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Abstract

We present Variable Experience Rollout (VER), a technique for efficiently scaling
batched on-policy reinforcement learning in heterogenous environments (where
different environments take vastly different times to generate rollouts) to many
GPUs residing on, potentially, many machines. VER combines the strengths of
and blurs the line between synchronous and asynchronous on-policy RL methods
(SyncOnRL and AsyncOnRL, respectively). Specifically, it learns from on-policy
experience (like SyncOnRL) and has no synchronization points (like AsyncOnRL)
enabling high throughput.
We find that VER leads to significant and consistent speed-ups across a broad
range of embodied navigation and mobile manipulation tasks in photorealistic 3D
simulation environments. Specifically, for PointGoal navigation and ObjectGoal
navigation in Habitat 1.0, VER is 60-100% faster (1.6-2x speedup) than DD-PPO,
the current state of art for distributed SyncOnRL, with similar sample efficiency.
For mobile manipulation tasks (open fridge/cabinet, pick/place objects) in Habitat
2.0 VER is 150% faster (2.5x speedup) on 1 GPU and 170% faster (2.7x speedup)
on 8 GPUs than DD-PPO. Compared to SampleFactory (the current state-of-the-art
AsyncOnRL), VER matches its speed on 1 GPU, and is 70% faster (1.7x speedup)
on 8 GPUs with better sample efficiency.
We leverage these speed-ups to train chained skills for GeometricGoal rear-
rangement tasks in the Home Assistant Benchmark (HAB). We find a surprising
emergence of navigation in skills that do not ostensible require any navigation.
Specifically, the Pick skill involves a robot picking an object from a table. During
training the robot was always spawned close to the table and never needed to
navigate. However, we find that if base movement is part of the action space, the
robot learns to navigate then pick an object in new environments with 50% success,
demonstrating surprisingly high out-of-distribution generalization.
Code: github.com/facebookresearch/habitat-lab

1 Introduction
Scaling matters. Progress towards building embodied intelligent agents that are capable of performing
goal driven tasks has been driven, in part, by training large neural networks in photo-realistic 3D envi-
ronments with deep reinforcement learning (RL) for (up to) billions of steps of experience [Wijmans
et al., 2020, Maksymets et al., 2021, Mezghani et al., 2021, Ramakrishnan et al., 2021, Miki et al.,
2022]. To enable this scale, RL systems must be able to efficiently utilize the available resources (e.g.
GPUs), and scale to multiple machines all while maintaining sample-efficient learning.

One promising class of techniques to achieve this scale is batched on-policy RL. These methods
collect experience from many (N ) environments simultaneously using the policy and update it with
this cumulative experience. They are broadly divided into two classes: synchronous (SyncOnRL)
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Figure 1: (Left) RL Training Systems. In SyncOnRL, actions are computed for all environments,
then all environments are stepped. Experience collection is paused during learning. In AsyncOnRL,
computing actions, stepping environments, and learning all occur without synchronization. In VER, a
variable amount of experience is collected from each environment, enabling synchronous learning
without the straggler effect. (Right) skill policies with navigation are more robust to handoff errors.

and asynchronous (AsyncOnRL). SyncOnRL contains two synchronization points: first the policy is
executed for the entire batch (ot → at)

B
b=1

1 (Fig. 1 A), then actions are executed in all environments,
(st, at → st+1, ot+1)

B
b=1 (Fig. 1 B), until T steps have been collected from all N environments.

This (T,N)-shaped batch of experience is used to update the policy (Fig. 1 C). Synchronization
reduces throughput as the system spends significant (sometimes the most) time waiting for the slowest
environment to finish. This is the straggler effect [Petrini et al., 2003, Dean and Ghemawat, 2004].

AsyncOnRL removes these synchronization points, thereby mitigating the straggler effect and improv-
ing throughput. Actions are taken as soon as they are computed, at → ot+1 (Fig. 1 D), the next
action is computed as soon as the observation is ready, ot → at (Fig. 1 E), and the policy is updated
as soon as enough experience is collected. However, AsyncOnRL systems are not able to ensure that
all experience has been collected by only the current policy and thus must consume near-policy
data. This reduces sample efficiency [Liu et al., 2020]. Thus, status quo leaves us with an unpleasant
tradeoff – high sample-efficiency with low throughput or high throughput with low sample-efficiency.

In this work, we propose Variable Experience Rollout (VER). VER combines the strengths of and blurs
the line between SyncOnRL and AsyncOnRL. Like SyncOnRL, VER collects experience with the current
policy and then updates it. Like AsyncOnRL, VER does not have synchronization points – it computes
next actions, steps environments, and updates the policy as soon as possible. The inspiration for
VER comes from two key observations:

1) AsyncOnRL mitigates the straggler effect by implicitly collecting a variable amount of experience
from each environment – more from fast-to-simulate environments and less from slow ones.

