
A Contextualizing our Work

A.1 Additional Recent Works

Variations of Adam have been proposed to improve its speed of convergence, generalization, and
stability during training. Reddi et al. (2018) observed that Adam does not collect long-term memory of
past gradients and therefore the effective learning rate could be increasing in some cases. Hence, they
propose AMSGrad that maintains a maximum over the exponential running average of the squared
gradients. Zaheer et al. (2018) proposed a more controlled increase in the effective learning rate by
switching to additive updates, using a more refined version of AdaGrad (Duchi et al., 2011). Chen
et al. (2021) unified the generalization ability of vanilla SGD and the convergence speed of Adam
by introducing a new adaptive parameter p ∈ (0, 12] that can be hypertuned for each setting. Other
variations include (a) Nadam (Dozat, 2016) that uses Nesterov momentum, (b) AdamW (Loshchilov
and Hutter, 2019) that decouples the weight decay from the optimization step, (c) AdaBound (Luo
et al., 2019) that maintains a dynamic upper and lower bound on the step size, (d) AdaBelief (Zhuang
et al., 2020) uses a decaying average of estimated variance in the gradient in place of the running
average of the squared gradients, (e) QHAdam (Ma and Yarats, 2019) that replaces both momentum
estimators in Adam with quasi-hyperbolic terms, etc. LAMB (You et al., 2020) used a layerwise
adaptive version of Adam to pretrain large language models efficiently.

A.2 Broader Impact

Our work is primarily theoretical in nature, but we discuss its broader impacts here. Strubell et al.
(2020) highlighted the environmental impact of training large language models. Formal scaling rules
remove the need to grid search over hyperparameters: in the case of adaptive algorithms, the grid
search is over an even larger space because of the additional adaptivity hyperparameters. Hence, our
work reduces the number of times researchers need to train very large models to find ones that work
just as well as their smaller, slower counterparts. At the same time, we recognize that the presence of
a formal scaling rule may encourage people who were otherwise discouraged by the daunting grid
search to train very large models.

B SDE Approximation Theorem

In this section, we introduce a theorem in aid of our analysis for approximating Stochastic Gradient
Algorithm (SGA) with Stochastic Differential Equation (SDE).

We consider Stochastic Gradient Algorithm (SGA) of the following form:

xk+1 = xk + ηehk(xk, ξk, ηe), (4)

where xk ∈ RD is the parameter vector, ηe is the learning rate, hk is a vector-valued function that
can depend on the current step k, the current parameter xk, a random vector ξk, and the learning rate
ηe. The random vector ξk is sampled from a certain distribution Ξ(xk, ηe) in every step.

We consider Stochastic Differential Equation (SDE) of the following form:

dXt = b(Xt, t)dt+ σ(Xt, t)dWt, (5)

where b : RD × R→ RD is the drift vector function, σ : RD × R→ RD×D is the diffusion matrix
function.

Let PX(x, s, t) be the probability distribution of Xt in (5) when the initial condition is Xs = x.
Now we define the following random variables to characterize the one-step changes of SGA and
SDE.

∆(x, k) := ηehk(x, ξ, ηe), where ξ ∼ Ξ(x, ηe). (6)

∆̃(x, k) := X(k+1)ηe − x, where X(k+1)ηe ∼ PX(x, kηe, (k + 1)ηe). (7)

The following regularity condition is needed for our main theorem.
Definition B.1. A function g : Rd → R is said to have polynomial growth if there exist positive
integers κ1, κ2 > 0 such that

|g(x)| ≤ κ1(1 + ‖x‖2κ2
2),

16

for all x ∈ Rd. We let G denote the set of all such functions. For each integer α ≥ 1, Gα denotes
the set of α-times continuously differentiable functions Rd → R which, together with its partial
derivatives up to and including order α, belong to G. If g depends on additional parameters, we say
g ∈ Gα uniformly if the constants κ1, κ2 are independent of those parameters.

Now we are ready to introduce the main theorem for the order of approximation by modeling SGA as
SDE. We follow the same proof strategy as Li et al. (2019). First, we show that the moments of the
one-step difference for the SGA and for the SDE of our interest are close to each other. Then, under
some regularity conditions, we translate the one-step error to an error over a finite interval of time to
get the final result. The following is our main theorem to achieve such translation, and it is adapted
from Theorem 3 in Li et al. (2019) with slightly different conditions to match our need in the analysis
of adaptive gradient methods.
Theorem B.2 (Adaption of Theorem 3 in Li et al. (2019)). Let T > 0, ηe ∈ (0, 1 ∧ T) and N =
bT/ηec. Consider an SDE with drift vector b(x, ηe) and diffusion matrix σ(x, ηe), and a stochastic
gradient algorithm with initial point x0 ∈ RD and update rule xk+1 = xk + ηeh(xk, ξk, ηe). Let
Xk be the support of the random variable xk given x0. Assume the following conditions hold:

(1). The drift function b and diffusion function σ are Lipschitz and belong to G4;

(2). The moments of ∆ ∈ RD and ∆̃ ∈ RD satisfy the following. There is a function K1 ∈ G
(independent of ηe) such that for all x ∈ Xk and 1 ≤ i, j, l ≤ D,∣∣∣E[∆i(x, k)− ∆̃i(x, k)]

∣∣∣ ≤ K1(x)η2e ,∣∣∣E[∆i(x, k)∆j(x, k)− ∆̃i(x, k)∆̃j(x, k)]
∣∣∣ ≤ K1(x)η2e ,∣∣∣E[∆i(x, k)∆j(x, k)∆l(x, k)− ∆̃i(x, k)∆̃j(x, k)∆̃l(x, k)]
∣∣∣ ≤ K1(x)η2e .

(3). There exists a subset P of the index set {1, 2, . . . , D} such that the following holds. Below we

use the notations ‖x‖P :=
√∑

i∈P x
2
i and ‖x‖R :=

√∑
i/∈P x

2
i .

• There are constants C1 > 0, ω1 > 0 (independent of ηe) so that for all k ≤ N and x ∈ Xk,

‖E∆(x, k)‖P ≤ C1ηe(1 + ‖x‖P),

‖E∆(x, k)‖R ≤ C1ηe(1 + ‖x‖ω1

P)(1 + ‖x‖R).

• For all m ≥ 1, there are constants C2m, ω2m > 0 (independent of ηe) so that for all k ≤ N
and x ∈ Xk,

E‖∆(x, k)‖2mP ≤ C2mη
m
e (1 + ‖x‖2mP),

E‖∆(x, k)‖2mR ≤ C2mη
m
e (1 + ‖x‖ω2m

P)(1 + ‖x‖2mR).

Then for each function g ∈ G4, there exists a constant C > 0 (independent of ηe) such that

max
0≤k≤N

|E[g(xk)]− E[g(Xkηe)]| ≤ Cηe, (8)

when the SDE starts from the same initial point x0 as SGA. That is, the SGA is a first-order weak
approximation of the SDE.

To apply Theorem B.2, the major condition to verify is that ∆ and ∆̃ match in moments. The
following lemma computes the moments for ∆̃:
Lemma B.3. For drift function b and diffusion function σ that belong to G4, there is a function
K2 ∈ G (independent of ηe) such that for all x ∈ RD and 1 ≤ i, j, l ≤ D,∣∣∣E[∆̃i(x, k)]− ηebi(x, kηe)

∣∣∣ ≤ K2(x)η2e ,∣∣∣∣∣E[∆̃i(x, k)∆̃j(x, k)]− η2e
D∑
k=1

σi,k(x, kηe)σj,k(x, kηe)

∣∣∣∣∣ ≤ K2(x)η2e ,∣∣∣E[∆̃i(x, k)∆̃j(x, k)∆̃l(x, k)]
∣∣∣ ≤ K2(x)η2e .

17

B.1 Proof for Theorem B.2

To prove Theorem B.2, we need the following lemma from Li et al. (2019). However, the original
version of the lemma does not apply to time-dependent SDEs, i.e., b and σ cannot change with time
t. By carefully scrutinizing the proof, we find that the proof is indeed applicable to time-dependent
SDEs.
Lemma B.4 (Adaption of Proposition 25, Li et al. (2019)). Suppose that the drift function b and
diffusion function σ are Lipschitz and belong to Gα for some α ≥ 1. Let s ∈ [0, T] and g ∈ Gα. For
t ∈ [s, T], define

u(x, s, t) := EXt∼PX(x,s,t)[g(Xt)],

Then u(·, s, t) ∈ Gα uniformly in s, t.

We need the following lemma to bound the growth of xk.
Lemma B.5. Under Condition (3) of Theorem B.2, given the initial point x0 and any m ≥ 1, there
exists a constant C ′2m > 0 (depending on x0 but independent of ηe) such that the parameters {xk}
of SGA starting from x0 can be uniformly bounded by E[‖xk‖2m2] ≤ C ′2m for all k ≤ N := bT/ηec.

Proof. It suffices to show that both E[(1 + ‖xk‖2P)m] and E[(1 + ‖xk‖2R)m] are uniformly bounded.

First, we show that for E[(1 + ‖xk‖2P)m]. For all 2 ≤ j ≤ 2m, by Jensen’s inequality,

E
[
‖∆(xk, k)‖jP | xk

]
≤ E

[
‖∆(xk, k)‖2mP | xk

] j
2m ≤ C

j
2m
2m η

j/2
e (1 + ‖xk‖2mP)

j
2m .

