel dimension. k is the iteration index of
the ConvGRUs, and ⊙ denotes the element-wise multiplication. Different flow heads estimate the
residual of flow fields {∆w̃k,i}Ni=1 in 1/8 downsampling resolution. Then the flow is updated and
upsampled through convex combination U according to the maskMk estimated from the hidden
state hk. Noted that the flow heads are composed of “Conv3x3(256) – ReLU – Conv3x3(2)”, and the
mask estimator is composed of “Conv3x3(196) – ReLU – Conv1x1(64x9)”. The details about the
convex combination can be found in the supplementary material of [5].

B.2 Computational Pipeline of Spike2Flow

The computational pipeline of Spike2Flow is shown in Alg. 1. The network output the flow estimated
in each iteration {{wk,i}Ni=1}

Nit

k=1 in the training procedure, and output the flow in the final iteration
{wNit,i}Ni=1 in the evaluating procedure.
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Algorithm 1 Framework of Spike2Flow
Input:

The input spike streams S = {S(x, t) | x ∈ Ω, t ∈ N, t ≤ n}. Start moment ts. Sampling
cycle for flow fields T . The number of correlations N . The number of input spike frames NISF.
Pyramid level of correlation L. Iteration steps of recurrent decoder Nit. Looking-up radius for
correlation r.

Output:
A series of flow fields {w(x, ts + iT | ts)}Ni=1
/* Construct correlations of spike sub-streams */

1: Compute the half-window length of the sub-streams th ← (NISF − 1)/2;

2: Clip the spike stream S to be sub-streams {Si}Ni=0 ←
{
{S(ts + iT + j)}thj=−th

}N

i=0
;

3: for each i in 0, . . . , N do
4: Transform the sub-stream to DSFT domain: Di ← D[Si] using Eq. (3) in the body;
5: Extract the primary feature: Fp,i through convolutional networks;
6: Get feature for matching: FM

i ← A[Fp,i] using Eq. (4) in the body;
7: if i = 0 then
8: Get context feature FC and the initialization of hidden state h0 using the same process with

lines 4-6 through context encoder
9: else

10: Construct all-pairs correlation Ci using Eq. (5) in the body;
11: end if
12: end for

/* Recurrently decode the correlations */
13: Initialize the flow fields in low resolution {w̃0,i = w̃0(iT + ts | ts)}Ni=1 ← 0;
14: for k in 1, . . . , Nit do
15: for each i in 1, . . . , N do
16: Compute looking-up grid Ni by currently estimated flow fields {wk−1(iT + ts | ts)}Ni=1

using Eq. (6) in the body;
17: Look up from the correlation Ci by Ni to get current local correlation Li;
18: end for
19: Update the hidden state through the ConvGRUs using Eq. (14) – (18) to get hk;
20: Estimate the residual flow in low resolution {∆w̃k,i}Ni=1.
21: Update the flow in low resolution: {w̃k,i}Ni=1 ← {w̃k−1,i +∆w̃k,i}Ni=1;
22: if training the network then
23: Estimate the mask and upsample the flow: {wk,i}Ni=1 ← {U(w̃k,i,Mk)}Ni=1;
24: else {evaluating the network}
25: if k = Nit then
26: Estimate the mask and upsample the flow: {wNit,i}Ni=1 ← {U(w̃Nit,i,MNit

)}Ni=1;
27: end if
28: end if
29: end for
30: return {wNit,i}Ni=1 if evaluating else {{wk,i}Ni=1}

Nit

k=1;
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C Additional Experimental Results

C.1 Additional Comparative Results with Original SCFlow

We compare the performance of SCFlow [1] trained on the original SPIFT dataset in dt = 10 and
dt = 20 cases and SCFlow retrained on our proposed RSSF dataset. The performance on PHM and
RSSF is shown in Tab. 6 and Tab. 7 respectively. The models trained on SPIFT are official models
of SCFlow, which converge well on the SPIFT dataset. The results in Tab. 6 demonstrate that our
proposed RSSF dataset can make SCFlow model have the best performance, especially in dt = 20
case. The results in Tab. 7 demonstrate that the SCFlow model trained on RSSF performs much better
than the models trained on the SPIFT dataset, which supports our statement that the models trained
on dataset synthesized based on graphics models cannot generalize on real data well.

Table 6: Quantitative comparative results of SCFlow [1] trained on different datasets on PHM dataset.
The training datasets include SPIFT in dt = 10 and dt = 20 cases, and RSSF. The best results for
each group are bolded. AEPE: average end-point error. PO%: the percentage of outliers.

Training
Dataset

Evaluating
Dataset

dt = 10 dt = 20

AEPE PO% AEPE PO%

SPIFT – dt = 10 PHM 1.077 37.12 2.347 46.52
SPIFT – dt = 20 PHM 1.096 40.69 2.167 47.65
RSSF – Training PHM 1.027 34.54 1.775 38.57

Table 7: Quantitative comparative results of SCFlow [1] trained on different datasets on the evaluation
set of RSSF. The training datasets include SPIFT in dt = 10 and dt = 20 cases, and RSSF. The best
results for each group are bolded. AEPE: average end-point error. PO%: the percentage of outliers.

Training
Dataset

Evaluating
Dataset

dt = 20 dt = 40 dt = 60

AEPE PO% AEPE PO% AEPE PO%

SPIFT – dt = 10 RSSF – Evaluation 1.037 34.25 4.183 58.04 8.356 67.97
SPIFT – dt = 20 RSSF – Evaluation 0.847 31.98 3.099 48.59 7.236 62.22
RSSF – Training RSSF – Evaluation 0.389 14.00 0.668 19.00 1.264 23.40

C.2 Visual Results on RSSF, PHM, and Real Data

The comparative experiments in the body are based on three kinds of data: the evaluation set of RSSF,
PHM, and real data captured by spike cameras. We supplement visual results on each kind of data
in this part. The comparative methods include RAFT [5], GMA [3], and SCV [4] based on spikes
and average image along the temporal axis respectively. SCFlow based on spikes as input is taken
into consideration. The additional visual results on RSSF, PHM, and real data are shown in Fig. 12,
Fig. 13, and Fig. 14 respectively.
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Figure 12: Visual results on the evaluation set of RSSF in dt = 20 case. All the model is retrained on
the training set of RSSF. The model and performance are labeled at the bottom of each visual result.
AEPE: average end-point error. PO%: the percentage of outliers.
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Figure 13: Visual results on the PHM in dt = 10 case. All the model is retrained on the training set
of RSSF. The model and performance are labeled at the bottom of each visual result. AEPE: average
end-point error. PO%: the percentage of outliers.
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Figure 14: Visual results on real data captured by spike cameras in dt = 20 case. All the model is
retrained on the training set of RSSF. The model and performance are labeled at the bottom of each
visual result. AEPE: average end-point error. PO%: the percentage of outliers.
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