2) Both SyncOnRL and AsyncOnRL use a fixed rollout length, T steps of experience. Our key insight
is that while a fixed rollout length may simplify an implementation, it is not a requirement for RL.

These two key observations naturally lead us to variable experience rollout (VER), i.e. collecting
rollouts with a variable number of steps. VER adjusts the rollout length for each environment based
on its simulation speed. It explicitly collects more experience from fast-to-simulate environments
and less from slow ones (Fig. 1). The result is an RL system that overcomes the straggler effect
and maintains sample-efficiency by learning from on-policy data.

VER focuses on efficiently utilizing a single GPU. To enable efficient scaling to multiple GPUs, we
combine VER with the decentralized distributed method proposed in [Wijmans et al., 2020].

First, we evaluate VER on well-established embodied navigation tasks using Habitat 1.0 [Savva et al.,
2019] on 8 GPUs. VER trains PointGoal navigation [Anderson et al., 2018] 60% faster than Decen-
tralized Distributed PPO (DD-PPO) [Wijmans et al., 2020], the current state-of-the-art for distributed
on-policy RL, with the same sample efficiency. For ObjectGoal navigation [Batra et al., 2020b], an
active area of research, VER is 100% faster than DD-PPO with (slightly) better sample efficiency.

Next, we evaluate VER on the recently introduced (and significantly more challenging) GeometricGoal
rearrangement tasks [Batra et al., 2020a] in Habitat 2.0 [Szot et al., 2021]. In GeoRearrange, a virtual
robot is spawned in a new environment and asked to rearrange a set of objects from their initial to

1Following standard notation, st is (PO)MDP state, at is the action taken, and ot is the agent observation.
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Figure 2: VER system architecture. Environment workers receive actions to simulate and return
the result of that environment step (EnvStep). Inference workers receive batches experience from
environment workers. They return the new action to take to environment workers and write the
experience into GPU shared memory for learning.

desired coordinates. These environments have highly variable simulation time (physics simulation
time increases if the robot bumps into something) and require GPU-acceleration (for photo-realistic
rendering), limiting the number of environments that can be run in parallel.

On 1 GPU, VER is 150% faster (2.5x speedup) than DD-PPO with the same sample efficiency. VER
is as fast as SampleFactory [Petrenko et al., 2020], the state-of-the-art AsyncOnRL, with the same
sample efficiency. VER is as fast as AsyncOnRL in pure throughput; this is a surprisingly strong
result. AsyncOnRL never stops collecting experience and should, in theory, be a strict upper bound
on performance. VER is able to match AsyncOnRL for environments that heavily utilize the GPU for
rendering, like Habitat. In AsyncOnRL, learning, inference, and rendering contend the GPU which
reduces throughput. In VER, inference and rendering contend for the GPU while learning does not.

On 8 GPUs, VER achieves better scaling than DD-PPO, achieving a 6.7x speed-up (vs. 6x for DD-PPO)
due to lower variance in experience collection time between GPU-workers. Due to this efficient
multi-GPU scaling, VER is 70% faster (1.7x speedup) than SampleFactory on 8 GPUs and has better
sample efficiency as it learns from on-policy data.

Finally, we leverage these SysML contributions to study open research questions posed in prior work.
Specifically, we train RL policies for mobile manipulation skills (Navigate, Pick, Place, etc.) and
chain them via a task planner. Szot et al. [2021] called this approach TP-SRL and identified a critical
‘handoff problem’ – downstream skills are set up for failure by small errors made by upstream skills
(e.g. the Pick skill failing because the navigation skill stopped the robot a bit too far from the object ).

We demonstrate a number of surprising findings when TP-SRL is scaled via VER. Most importantly,
we find the emergence of navigation when skills that do not ostensibly require navigation (e.g.
pick) are trained with navigation actions enabled. In principle, Pick and Place policies do not need
to navigate during training since the objects are always in arm’s reach, but in practice they learn
to navigate to recover from their mistakes and this results in strong out-of-distribution test-time
generalization. Specifically, TP-SRL without a navigation skill achieves 50% success on NavPick
and 20% success on a NavPickNavPlace task simply because the Pick and Place skills have learned
to navigate (sometimes across the room!). TP-SRL with a Navigate skill performs even stronger:
90% on NavPickNavPlace and 32% on 5 successive NavPickNavPlaces (called Tidy House in Szot
et al. [2021]), which are +32% and +30% absolute improvements over Szot et al. [2021], respectively.
Prepare Groceries and Set Table, which both require interaction with articulated receptacles (fridge,
drawer), remain as open problems (5% and 0% Success, respectively) and are the next frontiers.