Then there exists a constant Ĉ1 > 0 so that

E
[
‖∆(xk, k)‖jP | xk

]
≤ Ĉ1ηe(1 + ‖xk‖jP). (9)

For any two vectors x,y ∈ RD, we use the notation 〈x,y〉P :=
∑
i∈P xiyi to denote the inner

product of x and y restricting on coordinates in P . Now we expand
(
1 + ‖xk+1‖2P

)m
using the

update rule. Let δk := 2〈xk,∆(xk, k)〉P + ‖∆(xk, k)‖2P. Then by the binomial theorem,

E
[(

1 + ‖xk+1‖2P
)m | xk] = E

[(
1 + ‖xk‖2P + δk

)m | xk]
= (1 + ‖xk‖2P)m +mE[δk | xk](1 + ‖xk‖2P)m−1

+

m∑
j=2

(
m

j

)
E[δjk | xk](1 + ‖xk‖2P)m−j .

By (9), it can be shown that there is a constant Ĉ2 such that E[δjk | xk] ≤ Ĉ2ηe(1 + ‖xk‖2P)j for
j ≥ 2. Then there exists constant Ĉ3, Ĉ4 such that

E
[(

1 + ‖xk+1‖2P
)m | xk] ≤ (1 + ‖xk‖2P)m +mE[δk | xk](1 + ‖xk‖2P)m−1

+ Ĉ3ηe(1 + ‖xk‖2P)m

≤ (1 + ‖xk‖2P)m + 2m 〈xk,E[∆(xk, k) | xk]〉P (1 + ‖xk‖2P)m−1

+ Ĉ4ηe(1 + ‖xk‖2P)m.

Recall that ‖E[∆(xk, k) | xk]‖P ≤ C1ηe(1+‖xk‖P) by Condition (3). Thus, there exists a constant
Ĉ5 (independent of ηe, ‖xk‖P) such that

E
[(

1 + ‖xk+1‖2P
)m | xk] ≤ (1 + Ĉ5ηe)(1 + ‖xk‖2P)m.

Taking the expectation over xk gives

E
[(

1 + ‖xk+1‖2P
)m] ≤ (1 + Ĉ5ηe)E[(1 + ‖xk‖2P)m].

Then taking a telescoping product proves that for all k ≤ N ,

E[(1 + ‖xk‖2P)m] ≤ (1 + Ĉ5ηe)
k(1 + ‖x0‖2P)m ≤ exp(Ĉ5kηe)(1 + ‖x0‖2P)m

≤ exp(Ĉ5T)(1 + ‖x0‖2P)m.

18

So E[(1 + ‖xk‖2P)m] is uniformly bounded (independent of ηe, k).

Now we show that E[(1 + ‖xk‖2R)m] is uniformly bounded. We can repeat the argument above to
bound E[(1 + ‖xk‖2R)m], while utilizing the bounds ‖E∆(x, k)‖R ≤ C1ηe(1 + ‖x‖ω1

P)(1 + ‖x‖R),
E‖∆(x, k)‖2mR ≤ C2mη

m
e (1 + ‖x‖ω2m

P)(1 + ‖x‖2mR). In the end we can obtain the following for
some real constant Ĉ6 > 0 and some integer constant ω̂ > 0:

E
[(

1 + ‖xk+1‖2R
)m] ≤ (1 + Ĉ6ηeE[1 + ‖xk‖2ω̂P])E

[
(1 + ‖xk‖2R)m

]
.

As we have shown, E[1 + ‖xk‖2ω̂P] is uniformly bounded by a constant. Taking a telescoping product
proves that E[(1 + ‖xk‖2R)m] is uniformly bounded (independent of ηe, k).

We also need the following lemma adapted from Lemma C.2, Li et al. (2021).
Lemma B.6 (Adaption of Lemma C.2, Li et al. (2021)). Let u1, . . . , uN be a set of functions that
belong to G4 uniformly. Under Conditions (2), (3) in Theorem B.2, if b and σ are Lipschitz, then
there exists a function K ′1 ∈ G (independent of ηe) such that∣∣∣E[uj(x+ ∆(x, k))]− E[uj(x+ ∆̃(x, k))]

∣∣∣ ≤ K ′1(x)η2e ,

for all 1 ≤ j ≤ N , 1 ≤ k ≤ N and x ∈ Xk.

Proof. Since u1, . . . , uN ∈ G4 uniformly, we can find K0 ∈ G such that uj(x) is bounded by
K0(x) and so are all the partial derivatives of uj up to order 4.

By Taylor’s Theorem with Lagrange Remainder, for all 1 ≤ j ≤ N , 1 ≤ k ≤ N we have

uj(x+ ∆(x, k))− uj(x+ ∆̃(x, k))

=

3∑
s=1

1

s!

∑
1≤i1,...,is≤D

∂suj
∂xi1 ···∂xis

(x)

(
s∏
r=1

∆ir (x, k)−
s∏
r=1

∆̃ir (x, k)

)
︸ ︷︷ ︸

=:Mj

+Rj − R̃j ,

where the remainders Rj , R̃j are

Rj :=
1

4!

∑
1≤i1,...,i4≤D

∂4uj
∂xi1 ···∂xi4

(x+ a∆(x, k))

4∏
r=1

∆ir (x, k).

R̃j :=
1

4!

∑
1≤i1,...,i4≤D

∂4uj
∂xi1 ···∂xi4

(x+ ã∆̃(x, k))

4∏
r=1

∆̃ir (x, k).

for some a, ã ∈ [0, 1].

By Condition (2), the expectation of Mj can be bounded by

E[Mj] ≤
3∑
s=1

1

s!

∑
1≤i1,...,is≤D

∣∣∣ ∂suj
∂xi1 ···∂xis

(x)
∣∣∣ ·K1(x)η2e ≤

3∑
s=1

Ds

s!
K0(x)K1(x)η2e ,

so 1
η2e
E[Mj] is uniformly bounded by a function in G.

Now let κ0,m be the constants so that K0(x)2 ≤ κ20(1 + ‖x‖2m2). For Rj , by Cauchy-Schwarz
inequality we have

E[Rj] ≤
1

4!

 ∑
i1,...,i4

E
[∣∣∣ ∂4uj
∂xi1 ···∂xi4

(x+ a∆(x, k))
∣∣∣2]
1/2

·

 ∑
i1,...,i4

E

∣∣∣∣∣
4∏
r=1

∆ir (x, k)

∣∣∣∣∣
2
1/2

≤ 1

4!

 ∑
i1,...,i4

E
[∣∣∣ ∂4uj
∂xi1 ···∂xi4

(x+ a∆(x, k))
∣∣∣2]
1/2

· E
[
‖∆(x, k)‖82

]1/2
≤ 1

4!

(
D2 ·K0(x+ a∆(x, k))

)
·
(
η4eK8(x)

)1/2
,

19

where the last line uses Condition (3) and K8 is a function of polynomial growth. For K0(x +
a∆(x, k)), we can bound its expectation by

E[K0(x+ a∆(x, k))] ≤ κ0E
[
1 + ‖x+ a∆(x, k)‖2m2

]1/2
≤ κ0

(
1 + 22m−1E[‖x‖2m2 + E‖∆(x, k)‖2m2]

)1/2
≤ κ0

(
1 + 22m−1(‖x‖2m2 + C2mη

2m
e (1 + ‖x‖2m2))

)1/2
.

Combining this with our bound for E[Rj] proves that 1
η2e
E[Rj] is uniformly bounded by a function in

G:

E[Rj] ≤ η2e ·
1

4!
·D4 · κ0

(
1 + 22m−1(‖x‖2m2 + C2mη

2m
e (1 + ‖x‖2m2))

)1/2 ·K1/2
8 (x).

Then we can repeat the above argument for Rj while replacing ∆ as ∆̃, and conclude that 1
η2e
E[R̃j]

is also uniformly bounded by a function in G. To do so, we note that b,σ are Lipschitz, and apply a
similar argument as in Lemma 26 of Li et al. (2019) to show that for all s ≥ 1 there exists a function
K̃ ∈ G such that for all 1 ≤ i1, . . . , is ≤ D,

E

[∣∣∣∣∣
s∏
r=1

∆̃ir (x, k)

∣∣∣∣∣
]
≤ K̃(x)ηse .

Finally, we can find a function K ′1 ∈ G such that E[Mj] ≤ 1
3K
′
1(x)η2e , E[Rj] ≤ 1

3K
′
1(x)η2e ,

E[R̃j] ≤ 1
3K
′
1(x)η2e . Then E[uj(x+ ∆(x, k))]− E[uj(x+ ∆̃(x, k))] ≤ K ′1(x)η2e .

Now we are ready to present our proof for Theorem C.2.

Proof for Theorem B.2. For 0 ≤ j ≤ k, let x̂j,k be a random variable that is distributed as the
probability distribution PX(xj , jηe, kηe) conditioned on xj . By definition, Pr[x̂k,k = xk] = 1,
x̂0,k ∼Xkηe . Let u(x, s, t) := EXt∼PX(x,s,t)[g(Xt)]. Then we can do the following decomposition
for E[g(xk)]− E[g(Xkηe)]:

|E[g(xk)]− E[g(Xkηe)]| =
k−1∑
j=0

(E[g(x̂j+1,k)]− E[g(x̂j,k)])

=

k−1∑
j=0

(E[u(x̂j+1,j+1, (j + 1)ηe, kηe)]− E[u(x̂j,j+1, (j + 1)ηe, kηe)]) .

Taking absolute values gives

|E[g(xk)]− E[g(Xkηe)]| ≤
k−1∑
j=0

|E[u(x̂j+1,j+1, (j + 1)ηe, kηe)]− E[u(x̂j,j+1, (j + 1)ηe, kηe)]| .

Let uj+1(x) := u(x, (j+1)ηe, kηe). Note that x̂j+1,j+1 ∼ xj+∆(xj , j), x̂j,j+1 ∼ xj+∆̃(xj , j).
We can rewrite the above formula as

|E[g(xk)]− E[g(Xkηe)]| ≤
k−1∑
j=0

∣∣∣E[uj+1(xj + ∆(xj , j))]− E[uj+1(xj + ∆̃(xj , j))]
∣∣∣ .

By Lemma B.4, u ∈ G4 uniformly in s, t, so u1, . . . , uN ∈ G4 uniformly. Then by Lemma B.6, we
know that there exists a function K ′1(x) = κ1(1 + ‖x‖2m2) ∈ G such that∣∣∣E[uj+1(xj + ∆(xj , j))]− E[uj+1(xj + ∆̃(xj , j))]

∣∣∣ ≤ E[K ′1(xj)η
2
e],

for all 0 ≤ j < N . Combining this with Lemma B.5, we can bound |E[g(xk)]− E[g(Xkηe)]| by

|E[g(xk)]− E[g(Xkηe)]| ≤
k−1∑
j=0

E[K ′1(xj)η
2
e] ≤ η2e

k−1∑
j=0

E[κ1(1 + ‖xj‖2m2)]

≤ η2e
k−1∑
j=0

κ1(1 + C ′2m) ≤ κ1(1 + C ′2m)Tηe.

We can complete the proof by noting that κ1, C ′2m, T are independent of ηe.

20

B.2 Proof for Lemma B.3

To prove Lemma B.3, we only need to verify the following lemma using Itô-Taylor expansion.
Lemma B.7. Let ψ : RD → R be a function in G4. Define

Atψ(x) :=
∑
i∈[D]

bi(x, t)∂iψ(x) +
1

2

∑
i,j∈[D]

∑
l∈[D]

σi,l(x, t)σl,j(x, t)

 ∂2i,jψ(x).

Then there exists a function K̂ ∈ G such that∣∣∣E [ψ(x+ ∆̃(x, k))
]
− ψ(x)− ηeAkηeψ(x)

∣∣∣ ≤ K̂(x)η2e . (10)

Proof for Lemma B.3. We can prove the lemma by applying Lemma B.7 with ψ(x) being ψ(x̃) =∏s
r=1(x̃ir − xir) for any tuple (i1, . . . , is) ∈ [D]s with s ≤ 3 elements.

Proof for Lemma B.7. WLOG we prove the case of k = 0, then all the other cases can be proved by
shifting the time. Let Λtψ(x) := σ(x, t)>∇ψ(x).

ψ(Xη) = ψ(x) +

∫ ηe

0

Asψ(Xs)ds+

∫ ηe

0

〈Λsψ(Xs), dWs〉.

Now we further apply the above formula to Asψ(Xs). Then we have

ψ(Xη) = ψ(x) +

∫ ηe

0

(
Asψ(x) +

∫ s

0

ArAsψ(Xr)dr +

∫ s

0

〈ΛrAsψ(Xr), dWr〉
)

ds

+

∫ ηe

0

〈Λsψ(Xs), dWs〉

= ψ(x) +

∫ ηe

0

Asψ(x)ds+

∫ ηe

0

∫ s

0

ArAsψ(Xr)drds

+

∫ ηe

0

∫ s

0

〈ΛrAsψ(Xr), dWr〉ds+

∫ ηe

0

〈Λsψ(Xs), dWs〉.

Taking expectation, the last two integrals vanish. So we have

Eψ(Xη) = ψ(x) +

∫ ηe

0

Asψ(x)ds+

∫ ηe

0

∫ s

0

E[ArAsψ(Xr)]drds.

By Lipschitzness of b and σ, 1
ηe

(Asψ(x)−A0ψ(x)) is bounded by a function of x with polynomial
growth. Also, ArAsψ(·) is in G uniformly, then Theorem 19 in (Li et al., 2019) implies that
E[ArAsψ(Xr)] is also in G uniformly. Then we know that there exists two functions K̂1, K̂2 ∈ G
such that

|E [ψ(Xηe)]− ψ(x)− ηeA0ψ(x)| ≤
∫ ηe

0

ηeK̂1(x)ds+

∫ ηe

0

∫ s

0

K̂2(x)drds

≤ η2e (K̂1(x) + K̂2(x)).

We can conclude the proof by setting K̂(x) := K̂1(x) + K̂2(x).

C RMSProp SDE Proof

In this section, we prove the theorem for the SDE approximation of RMSprop.
Definition C.1 (SDE for RMSprop, matrix form). For constants σ0, ε0, and c2, define the SDE as
dXt = b(Xt)dt+ σ(Xt)dWt, whereXt ∈ Rd × Rd, and b and σ are defined by

bi(θ,u) := − 1
σ0
√
ui+ε0

· ∂if(θ), bd+i(θ,u) := c2(Σ(θ)i,i − ui).

σi,j(θ,u) := 1√
ui+ε0/σ0

·
(
Σ

1/2(θ)
)
i,j
, σi,d+j(θ,u) := 0,

σd+i,j(θ,u) := 0, σd+i,d+j(θ,u) := 0,

for all 1 ≤ i, j ≤ d.

21

Theorem C.2. Fix constants σ0, c2 > 0, ε0 ≥ 0. Let T > 0, η2 ∈ (0, 1 ∧ T ∧ 1
2c2

) and set
N = bT/η2c. Let uk , vk/σ

2 and xk , (θk,uk) ∈ R2d. Let {xk : k ≥ 0} be the discrete
RMSprop iterations defined in Definition 2.1, where σ, ε, β are set so that σ0 = ση, ε0 = εη and
c2 = (1 − β)/η2. For well-behaved NGOS that satisfies the bounded moments and low skewness
conditions, the SDE as defined in Definition C.1 is an order-1 weak approximation (Definition 2.4) of
discrete RMSprop, if they start withX0 = x0.

The basic idea is to apply the general theorem (Theorem B.2) with ηe := η2. However, the SDE
above does not satisfy Condition (1) in Theorem B.2 because the denominators such as σ0

√
ui + ε0

can be unbounded. To solve this issue, the first step is to reduce Theorem C.2 to proving the order-1
weak approximation for the following auxiliary SDE:

Definition C.3. Define τ : R→ R to be the following smooth transition function:

τ(z) =

1 if z ≥ 1,

e−1/z

e−1/z+e−1/(1−z) if z ∈ (0, 1),

0 if z ≤ 0.

(11)

Definition C.4 (Auxiliary SDE for RMSprop, matrix form). For constants σ0, ε0, c2 and umin, define
µ(u) as the following function

µ(u) := 1
2umin + τ(2u

umin
− 1) · (u− 1

2umin), (12)

and define the SDE as dXt = b(Xt)dt + σ(Xt)dWt, where Xt ∈ Rd × Rd, and b and σ are
defined by

bi(θ,u) := − 1

σ0

√
µ(ui)+ε0

· ∂if(θ), bd+i(θ,u) := c2(Σ(θ)i,i − ui).

σi,j(θ,u) := 1√
µ(ui)+ε0/σ0

·
(
Σ(θ)1/2

)
i,j
, σi,d+j(θ,u) := 0,

σd+i,j(θ,u) := 0, σd+i,d+j(θ,u) := 0.

for all 1 ≤ i, j ≤ d.

Theorem C.5. In the setting of Theorem C.2, let umin = 2−c2T mini∈[d] u0,i then the SDE defined by
Definition C.4 is an order-1 weak approximation (Definition 2.4) of discrete RMSprop (Definition 2.1),
if they start withX0 = x0.

Proof for Theorem C.2. Given Theorem C.5, we only need to show thatXt has the same distribution
in the original and auxiliary SDEs for all t ∈ [0, T], whenX0 = (θ0,u0). To see this, we only need
to note that in the original SDE

dut,i
dt

= c2(Σ(θt)i,i − ut,i) ≥ −c2ut,i.

Thus, ut,i ≥ exp(−c2t)u0,i ≥ umin, which means Pr[ut,i = µ(ut,i)] = 1 for all t ∈ [0, T].

It remains to prove Theorem C.5 by applying Theorem B.2. In the rest of this section, we verify the
three conditions in Theorem B.2 respectively.

Below we use the notations xk,Xt, b,σ defined as in Theorem C.5. Let D = 2d. Every xk ∈ RD is
a concatenation of two Rd-vectors θk and uk. According to the update rule of RMSprop, xk can
be seen as SGA xk+1 = xk − ηehk(xk, zk, ηe), where ηe = η2, zk ∼ Zσ(θk), and hk is defined
below:

hk(θ,u, z, ηe) :=

[
−(∇f(θ) + σz)� (σ0

√
u+ ε0)−1

c2
(
(∇f(θ)/σ + z)2 − u

)]
.

We define ∆ and ∆̃ as in (6) and (7). Fix x0 = (θ0,u0) with u0,j > 0 for all j ∈ [d]. Define umin

as in Theorem C.5. Let Xk be the support of the random variable xk given x0, then it is easy to show
that Xk is a subset of {(θ,u) : uj ≥ umin for all j ∈ [d]}.

22

C.1 Verifying Condition (1)

Lemma C.6. The drift function b and diffusion function σ are Lipschitz and belong to G4.

Proof. Σ1/2(θ) is bounded and Lipschitz, so Σ(θ) is Lipschitz. Note that the denominators in the
fractions in the formulas of b and σ are always lower bounded by a constant. Then the Lipschitz
property of b and σ can be implied by the Lipschitz property of ∇f(θ), Σ(θ), Σ1/2(θ), and
b,σ ∈ G4 can be implied by ∇f,Σ1/2, µ ∈ G4.