2 VER: Variable Experience Rollout
The key challenge that any batched on-policy RL technique needs to address is variability of sim-
ulation time for the environments in a batch. There are two primary sources of this variability:
action-level and episode-level. The amount of time needed to simulate an action within an envi-
ronment varies depending on the the specific action, the state of the robot, and the environment
(e.g. simulating the robot navigating on a clear floor is much faster than simulating the robot’s arm
colliding with objects). The amount of time needed to simulate an entire episode also varies environ-
ment to environment irrespective of action-level variability (e.g. rendering images takes longer for
visually-complex scenes, simulating physics takes longer for scenes with a large number of objects).
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Figure 3: (A) VER collects a variable amount of experience from each environment. The length
of each step represents the time taken to collect it. (B) VER mini-batch. The solid bars denote
episode boundaries. The steps selected for the first mini-batch have a dashed border. (C) The
PackedSequence data format represents a set of sequences with variable length in a linear buffer
such that all elements from each timestep area next to one-another in memory.

2.1 Action-Level Straggler Mitigation
We mitigate the action-level straggler effect by applying the experience collection method of
AsyncOnRL to SyncOnRL. We represent this visually in Fig. 2 and describe it in text bellow.

Environment workers receive the next action and step the environment, EnvStep, e.g. st, at →
st+1, ot+1, rt. They write the outputs of the environment (observations, reward, etc.) into pre-
allocated CPU shared memory for consumption by inference workers.

Inference workers receive batches of steps of experience from environment workers. They perform
inference with the current policy to select the next action and send it to the environment worker using
pre-allocated CPU shared memory. After inference they store experience for learning in shared GPU
memory. Inference workers use dynamic batching and perform inference on all outstanding inference
requests instead of waiting for a fixed number of requests to arrive2. This allows us to leverage the
benefits of batching without introducing synchronization points between environment workers.

This experience collection technique is similar to that of HTS-RL [Liu et al., 2020] (SyncOnRL)
and SampleFactory [Petrenko et al., 2020] (AsyncOnRL). Unlike both, we do not overlap experience
collection with learning. This has various system benefits, including reducing GPU memory usage
and reducing GPU driver contention. More details are available in Appendix A.

2.2 Environment-Level Straggler Mitigation
In both SyncOnRL and AsyncOnRL, the data used for learning consists of N rollouts of equal-T steps
of experience, an (T,N)-shaped batch. In SyncOnRL these N sets are all collected with the current
policy, this leads to the environment-level straggler effect. AsyncOnRL mitigates this by relaxing the
constraint that experience must be strictly on-policy, and thereby implicitly changes the experience
collection rate for each environment.

Variable Experience Rollout (VER). We instead relax the constraint that we must use N rollouts of
equal-T steps. Specifically, VER collects T ×N steps of experience from N environments without
a constraint on how many steps of experience are collected from each environment. This explicitly
varies the experience collection rate for each environment – in effect, collecting more experience from
environments that are fast to simulate. Consider the 4 environments shows in Fig. 3A. The length of
the each step representation the wall-clock time taken to collect it, some steps are fast, some are slow.
VER collects more experience from environment 0 as it is fastest to step and less from 1, the slowest.

Learning mini-batch creation. VER is designed with recurrent policies in mind because memory
is key in long-range and partially observable tasks like HAB. When training recurrent policies, we
must create mini-batches of experience with sequences for back-propagation-through-time. Normally
B mini-batches are constructed by spitting the N environments’ experience into B (T , N/B)-sized
mini-batches. A similar procedure would result in mini-batches of different sizes with VER. This
would harm optimization because learning rate and optimization mini-batch size are intertwined and
automatically adjusting the learning rate is an open question [Goyal et al., 2017, You et al., 2020].

To under VER’s mini-batching, first note that there are two reasons for the start of a new sequence
of experience: rollout starts (Fig. 3B, step 0) and episode starts (Fig. 3B, a step after a bar). These

2In practice we introduce both a minimum and maximum number of requests to prevent under-utilization of
compute and over-utilization of memory.
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two boundaries types are independent – episodes can end at any arbitrary step within the rollout and
then that environment will reset and start a new episode. Thus when we collect experience from N
environments, we will have K ≥ N sequences to divide between the mini-batches. We distributed
these K sequences between the mini-batches. We randomly order the sequences, then the first T×N/B
steps are the first mini-batch, the next T×N/B to the second, etc. See Fig. 3B for an example.