C.2 Verifying Condition (2)

To verify Condition (2), we only need to compute the moments of ∆ and ∆̃ for the discrete RMSprop
and the auxiliary SDE, and show that they are close to each other. We compute them by the following
two lemmas.
Lemma C.7. For x = (θ,u) ∈ Xk, if the NGOS is well-behaved and Zσ satisfies the bounded
moments and low skewness condition, then the moments of ∆ := ∆(x, k) − x can be written as
below.

1. For 1 ≤ i ≤ d, the following holds for the first moments:

E[∆i] = − η2

σ0
√
ui + ε0

∂if(θ), E[∆d+i] = η2c2 (Σii(θ)− ui) +
η4c2
σ2
0

(∂if(θ))2

= η2c2 (Σii(θ)− ui) +O(η4).

2. For 1 ≤ i, j ≤ d, the following holds for the second moments:

E[∆i∆j] =
η2Σij(θ)

(
√
ui + ε0/σ0)(

√
uj + ε0/σ0)

+O(η4) E[∆i∆d+j] = O(η4)

E[∆d+i∆j] = O(η4) E[∆d+i∆d+j] = O(η4).

for all i, j ∈ [d].

3. The third moments are bounded by E[∆⊗3] = O(η4).

Here the big-O notation O(·) is used in a way that O(1) hides constants (independent of η and x)
and values that are bounded by a function of x with polynomial growth.

Proof. We note that

∆i = − η2

σ0
√
ui + ε0

(∂if(θ) + σzi) , ∆d+i = (1− β)
(
(∂if(θ)/σ + zi)

2 − ui
)
.

Let νi := 1
σ0
√
ui+ε0

. Since x ∈ Xk, νi ≤ 1
σ0
√
umin+ε0

= O(1). Writing 1− β as c2η2, we have

∆i = −νiη2 (∂if(θ) + σzi) , ∆d+i = c2η
2
(
(∂if(θ)/σ + zi)

2 − ui
)
. (13)

We can now compute the first moments:

E[∆i] = −νiη2∂if(θ) (E[zi] = 0)

E[∆d+i] = c2η
2
(
E[(∂if(θ)/σ)2 + E[z2i]− E[ui]

)
= c2η

2
(
(∂if(θ)/σ)2 + Σii − ui

)
.

Now we observe that 1/σ = O(η), so we can write

E[∆d+i] = η2c2(Σii − ui) +O(η4).

Let δ := ∆− E[∆]. That is,

δi = −νiη2σzi δd+i = c2η
2(z2i − Σii + 2zi∂if(θ)/σ)

= −νiσ0ηzi. = c2η
2(z2i − Σii) + 2c2(∂if(θ)/σ0)η3zi.

23

For convenience we also define wi = (z2i − Σii) + 2(∂if(θ)/σ0)ηzi and write δd+i = c2η
2wi.

For the second moments we have

E[∆p∆q] = E[δpδq] + E[∆p]E[∆q] = E[δpδq] +O(η4) for all 1 ≤ p, q ≤ 2d.

Then it suffices to compute the second moments for δ. For E[δiδj] we have

E[δiδj] = νiνjη
4σ2E[zizj] = νiνjσ

2
0Σij .

For E[δiδd+j] we have

E[δiδd+j] = −c2νiσ0η3E [ziwj]

= −c2νiσ0η3E[ziz
2
j] +O(η4)

= E[ziz
2
j] · O(η3) +O(η4).

Similarly, we have E[∆d+i∆j] = E[z2i zj] · O(η3) +O(η4).

For E[δd+iδd+j], we note that z ∼ Zσ(θ) has bounded 4th-order moments, so E[g(z)] = O(1) for
any polynomial g of degree at most 4, if the coefficients of g are bounded by O(1). Then we have

E[δd+iδd+j] = c22η
4E[wiwj] = O(η4).

Now we can check the third moments.

E[∆p∆q∆r] = E[δpδqδr] + (E[δpδq]E[∆r] + E[δpδr]E[∆q] + E[δqδr]E[∆p]) + E[∆p]E[∆q]E[∆r]

= E[δpδqδr] +O(η2) · O(η2) +O(η6)

= E[δpδqδr] +O(η4).

Note that δpδqδr is a polynomial of z. For p = i, q = j, r = k, by the low skewness condition for
Zσ we have

E[δiδjδk] = −ν3i σ3
0η

3E[zizjzk] = K3(θ)/σ · O(η3) = O(η4).

Except the above case, it can be shown that δpδqδr is a polynomial with coefficients bounded by
O(η4). Combining this with the fact that z ∼ Zσ(θ) has bounded moments of any order, we have
E[δpδqδr] = O(η4).

Lemma C.8. For x = (θ,u) ∈ Xk, if the NGOS is well-behaved, then the moments of ∆̃ := ∆̃(x, k)
can be written as below.

1. The first moments are given by

E[∆̃i] = − η2

σ0
√
µ(ui) + ε0

∂if(θ), E[∆̃d+i] = η2c2 (Σii(θ)− ui) +O(η4).

for all i ∈ [d].

2. The second moments are given by

E[∆̃i∆̃j] =
η2Σij(θ)

(
√
µ(ui) + ε0/σ0)(

√
µ(uj) + ε0/σ0)

+O(η4) E[∆̃i∆̃d+j] = O(η4)

E[∆̃d+i∆̃j] = O(η4) E[∆̃d+i∆̃d+j] = O(η4).

for all i, j ∈ [d].

3. The third moments are bounded by E[∆̃⊗3] = O(η4).

Here the big-O notation O(·) is used in a way that O(1) hides constants (independent of η and x)
and values that are bounded by a function of x with polynomial growth.

Proof. Applying Lemma B.3 gives

E[∆̃] = η2b(x) +O(η4), E[∆̃∆̃>] = η2σ(x)σ(x)> +O(η4), E[∆̃⊗3] = O(η4).

Splitting up the formula by indices proves the claim.

24

C.3 Verifying Condition (3)

Lemma C.9. Let P := {1, 2, . . . , d}. Then

1. There is a constant C1 > 0 (independent of ηe) so that for all k ≤ N and x ∈ Xk,

‖E∆(x, k)‖P ≤ C1ηe(1 + ‖x‖P),

‖E∆(x, k)‖R ≤ C1ηe(1 + ‖x‖2P)(1 + ‖x‖R),

2. For all m ≥ 1, there is a constant C2m (independent of ηe) so that for all k ≤ N and x ∈ Xk,

E‖∆(x, k)‖2mP ≤ C2mη
m
e (1 + ‖x‖2mP),

E‖∆(x, k)‖2mR ≤ C2mη
m
e (1 + ‖x‖4mP)(1 + ‖x‖2mR),

Proof. By Lemma C.7, for all i ∈ [d],

E[∆i] = − η2

σ0
√
ui + ε0

∂if(θ), E[∆d+i] = η2c2 (Σii(θ)− ui) +
η4c2
σ2
0

(∂if(θ))2.

Combining this with the Lipschitzness of∇f(θ) and the boundedness of Σ(θ) proves Item 1.

By (13), for all i ∈ [d],

|∆i| = νiη
2 |∂if(θ) + σzi| ≤ η2νi(1 + |∂if(θ)|)(1 + σ|zi|) ≤ ηνi(1 + |∂if(θ)|)(1 + σ0|zi|)

|∆d+i| = c2η
2
∣∣(∂if(θ)/σ + zi)

2 − ui
∣∣ ≤ c2η2(1 + (∂if(θ)/σ + zi)

2)(1 + ui)

By the Lipschitzness of ∇f(θ) and the bounded moments condition for Zσ , we can prove Item 2 by
taking powers and expectations on both sides of the above inequalities.

D Adam SDE Proof

In this section, we prove the theorem for the SDE approximation of Adam.

Definition D.1 (SDE for Adam, matrix form). For constants σ0, ε0, c1 and c2, define γ1(t) :=
1 − e−c1t, γ2(t) := 1 − e−c2t and define the SDE as dXt = b(Xt)dt + σ(Xt)dWt, where
Xt ∈ Rd × Rd × Rd, b is defined by

bi(x, t) := −
√
γ2(t)

γ1(t)
· mi

σ0
√
ui+ε0

√
γ2(t)

,

bd+i(x, t) := c1(∂if(θ)−mi),

b2d+i(x, t) := c2(Σ(θ)i,i − ui),

for all 1 ≤ i ≤ d, and σd+i,d+j for all 1 ≤ i, j ≤ d is given by

σd+i,d+j(x, t) := σ0c1

(
Σ1/2(θ)

)
i,j
,

and all the other entries of σ are zero.

Theorem D.2. Fix σ0, c1, c2 > 0, ε0 ≥ 0. Let T > 0, η2 ∈ (0, 1 ∧ T ∧ 1
2c2

) and set N = bT/η2c.
Let uk , vk/σ

2 and xk , (θk,mk,uk) ∈ R3d. Let {xk : k ≥ 0} be the discrete Adam
iterations defined in Definition 2.2. Set σ, ε, β1, β2 so that σ0 = ση, ε0 = εη, c1 = (1 − β1)/η2

and c2 = (1 − β2)/η2. For well-behaved NGOS that satisfies the bounded moments and low
skewness conditions, for any constant t0 > 0, the solutionXt (t ∈ [t0, T]) of the SDE defined as in
Definition D.1 is an order-1 weak approximation (Definition 2.4) of the sequence of Adam iterates xk
starting from k0 = dt0/η2e, if the initial condition of the SDE is set toXt0 = xk0 .

The proof strategy is essentially the same as that for RMSprop. Similar to what we have done for
RMSprop, we turn to prove the approximation order for the following auxiliary SDE.

25

Definition D.3 (Auxiliary SDE for Adam, matrix form). For constants σ0, ε0, c1, c2 and umin, define
γ1(t) := 1− e−c1t, γ2(t) := 1− e−c2t, µ(u) := 1

2umin + τ(2u
umin
− 1) · (u− 1

2umin), and define the
SDE as dXt = b(Xt)dt+ σ(Xt)dWt, whereXt ∈ Rd × Rd × Rd, b is defined by

bi(x, t) := −
√
γ2(t)

γ1(t)
· mi

σ0

√
µ(ui)+ε0

√
γ2(t)

,

bd+i(x, t) := c1(∂if(θ)−mi),

b2d+i(x, t) := c2(Σ(θ)i,i − ui),
for all 1 ≤ i ≤ d, and σd+i,d+j for all 1 ≤ i, j ≤ d is given by

σd+i,d+j(x, t) := σ0c1

(
Σ1/2(θ)

)
i,j
,

and all the other entries of σ are zero.
Theorem D.4. In the setting of Theorem D.2, let umin = 2−(T−t0) mini∈[d] uk0,i, For any constant
t0 > 0, the solution Xt (t ∈ [t0, T]) of the SDE defined as in Definition D.3 is an order-1 weak
approximation (Definition 2.4) of the sequence of Adam iterates xk starting from k0 = dt0/η2e, if
the initial condition of the SDE is set toXt0 = xk0 .

Proof for Theorem D.2. Given Theorem D.4, we only need to show thatXt has the same distribution
in the original and auxiliary SDEs for all t ∈ [0, T], whenX0 = (θ0,m0,u0). To see this, we only
need to note that in the original SDE

dut,i
dt

= c2(Σ(θt)i,i − ut,i) ≥ −c2ut,i.

Thus, ut,i ≥ exp(−c2t)u0,i ≥ umin, which means Pr[ut,i = µ(ut,i)] = 1 for all t ∈ [0, T].

It remains to prove Theorem D.4 by applying Theorem B.2. In the rest of this section, we verify the
three conditions in Theorem B.2 respectively.

Below we use the notations xk,Xt, b,σ defined as in Theorem D.4. Let D = 3d. Every xk ∈ RD is
a concatenation of three Rd-vectors θk,mk and uk. According to the update rule of Adam, xk can
be seen as SGA xk+1 = xk − ηehk(xk, zk, ηe), where ηe = η2, zk ∼ Zσ(θk), and hk is defined
below:

hk(θ,u, z, ηe) :=

−
√

1−βk2
1−βk+1

1

m�
(
σ0
√
u+ ε0

√
1− βk2

)−1
c1(∇f(θ) + σz −m)

c2
(
(∇f(θ)/σ + z)2 − u

)
 .

We define ∆ and ∆̃ as in (6) and (7).

Fix x0 = (θ0,m0,u0) with u0,j > 0 for all j ∈ [d]. Define umin as in Theorem D.4. Let Xk
be the support of the random variable xk given x0, then it is easy to show that Xk is a subset of
{(θ,m,u) : uj ≥ umin for all j ∈ [d]}.

D.1 Verifying Condition (1)

Lemma D.5. The drift function b and diffusion function σ are Lipschitz and belong to G4.

Proof. Same argument as for Lemma C.6.

D.2 Verifying Condition (2)

Let x = (θ,m,u) ∈ R3d. For ease of notation, let γ̂1 = 1− βk+1
1 and γ̂2 = 1− βk2 . These are not

constants across time steps like the other constants, but they are deterministic and upper bounded by
constants for k ≥ t0/η2.

To verify Condition 2, we only need to compute the moments of ∆ and ∆̃ for the discrete Adam and
the auxiliary SDE, and show that they are close to each other. We compute them by the following
two lemmas.

26

Lemma D.6. For x = (θ,u) ∈ Xk, if the NGOS is well-behaved and Zσ satisfies the bounded
moments and low skewness condition, then the moments of ∆ := ∆(x, k) can be written as below.

1. The first moments are given by

E[∆i] = −
√
γ̂2
γ̂1
· η2

σ0
√
ui + ε0

√
γ̂2

(mi + c1η
2(∂if(θ)−mi))

= −
√
γ̂2
γ̂1
· η2mi

σ0
√
ui + ε0

√
γ̂2

+O(η4)

E[∆d+i] = c1η
2(∂if(θ)−mi)

E[∆2d+i] = c2η
2((∂if(θ)/σ)2 + Σii − ui)

= c2η
2(Σii − ui) +O(η4).

for all i ∈ [d].

2. The second moments are given by

E[∆p∆q] =

{
c21σ

2
0η

2Σij +O(η4) if p = d+ i, q = d+ j for some i, j ∈ [d]

O(η4) otherwise.

for all p, q ∈ [3d].

3. The third moments are bounded by E[∆⊗3] = O(η4).

Here the big-O notation O(·) is used in a way that O(1) hides constants (independent of η and x)
and values that are bounded by a function of x with polynomial growth.

Proof. For notational convenience, we write ∆,Σ instead of ∆(x),Σ(θ). We note that

∆i = −
√
γ̂2
γ̂1
· η

2mi + η2(1− β1)(∂if(θ) + σzi −mi)

σ0
√
ui + ε0

√
γ̂2

∆d+i = (1− β1)(∂if(θ) + σzi −mi)

∆2d+i = (1− β2)((∂if(θ)/σ + zi)
2 − ui)

Let νi :=
√
γ̂2
γ̂1
· 1
σ0
√
ui+ε0

√
γ̂2

. And we write 1− β = c2η
2. Then we have

∆i = −νiη2(mi + c1η
2(∂if(θ) + σzi −mi))

∆d+i = c1η
2(∂if(θ) + σzi −mi)

∆2d+i = c2η
2((∂if(θ)/σ + zi)

2 − ui)
(14)

The first moments follow directly:

E[∆i] = −νiη2(mi + c1η
2(∂if(θ)−mi)) = −νiη2mi +O(η4)

E[∆d+i] = c1η
2(∂if(θ)−mi)

E[∆2d+i] = c2η
2((∂if(θ)/σ)2 + Σii − ui) = c2η

2(Σii − ui) +O(η4).

Let δ := ∆− E[∆]. That is,

δi = −νic1η4σzi = −νic1σ0η3zi
δd+i = c1η

2σzi = c1σ0ηzi

δ2d+i = c2η
2(z2i − Σii + 2zi∂if(θ)/σ)

= c2η
2(z2i − Σii) + 2c2(∂if(θ)/σ0)η3zi.

For convenience we also define wi = (z2i − Σii) + 2(∂if(θ)/σ0)ηzi and write δd+i = c2η
2wi.

Similar as the proof for Lemma C.7, for the second moments we have

E[∆p∆q] = E[δpδq] + E[∆p]E[∆q] = E[δpδq] +O(η4) for all 1 ≤ p, q ≤ 2d.

27

Then it suffices to compute the second order moments for δ. A direct computation gives the following:

E[δiδj] = νiνjc
2
1σ

2
0η

6E[zizj] = O(η6).

E[δiδd+j] = −νic21σ2
0η

4E[zizj] = O(η4).

E[δiδ2d+j] = −νic1c2σ0η5E[ziwj] = O(η5).

E[δd+iδd+j] = c21σ
2
0η

2E[zizj] = c21σ
2
0η

2Σij .

E[δd+iδ2d+j] = c1c2σ0η
3E[ziwj] = c1c2σ0η

3E[ziz
2
j] +O(η4).

E[δ2d+iδ2d+j] = c22η
4E[wiwj] = O(η4).

Now we check the third moments. Similar as the proof for Lemma C.7, E[∆p∆q∆r] = E[δpδqδr] +
O(η4). Note that δpδqδr is a polynomial of z. For p = d + i, q = d + j, r = d + k, by the low
skewness condition for Zσ we have

E[δd+iδd+jδd+k] = c31σ
3
0η

3E[zizjzk] = K3(θ)/σ · O(η3) = O(η4).

Except the above case, it can be shown that δpδqδr is a polynomial with coefficients bounded by
O(η4). Combining this with the fact that z ∼ Zσ(θ) has bounded moments of any order, we have
E[δpδqδr] = O(η4).

Lemma D.7. For x = (θ,u) ∈ Xk, if the NGOS is well-behaved, then the moments of ∆̃ := ∆̃(x, k)
can be written as below.

1. The first moments are given by

E[∆i] = −
√
γ̂2
γ̂1
· η2mi

σ0
√
ui + ε0

√
γ̂2

+O(η4)

E[∆d+i] = c1η
2(∂if(θ)−mi) +O(η4)

E[∆2d+i] = c2η
2(Σii − ui) +O(η4).

for all i ∈ [d].

2. The second moments are given by

E[∆p∆q] =

{
c21σ

2
0η

2Σij +O(η4) if p = d+ i, q = d+ j for some i, j ∈ [d]

O(η4) otherwise.

for all p, q ∈ [3d].

3. The third moments are bounded by E[∆⊗3] = O(η4).

Here the big-O notation O(·) is used in a way that O(1) hides constants (independent of η and x)
and values that are bounded by a function of x with polynomial growth.

Proof. Applying Lemma B.3 gives

E[∆̃] = η2b(x) +O(η4), E[∆̃∆̃>] = η2σ(x)σ(x)> +O(η4), E[∆̃⊗3] = O(η4).

Noting that γ1(kηe) = γ̂1 +O(η2) and γ2(kηe) = γ̂2 +O(η2), we can prove the claim.

D.3 Verifying Condition (3)

Lemma D.8. Let P := {1, 2, . . . , 2d}. Then

1. There is a constant C1 > 0 (independent of ηe) so that for all k ≤ N and x ∈ Xk,

‖E∆(x, k)‖P ≤ C1ηe(1 + ‖x‖P),

‖E∆(x, k)‖R ≤ C1ηe(1 + ‖x‖2P)(1 + ‖x‖R).