Batching computation for learning. The mini-batches constructed from the algorithm above have
sequences with variable length. To batch the computation of these sequences we use cuDNN’s
PackedSequence data model. This data model represents a set of variable-length sequences (Fig. 3C
left) such that all sequence-elements at a time-step are contiguous in memory (Fig. 3C right) – enabling
batched computation on each time-step for components with a temporal dependence, e.g. the RNN –
and that all elements across all time-steps are also contiguous – enabling batched computation across
all time-steps for network components that don’t have a temporal dependence, e.g. the visual encoder.

During experience collection we write experience into a linear buffer in GPU memory and then arrange
each mini-batch as a PackedSequence. This takes less than 10 milliseconds (per learning phase);
orders of magnitude less than experience collection (∼3s) or learning (∼1.5s) in our experiments.

Learning method. The experience and mini-batches generated from VER are well-suited for use with
RL methods that use on-policy data [Sutton and Barto, 1992]. We use Proximal Policy Optimization
(PPO) [Schulman et al., 2017] as it is known to work well for embodied AI tasks and recurrent policies.

Inflight actions One subtle design choice is the following – when VER finishes a T ×N experience
collection, there will be (slow) environments that haven’t completed simulation yet. Instead of
discarding that data, we choose to collect this experience in the next rollout. We find this choice
leads to speed gains without any sample-efficiency loss.

2.3 Multiple GPUs
We leverage the decentralized distributed training architecture from Wijmans et al. [2020] to scale
VER to multiple GPUs (residing on a single or multiple nodes). In this architecture, each GPU
both collects experience and learns from that experience. During learning, gradients from each
GPU-worker are averaged with an AllReduce operation. This is a synchronous operation and
thus introduces a GPU-worker-level straggler effect. Wijmans et al. [2020] mitigate this effect by
preempting stagglers – stopping collecting experience early and proceeding to learning – after a fixed
number of GPU-workers have finished experience collection.

We instead approximate the optimal preemption for each experience collection phase. Given the
learning time, LT, and a function Time(S) that returns the time needed to collect S steps of experience,
the optimal number of steps S to collect before preempting stragglers is maxS S/(Time(S)+LT), s.t. S ≤
(T ·N · #GPUs). For LT, we record the time from the last iteration as this doesn’t change between
iterations. We estimate Time(S) using the average step time to receive a step of experience from
each environment (this includes both inference time and simulation time) from the previous rollout.
This will be a poor estimation in some circumstances but we find it to work well in practice.

We improve upon sample efficiency of DD-PPO by filling the preempted rollouts with experience
from the previous rollout. We perform extra epochs of PPO on this now ‘stale’ data instead of
correcting for the off-policy return as we find this simpler and effective. This comes with no effective
computation cost since the maximum batch size per GPU is unchanged.

3 Embodied Navigation: Benchmarking
First, we benchmark VER on the embodied navigation [Anderson et al., 2018] tasks in Habitat
1.0 [Savva et al., 2019] – PointNav [Anderson et al., 2018] and ObjectNav [Batra et al., 2020b]. Our
goal here is simply to show training speed-ups in well-studied tasks (and in the case of PointNav, a
well-saturated task with no room left for accuracy improvements). We present accuracy improvements
and in-depth analysis on challenging rearrangement tasks in Section 6.

For both tasks, we use standard architectures from Habitat Baselines [Savva et al., 2019, Wijmans
et al., 2020] – the ResNet18 encoder and a 2 layer LSTM. Following Ye et al. [2020, 2021], we add
Action Conditional Contrastive Coding [Guo et al., 2018].

PointNav. We train PointNav agents with one RGB camera on the HM3D dataset [Ramakrishnan
et al., 2021] for 1.85 billion steps of experience on 8 GPUs. We study the RGB setting (and not Depth)
because this is the more challenging version of the task and thus we expect it to be more sensitive to
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Figure 4: (A) Navigation Tasks training steps per second on 8 GPUs. VER is 60%-100% faster
than DD-PPO. (B) Sample efficiency on ObjectNav and PointNav performance (validation success).
VER has similar or slightly better sample efficiency than DD-PPO, indicating that performance is
not negatively impacted by the non-uniform sampling of experience from environments. Shading
is a 95% confidence interval over 3 seeds. (C) Compute efficiency on ObjectNav and PointNav
performance (validation success). To reach the maximum success achieved by DD-PPO, 97.4% on
PointNav and 13.0% on ObjectNav, VER uses 1.6x less compute on PointNav (saving 16 GPU-days)
and 4.3x less compute on ObjectNav (saving 33.4 GPU-days).

possible differences in the training system. We examine VER along two axes: 1) training throughput –
the number of samples of experience per second (SPS) the system collects and learns from, 2) sample
efficiency. On 8 GPUs, VER trains agents 60% faster than DD-PPO, from 3065 SPS to 5325 SPS
(Fig. 4A), with similar sample efficiency (Fig. 4B).

ObjectNav. We train ObjectNav agents with one RGB and one Depth camera on the MP3D [Chang
et al., 2017] dataset for 600 million steps of experience on 8 GPUs. VER trains agents 100% faster than
DD-PPO, 1021 to 2019 (Fig. 4A), with slightly better sample efficiency (Fig. 4B). Due to improved
throughput and sample efficiency, VER uses 4.3x less compute than DD-PPO to reach the same success
(Fig. 4C). There are two effects that enable better sample efficiency with VER. First, we perform
additional epochs of PPO on experience from the last rollout when a GPU-worker is preempted.
Second, the variable experience rollout mechanism results in a natural curriculum. Environments
are often faster to simulate when they are easier (i.e. a smaller home), so more experience will be
collected in these easier cases.

4 Embodied Rearrangement: Task, Agent, and Training
Next, we use VER to study the recently introduced (and more challenging) GeometricGoal rearrange-
ment rearrangement tasks [Batra et al., 2020a] in Habitat 2.0 [Szot et al., 2021].

Task. In GeoRearrange, an agent is initialized in an unknown environment and tasked with rearranging
objects in its environment. The task is specified as a set of coordinate pairs {(PoseInitial,PoseFinal)}Oo=1.
The agent must bring each object at PoseInitial to PoseFinal where Pose is the initial or desired center-
of-mass location for the object(s). We use the Home Assistant Benchmark (HAB) which consists of
3 scenarios of increasing difficulty: Tidy House, Prepare Groceries, and Set Table.

In Tidy House, the agent is tasked with moving 5 objects from their initial locations to their final
locations. The objects are rarely in containers (i.e. fridge or cabinet drawer) and when they are, the
containers are already opened. In Prepare Groceries, the agent must move 3 objects from the kitchen
counter into the open fridge (or open fridge to counter). This stresses picking and placing in the
fridge, which is challenging. In Set Table, the agent must move 1 object from the closed kitchen
cabinet drawer to the table and 1 object from the closed fridge to the table. This requires opening the
cabinet and fridge, and picking from these challenging receptacles.

Simulation. We use the Habitat simulator with the ReplicaCAD Dataset [Savva et al., 2019, Szot
et al., 2021]. The robot policy operates at 30 Hz and physics is simulated at 120 Hz.

Agent. The agent is embodied as a Fetch robot with a 7-DOF arm. The arm is controlled via joint
velocities. At every time step the policy predicts a delta in motor position for joint in the arm. We find
joint velocity control equally easy to learn but faster to simulate than the end-effector control used in
Szot et al. [2021]. The arm is equipped with a suction gripper. The agent must control the arm such that
the gripper is in contact with the object to grasp and then activate the gripper. The object is dropped
once the gripper is deactivated. This is more realistic than the ‘magic’ grasp action used in Szot et al.
[2021]. The robot base (navigation) is controlled by the policy commanding a desired linear speed and
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DD-PPO NoVER VER (Ours) SampleFactory

GPUs Mean Max Mean Max Mean Max Mean Max
1 174±7 442±9 327±7 428±11 428±5 534±7 427±5 517±3

2 283±23 696±24 592±5 786±11 716±32 945±29 804±15 1022±0

4 468±21 1337±34 1097±30 1601±39 1432±10 1915±13 1286±6 1568±26

8 1066±84 2754±156 2216±60 3438±94 2861±21 3829±23 1662±4 1842±0

Table 1: SyncOnRL, VER, and AsyncOnRL benchmarking. Mean/max system throughput (SPS) over
20 million training steps. VER is 150% faster than DD-PPO on 1 GPU and 170% faster on 8 GPUs.
Hardware: Tesla V100(s) with 10 CPUs per GPU.

angular velocity. The robot is equipped with one Depth camera attached to its head, proprioceptive
sensors that provide the joint positions of its arm, and a GPS+Compass sensor that provides its heading
and location relative to its initial location. The policy models at ∼ π(· | st−1) instead of at ∼ π(· |
st). This is more realistic and enables physics and rendering to be overlapped [Szot et al., 2021].