2. For all m ≥ 1, there is a constant C2m (independent of ηe) so that for all k ≤ N and x ∈ Xk,

E‖∆(x, k)‖2mP ≤ C2mη
m
e (1 + ‖x‖2mP),

E‖∆(x, k)‖2mR ≤ C2mη
m
e (1 + ‖x‖4mP)(1 + ‖x‖2mR).

28

Proof. By Lemma D.6, for all i ∈ [d],

E[∆i] = −νiη2(mi + c1η
2(∂if(θ)−mi))

E[∆d+i] = c1η
2(∂if(θ)−mi)

E[∆2d+i] = c2η
2((∂if(θ)/σ)2 + Σii − ui).

Combining this with the Lipschitzness of∇f(θ) and the boundedness of Σ(θ) proves Item 1.

By (14), for all i ∈ [d], one can show that there exists a constant Ĉ such that

|∆i| ≤ η2Ĉ(1 + |mi|+ |∂if(θ)|)(1 + |zi|)
|∆d+i| ≤ η2Ĉ(1 + |mi|+ |∂if(θ)|)(1 + |zi|)
|∆2d+i| ≤ η2Ĉ(1 + |∂if(θ)|2 + z2i)(1 + ui)

By the Lipschitzness of ∇f(θ) and the bounded moments condition for Zσ , we can prove Item 2 by
taking powers and expectations on both sides of the above inequalities.

E Analysis of SVAG Operator

Lemma E.1. Let Gσ = (f,Σ,Zσ) be a NGOS and Ĝ`σ = (f,Σ, Ẑ`σ) be the NGOS after applying
the SVAG operator with hyperparameter ` > 0. Then Ĝ`σ is indeed an NGOS. That is, Ẑ`σ(θ) is
well-defined and has mean zero, covariance Σ(θ).

Proof. Let Ẑ`σ(θ) be the distribution of ẑ := 1
` (r1(`)z1 + r2(`)z2) when z1, z2 ∼ Zσ(θ). Then it

is easy to check that ĝ has the same distribution as∇f(θ) + `σẑ, since

ĝ = r1(`)g1 + r2(`)g2 ∼ r1(`)(∇f(θ) + σz1) + r2(`)(∇f(θ) + σz2)

= (r1(`) + r2(`))∇f(θ) + σ(r1(`)z1 + r2(`)z2)

= ∇f(θ) + `σẑ,

where the last equality uses the fact that r1(`) + r2(`) = 1. Hence Ẑ`σ(θ) is well-defined.

Now we check the mean and covariance of ẑ ∼ Ẑ`σ(θ). By linearity of expectation and linearity of
variance (for independent variables), we have

E[ẑ] =
1

`
(r1(`)E[z1] + r2(`)E[z2]) =

1

`
(0 + 0) = 0,

Cov(ẑ) =
1

`2
(
r21(`)Cov(z1) + r22(`)Cov(z2)

)
=

1

`2
(r21(`) + r22(`))Σ(θ) = Σ(θ),

where the last equality is due to r21(`)+r22(`) =
(

1+
√
2`2−1
2

)2
+
(

1−
√
2`2−1
2

)2
= 1+2`2−1

2 = `2.

Lemma E.2. Let Gσ = (f,Σ,Zσ) be a NGOS with scale σ. Applying the SVAG operator with
hyperparameter ` ≥ 1, we obtain Ĝσ̂ = (f,Σ, Ẑσ̂) with scale σ̂ = `σ. Fixing σ and changing `
produces Ĝσ̂ for all scales σ̂ ≥ σ. If Gσ is well-behaved and satisfies the bounded moments condition,
then Ĝσ̂ is also well-behaved and satisfies the bounded moments condition. Furthermore, Ĝσ̂ satisfies
the low-skewness condition.

Proof. The loss function f and covariance function Σ are not changed after applying the SVAG
operator, so Ĝσ̂ is well-behaved.

Now we verify the bounded moments condition. Let ẑ = 1
` (r1(`)z1 + r2(`)z2), where z1, z2 ∼

Zσ(θ). Then we have

E[‖ẑ‖2m2]
1

2m ≤ 1

`

(
|r1(`)|E[‖z1‖2m2]

1
2m + |r2(`)|E[‖z2‖2m2]

1
2m

)
≤ 1

`
(|r1(`)|+ |r2(`)|) · E[‖z1‖2m2]

1
2m

≤ (1 +
√

2)E[‖z1‖2m2]
1

2m .

29

By the bounded moments condition for Gσ, there exists a constant C2m such that
Ez∼Zσ(θ)[‖z‖2m2]

1
2m ≤ C2m(1+‖θ‖2) for all θ ∈ Rd. So E[‖ẑ‖2m2]

1
2m ≤ (1+

√
2)C2m(1+‖θ‖2)

for all θ ∈ Rd.

We now verify the low skewness condition by showing that third moment of ẑ is O(1/`). By the
bounded moments condition with m = 2 and Jensen’s inequality,∣∣E[z⊗31]

∣∣ ≤ E[‖z1‖32] ≤ E[‖z1‖42]3/4 ≤ (C4(1 + ‖θ‖2))
3/4

.

So
∣∣E[z⊗31]

∣∣ is bounded by K̃3(θ) := (C4(1 + ‖θ‖2))
3/4 of polynomial growth.

Let r =
√

2`2 − 1. Then r1(`) = 1
2 (1 + r), r2(`) = 1

2 (1 − r). Since the third moments of two
independent random vectors are additive,

E[ẑ⊗3] =
1

8`3
E
[
((1 + r)z1 + (1− r)z2)

⊗3
]

=
1

8`3
(
E
[
(1 + r)3z⊗31

]
+
[
(1− r)3z⊗32

])
=

1

8`3
(
(1 + r)3 + (1− r)3

)
E
[
z⊗31

]
=

1

8`3
(2 + 6r2)E[z⊗31]

=
1

8`3
(12`2 − 4)E[z⊗31] ≤ 1

`
K̃3(θ),

where the 4th equality is due to (1+r)3+(1−r)3 = (1+3r+3r2+r3)+(1−3r+3r2−r3) = 2+6r2.
Therefore, the low skewness condition is verified.

F Miscellaneous Theoretical Arguments

F.1 How does the noise scale change with batch size?

We discuss how the noise scale σ in the NGOS (Definition 2.3) changes when the batch size
changes: in particular, σ ∼ 1/

√
B. The argument follows from the linearity of covariance and

is an already well-known result - we reproduce it here for clarity. We first fix a parameter vector
θ. Let g(1), . . . , g(B) be the gradients evaluated at data points from a batch of size B, where
g(b) = ∇f(θ) + z(b), and every z(b) is a gradient noise vector drawn i.i.d. from a distribution with
mean 0 and covariance Σ(θ). For sampling with replacement on a finite dataset of size n, where
f1(θ), . . . , fn(θ) are the loss functions for the n data points (and the average of these n functions is
f(θ)), this covariance matrix can be explicitly written as:

Σ(θ) =
1

n

n∑
i=1

(∇fi(θ)−∇f(θ))(∇fi(θ)−∇f(θ))>.

The average gradient over the batch is g := 1
B

∑B
b=1 g

(b) = ∇f(θ) + 1
B

∑B
b=1 z

(b). As
z(1), . . . ,z(B) are sampled i.i.d., their average 1

B

∑B
b=1 z

(b) has mean 0 and covariance Σ(θ) by
linearity of expectation and covariance. We can set Zσ(θ) to be the distribution of the random
variable 1√

B

∑B
b=1 zb, where σ = 1√

B
, then g has the same distribution as the stochastic gradient

produced by the NGOS Gσ = (f,Σ,Zσ).

F.2 What happens when the noise does not dominate the gradient?

We discuss the linear warm-up setting described in Section 4.1. Recall that when ignoring the effect
of ε, the RMSprop update can be written as

θk+1 ≈ θk − ηgk � (ḡ2 + σ21)−1/2.

From the above equation, it is clear that the dynamics of θ depends on the relationship between the
noise scale σ and the gradient ‖ḡ‖. In Section 4.1, we discuss the case where σ � ‖ḡ‖, which is the
regime where the SDE approximation can exist.

30

0.000 0.025 0.050 0.075
Continuous time = k * 2

2 4

2 1

22

||Egk||2/E||zk||2

B=256
B=1024
B=4096
B=16384

(a) ResNet-50 with ε order 10−30

0.000 0.025 0.050 0.075
Continuous time = k * 2

2 4

2 1

22

||Egk||2/E||zk||2

B=256
B=1024
B=4096
B=16384

(b) ResNet-50 with ε order 10−8

0.000 0.025 0.050 0.075
Continuous time = k * 2

2 4

2 1

22

||Egk||2/E||zk||2

B=256
B=1024
B=4096
B=16384

(c) VGG-16 with ε order 10−30

0.000 0.025 0.050 0.075
Continuous time = k * 2

2 5

2 3

2 1

21

||Egk||2/E||zk||2

B=256
B=1024
B=4096
B=16384

(d) VGG-16 with ε order 10−8

Figure 4: We compare the norm of the average gradient with the noise scale for different batch sizes
during training of ResNet-50 and VGG-16 model with RMSprop on the CIFAR-10 dataset. Here,
(η, β) = (10−3, 0.999) for batch size 256 and scaled with our proposed square root scaling rule
(Definition 5.1) for the other batch sizes. We show the results for ε at both small (of order 10−30) and
large scale (of order 10−8). We observe that for small batches, the noise in the gradient dominates
the signal in the gradient, supporting our hypothesis. For larger batches, the hypothesis seems to hold
true towards the end of training.