We build upon the TaskPlanning-SkillRL (TP-SRL) method proposed in Szot et al. [2021]. TP-SRL
is a hierarchical method for GeoRearrange that decomposes the task into a series of skills – Navigate,
Pick, Place, and {Open, Close } × {Cabinet, Fridge}. Skills are controlled via a skill-policy (learned
with RL) and chained together via a task planner. One of the key challenges is the ‘handoff problem’
– downstream skills are setup for failure due to slight errors made by the upstream skill. We give all
skill policies access to navigation actions to allow them to correct for these errors.

Architecture. All skill policies share the same architecture. We use ResNet18 [He et al., 2016]
to process the 128×128 visual input. Following Wijmans et al. [2020], we reduce with width of
the network by half and use GroupNorm [Wu and He, 2018]. We also apply some of the recent
advancements from ConvNeXt [Liu et al., 2022]. We use a patch-ify stem, dedicated down-sample
stages, layer scale [Touvron et al., 2021], and dilated convolutions [Yu and Koltun, 2015] (this
mimics larger kernel convolutions without increasing computation). The visual embedding is then
combined with the proprioceptive observations and previous action, and then processed with a 2-layer
LSTM [Hochreiter and Schmidhuber, 1997]. The output of the LSTM is used to predict the action
distribution and value function. Actions are sampled from independent Gaussian distributions.

Training. We train agents using VER and PPO [Schulman et al., 2017] with Generalized Advan-
tage Estimation [Schulman et al., 2016]. We use a minimum entropy constraint with a learned
coefficient [Haarnoja et al., 2018] as we find this to be more stable given our diverse set of
skills than a fixed coefficient. Formally, let H(π) be the entropy of the policy, we then minimize
α([[H(π)]]sg − λ)− [[α]]sgH(π) where [[·]]sg is the stop gradient operator. We set the target entropy,
λ, to zero for all tasks. We use the Adam optimizer [Kingma and Ba, 2015] with an initial learning
rate of 2.5× 10−4 and decay it to zero with a cosine schedule. To correct for biased sampling in VER,
we use truncated importance sampling weighting [Espeholt et al., 2018] with a maximum of 1.0.

5 Embodied Rearrangement: Benchmarking
In this section, we benchmark VER for training open-fridge policies because this task involves
interaction of the robot with an articulated object (the fridge) and represents a challenging case for the
training system due to large variability in physics time. In Section 6, we analyze the task performance,
which requires all skills. For all systems, we set the number of environments, N , to 16 per GPU.

5.1 System throughout
VER is 150% faster than DD-PPO (Table 1); an even larger difference than in the simpler navigation
tasks we studied before. DD-PPO has no mechanism to mitigate the action-level or episode-level
straggler effects. In their absence, DD-PPO has similar throughput as VER (Table 1, Max). Under
these effects, DD-PPO’s throughput reduces 150% compared to 20% for VER (Table 1, Mean vs. Max).

Variable experience rollouts are effective. We compare VER with VER minus variable experience
rollouts (NoVER). NoVER is a ‘steel-manned’ baseline for VER and benefits from all our micro-
optimizations. VER is 30% faster than NoVER (Table 1).

VER closes the gap to AsyncOnRL. On 1 GPU, VER is as fast as SampleFactory [Petrenko et al.,
2020], the fastest single machine AsyncOnRL. Intuitively AsyncOnRL should be a strict upper-bound
on performance – it never stops collecting experience while VER does. However this doesn’t take into
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Figure 5: Training efficiency on Open Fridge. VER has similar sample efficiency as DD-PPO
(SyncOnRL). SampleFactory (AsyncOnRL) has similar sample efficiency with 1 GPU but this reduces
as policy lag increases with more GPUs. On 8 GPUs, VER uses 2.7x less compute than DD-PPO to
reach the same performance. This saves 32-days of GPU-time, per skill, for the full training schedule
of 500 million frames. The shaded region is a 95% bootstrapped confidence interval over 5 seeds. We
use interquartile mean (IQM) as our summary statistic [Agarwal et al., 2021].

account the realities of hardware. Recall that we are training an agent with a large visual encoder.
This means that updating the parameters of the agent takes a large amount of time (∼150ms per
mini-batch of size 1024 on a V100). Further, Habitat uses the GPU for rendering. The use of the GPU
for both rendering and learning simultaneously results in GPU driver contention. In SampleFactory,
learning time and experience collection time are roughly double that of VER.