Here, we argue that when σ � ‖ḡ‖, no SDE approximation can exist for the discrete trajectory. In
this case, the RMSprop update would instead be θk+1 ≈ θk − ηU−1gk, where U = diag(

√
ḡ2).

Combining this with gk ∼ N (ḡ, σI) yields that θk+1 − θk ∼ N (ηU−1ḡ, η2σ2U−2) ap-
proximately. We can again take a telescoping sum to obtain the marginal distribution of θk:
θk ∼ N

(
kηU−1ḡ, kη2σ2U−2

)
approximately.

However, it is impossible to make the above distribution fixed even as σ changes, so no SDE
approximation exists. In particular, we need to make both kη and kη2σ2 fixed, so ησ must be a
constant. If σ � ‖ḡ‖, then 1

η � ‖ḡ‖ too. This requirement on η implies that no SDE approximation
exists when σ � ‖ḡ‖, and hence motivates us to study the case of σ � ‖ḡ‖.

G Experimental Verification of Assumptions

In this section, we take measurements and perform experiments to verify that the various assumptions
made in our theory do not harm the applicability of our findings to realistic settings.

G.1 Noise Dominates the Gradient

Our analysis in Section 4.1 suggests that an SDE approximation cannot exist when the the gradient ḡ
dominates the noise scale σ. Note that Section 4.1 performs a rough analysis under the assumption
of a linear loss function (i.e., fixed gradient throughout training), which is far from practice. In the
more general setting, we require that for every step k, E‖zk‖2 (i.e., the gradient variance) dominates
‖Egk‖ (i.e., the norm of the average gradient), where the expectations are taken over sampling seeds,
in order for the SDE approximation to exist. Figure 4 shows that our assumption holds for small
batches and for large batches near the end of training.

31

0.000 0.025 0.050 0.075
Continuous time = k * 2

2 3

21

25

29
||Egk||2/E||zk||2

B=256
B=1024
B=4096
B=16384

(a) ResNet-50 with ε order 10−30

0.000 0.025 0.050 0.075
Continuous time = k * 2

2 3

21

25

29
||Egk||2/E||zk||2

B=256
B=1024
B=4096
B=16384

(b) ResNet-50 with ε order 10−8

0.000 0.025 0.050 0.075
Continuous time = k * 2

2 4

2 1

22

25
||Egk||2/E||zk||2

B=256
B=1024
B=4096
B=16384

(c) VGG-16 with ε order 10−30

0.000 0.025 0.050 0.075
Continuous time = k * 2

2 4

2 1

22

25
||Egk||2/E||zk||2

B=256
B=1024
B=4096
B=16384

(d) VGG-16 with ε order 10−8

Figure 5: We compare the norm of the average gradient with the noise scale for different
batch sizes during training of ResNet-50 model with Adam on the CIFAR-10 dataset. Here,
(η, β1, β2) = (10−3, 0.999, 0.999) for batch size 256 and scaled with our proposed square root
scaling rule (Definition 5.1) for the other batch sizes. We show the results for ε at both small (of order
10−30) and large scale (of order 10−8). We observe that for small batches, the noise in the gradient
dominates the signal in the gradient, supporting our hypothesis. For larger batches, the hypothesis
seems to hold true towards the end of training.

G.2 Using vk instead of vk+1 in the update rule

In Definitions 2.1 and 2.2, we slightly modify the standard implementation of RMSprop and Adam
by using vk in the update rule instead of vk+1. Here, we verify for Adam that this modification of
the optimization algorithms does not significantly harm performance. Figure 6 shows the behavior
of ResNet-50 and VGG-16 trained with Adam on CIFAR-10 with the above modification of the
optimization algorithm. We observe a small drop (≈ 1%) in test accuracies. However, the behavior
of the trajectories across different batch sizes for the proposed scaling rule stays the same, i.e. we
observe a maximum of 3% test accuracy gap between training batch size 256 and 8192. Moreover,
the behavior of the test functions match across the trajectories of different batch sizes.

H SVAG Experiments

Recall that the SVAG algorithm (Definition 6.2) is a computationally efficient simulation of the
SDEs corresponding to RMSprop and Adam. The SVAG algorithm requires a hyperparameter `, and
the resulting parameters after k`2 steps should match the parameters on the corresponding discrete
optimization trajectory after k steps. In particular, Theorem 6.3 shows that the SVAG algorithm
is an order-1 weak approximation (Definition 2.4) of the SDE, and the approximation error scales
as 1/`. One may be initially concerned that realistic deep learning settings require 1/` to be very
small, which would make ` large and hence computationally intractable. Li et al. (2021) showed that
the SVAG trajectories appear to converge to the SDE trajectory for computationally tractable small
values of `. We similarly find that our proposed SVAG-like algorithms in Definition 6.2 appear to
converge for small ` in various settings.

CIFAR-10. Figures 7 and 8 show that SVAG converges and closely tracks RMSprop at smaller
ε (=10−30), and at larger ε (=10−8) respectively. Figures 3 and 9 show that SVAG converges and
closely tracks Adam at smaller ε (=10−30), and at larger ε (=10−8) respectively. All experiments
follow the setting in Appendix J.2 for batch size 256.

32

0.00 0.05 0.1020
30
40
50
60
70
80
90

100 Train Accuracy

B=256
B=512
B=1024
B=2048
B=4096
B=8192

0.00 0.05 0.1020
30
40
50
60
70
80
90

100 Test Accuracy

0.00 0.05

28

29

210

211

||z(1)
k ||2 Mean (Log Scale)

0.00 0.05

24

25

||g(1)
k || Mean (Log Scale)

Continuous time = k * 2

(a) ResNet-50

0.00 0.05 0.1020
30
40
50
60
70
80
90

100 Train Accuracy

B=256
B=512
B=1024
B=2048
B=4096
B=8192

0.00 0.05 0.1020
30
40
50
60
70
80
90

100 Test Accuracy

0.00 0.05

24

26

28

210

212

214

||z(1)
k ||2 Mean (Log Scale)

0.00 0.0521

22

23

24

25

26

27

||g(1)
k || Mean (Log Scale)

Continuous time = k * 2

(b) VGG-16

Figure 6: We repeat the Square Root Scaling experiments with Adam for ResNet-50 and VGG-16
on CIFAR-10 dataset, where we slightly modify the standard implementation of Adam by using vk
in the update rule instead of vk+1. For batch size 256, (η, ε, β1, β2) = (10−3, 10−8, 0.999, 0.999)
and the hyperparameters are scaled according to the square root scaling rule for other batch sizes.
We observe a small drop (≈ 1%) in test accuracies. However, the behavior of the trajectories across
different batch sizes stays the same.

0.00 0.02 0.04 0.0660
65
70
75
80
85
90
95

100

Train Accuracy

 = 1
 = 2
 = 4
 = 8

0.00 0.02 0.04 0.0660
65
70
75
80
85
90
95

Test Accuracy

0.00 0.02 0.04

28

29

210

211

||z(1)
k ||2 Mean (Log Scale)

0.00 0.02 0.04

24

25

||g(1)
k || Mean (Log Scale)

Continuous Time = k * 2/ 2

Figure 7: SVAG experiments on ResNet-50 trained on CIFAR-10 with RMSprop. We use batch size
256 and the hyperparameters η = 10−3, β = 0.999, ε = 10−30 and a weight decay of 10−4. Since
SVAG takes ` smaller steps to simulate the continuous dynamics in η time, we plot accuracy against
continuous time defined as k × η2/`2.

Wikipedia + Books (Academic BERT). Figure 10 shows that SVAG converges and closely tracks
Adam. We use the experimental setting for batch size 1024 in Appendix J.4 except the hyperparame-
ters β1 and β2 are fixed at 0.9 and 0.98 respectively.

WikiText-103 (GPT). Figure 23 shows that SVAG converges and closely tracks Adam. We use the
experimental setting for batch size 1024 in Appendix J.4 except the hyperparameters β1 and β2 are
fixed at 0.9 and 0.98 respectively. Additionally, for computational reasons, we pretrain on sequences
of length 64.

I Square Root Scaling Experiments

We experimentally evaluate the scaling rules proposed in Definitions 5.1 and 5.2 by training models
with different batch sizes and modifying the optimization hyperparameters accordingly. The number
of gradient steps were modified to keep the total amount of continuous time same across all the

33

0.00 0.02 0.04 0.0660
65
70
75
80
85
90
95

100

Train Accuracy

 = 1
 = 2
 = 4
 = 8

0.00 0.02 0.04 0.0660
65
70
75
80
85
90
95

Test Accuracy

0.00 0.02 0.04

28

29

210

211

||z(1)
k ||2 Mean (Log Scale)

0.00 0.02 0.04

24

25

||g(1)
k || Mean (Log Scale)

Continuous Time = k * 2/ 2

Figure 8: SVAG experiments on ResNet-50 trained on CIFAR-10 with RMSprop. We use batch size
256 and the hyperparameters η = 10−3, β = 0.999, ε = 10−8, and a weight decay of 10−4. Since
SVAG takes ` smaller steps to simulate the continuous dynamics in η time, we plot accuracy against
continuous time defined as k × η2/`2.

0.00 0.02 0.04 0.0660
65
70
75
80
85
90
95

100

Train Accuracy

 = 1
 = 2
 = 4
 = 8

0.00 0.02 0.04 0.0660
65
70
75
80
85
90
95

Test Accuracy

0.00 0.02 0.04

28

29

210

211

||z(1)
k ||2 Mean (Log Scale)

0.00 0.02 0.04

24

25

||g(1)
k || Mean (Log Scale)

Continuous Time = k * 2/ 2

Figure 9: SVAG experiments on ResNet-50 trained on CIFAR-10 with Adam. We use batch size 256
and the hyperparameters η = 10−3, β1 = 0.9, β2 = 0.999, ε = 10−30, and a weight decay of 10−4.
Since SVAG takes ` smaller steps to simulate the continuous dynamics in η time, we plot accuracy
against continuous time defined as k × η2/`2.