Multi-GPU scaling. VER has better multi-GPU scaling than DD-PPO, achieving a 6.7x speed-up on
8 GPUs compared to 6x. The rollout collection time in VER is lower variance, which improves scaling.
On 2 GPUs, SampleFactory is 12% faster than VER. Here one GPU is used for learning+inference
and the other is used for rendering. This creates a nice division of work and doesn’t result in costly
GPU contention. On 4 and 8 GPUs however, the single GPU used for learning in SampleFactory is
the bottleneck and VER has higher throughput (nearly 100% faster on 8 GPUs). While it is possible to
implement multi-GPU learning for AsyncOnRL, it is left to the user to balance the number of GPUs
used for experience collection and learning. VER balances GPU-time between these automatically.

5.2 Sample and Compute Efficiency
Next we examine sample efficiency of the training systems. On 1 GPU, VER has slightly worse sample
efficiency than DD-PPO (Fig. 5). We suspect that this could be fixed by hyper-parameter choice. On
2 and 4 GPUs, VER has identical sample efficiency and better sample efficiency on 8 GPUs, Fig. 5
Interestingly, SampleFactory has similar sample efficiency with 1 GPU (Fig. 5) and is more stable.
This is because reducing the number of GPUs also reduces the batch-size and PPO is known to not
be batch-size invariant [Hilton et al., 2021]. We believe the stale data serves a similar function to
PPO-EWMA [Hilton et al., 2021], which uses an exponential moving average of the policy weights
for the trust region. On 2, 4, and 8 GPUs, VER has better sample efficiency than SampleFactory.
Combing the findings of throughput and sample efficiency, we find that VER always achieves a given
performance threshold in the least amount of training time (outright or a tie) (Fig. 5 Lower).

6 Embodied Rearrangement: Analysis of Learned Skills
We examine the performance of TP-SRL on the Home Assistant Benchmark (HAB) [Szot et al.,
2021]. We examine both skill policies trained with the full action space and the limited, per-skill
specific action space used in Szot et al. [2021]. Each skill is trained with VER for 500 million steps of
experience on 8 GPUs. This takes less than 2 days per skill.

6.1 Performance on HAB
We find that skills with navigation actions improve performance on the full task but does not change
performance on the skill’s train task (e.g. Pick achieves 90% success with and without during training).
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Figure 6: HAB Performance on the Tidy House, Prepare Groceries, and Set Table scenarios. Skill
policies with navigation (TP-SRL+Skill Navigation) outperform skill policies without navigation
(TP-SRL) despite not strictly needing this ability. Further, we find that these skill policies have
learned emergent navigation. TP-SRL(NoNav)+Skill Navigation achieves 50% success on NavPick
(Tidy House) and 20% success on NavPickNavPlace (Tidy House) despite all navigation being
performed by skills policies that ostensibly don’t need to navigate.

Fig. 6 shows smaller drops in performance between every interaction (there is a navigation between
each interaction) demonstrating that skills with navigation effectively correct for handoff errors. This
is impactful after place as the navigation policy tends to make more errors when navigating to the
next location after place. On Tidy House, full task performance improves from 2% Success to 32%.

On Prepare Groceries (which requires picking/placing from/into the fridge) and Set Table (which
requires opening the fridge/cabinet and then picking from it) performance improves slightly. 0%
to 5% on Prepare Groceries and 0% to 7.5% on the first pick+place on Set Table. Both these tasks
remain as open problems and the next frontier.

6.2 Emergent Navigation
Next we examine if the skill policies are able to navigate to correct for highly out-of-distribution
initial location. We examine TP-SRL(NoNav), which that omits the navigation skill. In this agent all
navigation is done by skill policies that ostensibly never needed to navigate during training.

We find emergent navigation in both the Pick and Place policies. TP-SRL(NoNav) achieves 50%
success on NavPick (Fig. 6, Tidy House interaction 1), and 20% success on NavPickNavPlace (Fig. 6,
Tidy House interaction 2). The latter is on-par with the TaskPlanning+SensePlanAct (TP-SPA)
classical baseline and significantly better than the MonolithicRL baseline in Szot et al. [2021].

The Pick and Place policies were trained on tasks that requires no navigation but both are capable of
navigation. We provided examples of both the training task for Pick and Place, and TP-SRL(NoNav)
on Tidy House in the supplementary materials.

On Prepare Groceries and Set Table, the navigation performance of these policies is worse (-34%
Success and -45% Success on the first interaction, respectively). Prepare Groceries requires picking
from the fridge, which is challenging and requires navigation that doesn’t accidentally close the door.
Set Table requires opening the cabinet and then picking, which introduces an additional OpenCab
skill and requires more precise navigation and picking from Pick. Performance is non-zero (15% and
4% on the first interaction, respectively) in both scenarios; indicting that the skill policies are capable
of navigating even in these scenarios, albeit less successfully than in Tidy House.

We hypothesize that the Pick and Place polices learned navigation because this was useful early in
training. Early in training the policies have yet to learn that only minimal navigation is needed to
complete the task. Therefore the policy will sometimes cause itself to move away from the pick
object/place location and will navigate back. Navigation is then not forgotten as the policy converges.

We examined the behavior of a Pick policy early in training and found that it does tend to move away
from the object it needs to pick up and sometimes moves back. Although the magnitude of navigation
is small and quite infrequent, so the degree of generalization is high.

This result, and higher performance on HAB, highlights that it may not always be beneficial to remove
‘unneeded’ actions. Szot et al. [2021] removed navigation where possible to improve sample efficiency

9



and training throughput3. Our experiments corroborate this; training without navigation improves
both sample efficiency and training speed. However, by enabling navigation and allowing the agent
to learn how to (not) use it, we arrived upon emergent navigation and improved HAB performance.

7 Related Work
AsyncOnRL methods provide high-throughput on-policy reinforcement learning [Espeholt et al., 2018,
Petrenko et al., 2020]. However, they have reduced sample efficiency as they must correct for near-
policy, or ‘stale’, data. Few support multi-GPU learning and, when they do, the user must manually
balance compute between learning and experience collection [Espeholt et al., 2020]. VER achieves the
same throughput on 1-GPU while learning with on-policy data, has better sample efficiency, supports
multi-GPU learning, and automatically balances compute between learning and simulation.

SyncOnRL. HTS-RL [Liu et al., 2020] also use the experience collection techniques as AsyncOnRL to
mitigate the action-level straggler effect. Unfortunately inefficiencies in the provided implementation
prevent a meaningful direct comparison and hide the full effectiveness of this technique. In
Appendix E we show that our re-implementation is 110% faster (2.1x speedup) and thus instead
compare to the stronger baseline of NoVER in the main text. We propose a novel mechanism,
variable experience rollouts, to mitigate the episode-level straggler effect and thereby close the gap to
AsyncOnRL. We use and build upon Decentralized Distributed PPO (DD-PPO) [Wijmans et al., 2020],
which proposed a distributed multi-GPU method based on data parallelism [Hillis and Steele Jr, 1986].

Batched simulators simulate multiple agents (in multiple environments) simultaneously and are
responsible for their own parallelization [Shacklett et al., 2021, Petrenko et al., 2021, Freeman et al.,
2021, Makoviychuk et al., 2021]. While these systems offer impressive performance, none currently
support a benchmark like HAB (which combines physics and photo-realism) nor the flexibility of
Habitat, AI2Thor [Kolve et al., 2017], or ThreeDWorld [Gan et al., 2020]. VER enables researchers
to first explore promising directions using existing simulators and then build batched simulators
with the knowledged gained from their findings.

8 Societal Impact, Limitations, and Conclusion
Our main application result is trained using the ReplicaCAD dataset [Szot et al., 2021], which is
limited to only US apartments, and this may have negative societal impacts for deployed assistants.
VER was designed and evaluated for tasks with both GPU simulation and large neural networks. For
tasks with CPU simulation and smaller networks, we expect it to improve upon SyncOnRL but it
may have less throughput than AsyncOnRL and overlapping experience collection and learning would
likely be beneficial. Our implementation supports overlapping learning and collecting 1 rollout, but
more overlap may be beneficial. The TP-SRL agent we build upon requires oracle knowledge, e.g.
that the cabinet must be opened before picking.

We have presented Variable Experience Rollout (VER). VER combines the strengths of and blurs the
line between SyncOnRL and AsyncOnRL. Its trains agents for embodied navigation tasks in Habitat
1.0 60%-100% faster (1.6x to 2x speedup) than DD-PPO with similar sample efficiency – saving 19.2
GPU-days on PointNav and 28 GPU-day for ObjectNav per seed in our experiments. On the recently
introduced (and more challenging) embodied rearrangement tasks in Habitat 2.0, VER trains agents
150% faster than DD-PPO and is fast as SampleFactory (AsyncOnRL) on 1 GPU. On 8 GPUs, VER is
180% faster than DD-PPO and 70% faster than SampleFactory with better sample efficiency – saving
32 GPU-days vs. DD-PPO and 11.2 GPU-days vs. SampleFactory per skill in our experiments. We use
VER to study rearrangement. We find the emergence of navigation in policies that ostensibly require
no navigation when given access to navigation actions. This results in strong progress on Tidy House
(+30% success) and shows that it may not always be advantageous to remove ‘unneeded actions’.
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