0.000 0.002 0.0040

2

4

6

8

10

12 Train Log Perplexity
 = 1
 = 2
 = 4

0.000 0.002 0.0040

2

4

6

8

10

12 Validation Log Perplexity

0.000 0.002 0.0040.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00 Gradient Norm

Continuous Time = k * 2/ 2

Figure 10: SVAG experiments on RoBERTa pretrained on Bookcorpus + Wikipedia dataset with
Adam. We use batch size 1024 and the hyperparameters η = 10−3, β1 = 0.9, β2 = 0.98, ε =
2× 10−6. Since SVAG takes ` smaller steps to simulate the continuous dynamics in η time, we plot
accuracy against continuous time defined as k × η2/`2.

34

0.000 0.001 0.0020

2

4

6

8

10

12 Train Log Perplexity
 = 1
 = 2
 = 4

0.000 0.001 0.0020

2

4

6

8

10

12 Validation Log Perplexity

0.000 0.001 0.0020.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00 Gradient Norm

Continuous Time = k * 2/ 2

Figure 11: SVAG experiments on GPT pretrained on WikiText-103 with Adam. We use batch size
1024 and the hyperparameters η = 10−3, β1 = 0.9, β2 = 0.98, ε = 2× 10−8. Since SVAG takes `
smaller steps to simulate the continuous dynamics in η time, we plot accuracy against continuous
time defined as k × η2/`2. For computational constraints, we train on sequences of length 64.

batches. The warmup schedule and the learning rate decay schedule were kept the same. See
Appendix J for details about the baseline runs for each dataset.

We perform two types of ablation studies. In Appendix I.1, we compare our proposed scaling rule to
variants that only scale some subset of the optimization hyperparameters. We find that our proposed
scaling rule is the best at preserving the validation accuracy and the other test functions across
different batch sizes. In Appendix I.2, we compare the proposed square root scaling rule to a linear
one and find that they perform comparably on CIFAR-10, though the square root scaling significantly
outperforms linear scaling on the ImageNet dataset. We hypothesize that for simpler datasets, like
CIFAR-10, the differences between the two scaling rules is not reflected clearly in the validation
accuracies because the task is too easy to learn.

CIFAR-10. Figures 12 and 14 show the performance of VGG-16 when trained with different
batch sizes with RMSprop at smaller ε (=10−30), and at larger ε (=10−8) respectively. Figures 13
and 15 show the performance of VGG-16 when trained with different batch sizes with Adam at
smaller ε (=10−30), and at larger ε (=10−8) respectively. For the corresponding experiments on
ResNet-50, please refer to Figures 16 to 19. For the details on the experimental setting, please refer
to Appendix J.2.

We observe that in all settings the test accuracies vary by at most 3% across batch sizes when using
the proposed square root scaling rule. Moreover, the test functions stay close across multiple batch
sizes, signifying that the trajectories stay close across the batch sizes using the Square root scaling
rule.

ImageNet. Figures 20 and 21 show the performance of ResNet-50 when trained with different
batch sizes with RMSprop at smaller ε (=10−30), and at larger ε (=10−8) respectively. For the details
on the experimental setting, please refer to Appendix J.3.

We observe that on the validation set, the loss and accuracy behavior for the model is very similar,
when trained with different batch sizes. Moreover, the difference between the validation accuracies is
atmost 3% between the batch sizes 256, 1024, 4096, and 16384 for smaller ε. The difference between
the validation accuracies is atmost 1.5% between the batch sizes 256, 1024, 4096, 16384, and 32768
for larger ε.

Wikipedia + Books (Academic BERT). Figure 22 shows the performance of a RoBERTa model
when pretrained with different batch sizes with ADAM. The scaling rule is applied to modify the
peak values of the optimization hyperparameters. We also evaluate the pretrained models on several
downstream tasks, and show the results in Table 1. For the details on the setting for both pretraining
and downstream experiments, please refer to Appendix J.4.

35

Pretrain batch size B CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE
1024 0.585 0.92 0.73 0.866 0.873 0.836 0.906 0.682
2048 0.563 0.928 0.803 0.869 0.875 0.826 0.897 0.653
4096 0.581 0.921 0.778 0.869 0.875 0.839 0.892 0.675
8192 0.626 0.929 0.778 0.884 0.877 - 0.9 0.675

Table 1: Performance of the pretrained RoBERTa models when finetuned on different downstream
tasks in GLUE Wang et al. (2019). F1 scores are reported for QQP and MRPC, Spearman correlations
are reported for STS-B, Matthews correlations for CoLA, and accuracy scores are reported for the
other tasks. Here, B denotes the batch size used for pretraining. We run an extensive grid search
(Table 4) to find the best performance of each pretrained model on each of the downstream tasks.

We observe that the log perplexity on the training and validation datasets matches across different
batch sizes throughout pretraining. Moreover, we also observe that the gradient norms across different
batch sizes remain close throughout the pretraining. Furthermore, the models pretrained across
different batch sizes can achieve very similar performance in the downstream tasks.

WikiText-103 (Academic GPT). Figure 23 shows the log perplexity behavior of GPT on training
and validation datasets, across different batch sizes of pretraining . We observe that the log perplexity
matches across different batch sizes. Moreover, we also observe that the gradient norms across
different batch sizes remain close throughout the training.

0.00 0.05 0.1020
30
40
50
60
70
80
90

100 Train Accuracy

B=256
B=512
B=1024
B=2048
B=4096
B=8192

0.00 0.05 0.1020
30
40
50
60
70
80
90

100 Test Accuracy

0.00 0.05

21

24

27

210

213

||z(1)
k ||2 Mean (Log Scale)

0.00 0.05

21

23

25

27
||g(1)

k || Mean (Log Scale)

Continuous time = k * 2

Figure 12: VGG-16 trained on CIFAR-10 using RMSprop are close for different batch sizes when
the optimization hyperparameters are varied according to the proposed scaling rule for RMSprop
(Definition 5.2). We use a baseline setting of η = 10−3, ε = 10−8, and β = 0.999 for batch size 256.
We use a weight decay factor of 10−4. We observe a gap of at most 3% among the different batch
sizes under consideration.

0.00 0.05 0.1020
30
40
50
60
70
80
90

100 Train Accuracy

B=256
B=512
B=1024
B=2048
B=4096
B=8192
B=16384

0.00 0.05 0.1020
30
40
50
60
70
80
90

100 Test Accuracy

0.00 0.05

23

25

27

29

211

213

215 ||z(1)
k ||2 Mean (Log Scale)

0.00 0.05
21

22

23

24

25

26

27

||g(1)
k || Mean (Log Scale)

Continuous time = k * 2

Figure 13: VGG-16 trained on CIFAR-10 using Adam are close for different batch sizes when the
optimization hyperparameters are varied according to the proposed scaling rule for Adam (Defini-
tion 5.2). We use a baseline setting of η = 10−3, ε = 10−8, and (β1, β2) = (0.999, 0.999) for batch
size 256. We use a weight decay factor of 10−4. We observe a gap of at most 3% among the different
batch sizes under consideration.

36

0.00 0.05 0.1020
30
40
50
60
70
80
90

100 Train Accuracy

B=256
B=512
B=1024
B=2048
B=4096
B=8192

0.00 0.05 0.1020
30
40
50
60
70
80
90

100 Test Accuracy

0.00 0.05

21

24

27

210

213

||z(1)
k ||2 Mean (Log Scale)

0.00 0.05

21

23

25

27
||g(1)

k || Mean (Log Scale)

Continuous time = k * 2

Figure 14: VGG-16 trained on CIFAR-10 using RMSprop are close for different batch sizes when
the optimization hyperparameters are varied according to the proposed scaling rule for RMSprop
(Definition 5.2). We use a baseline setting of η = 10−3, ε = 10−30, and β = 0.999 for batch size
256. We use a weight decay factor of 10−4. We observe a gap of at most 3% among the different
batch sizes under consideration.

0.00 0.05 0.1020
30
40
50
60
70
80
90

100 Train Accuracy

B=256
B=512
B=1024
B=2048
B=4096
B=8192
B=16384

0.00 0.05 0.1020
30
40
50
60
70
80
90

100 Test Accuracy

0.00 0.05

23

25

27

29

211

213

215 ||z(1)
k ||2 Mean (Log Scale)

0.00 0.05
21

22

23

24

25

26

27

||g(1)
k || Mean (Log Scale)

Continuous time = k * 2

Figure 15: VGG-16 trained on CIFAR-10 using Adam are close for different batch sizes when the
optimization hyperparameters are varied according to the proposed scaling rule for Adam (Defini-
tion 5.2). We use a baseline setting of η = 10−3, ε = 10−30, and (β1, β2) = (0.999, 0.999) for batch
size 256. We use a weight decay factor of 10−4. We observe a gap of at most 3% among the different
batch sizes under consideration.

0.00 0.05 0.1020
30
40
50
60
70
80
90

100 Train Accuracy

B=256
B=512
B=1024
B=2048
B=4096
B=8192

0.00 0.05 0.1020
30
40
50
60
70
80
90

100 Test Accuracy

0.00 0.05

27

28

29

210

211

||z(1)
k ||2 Mean (Log Scale)

0.00 0.05

24

25

||g(1)
k || Mean (Log Scale)

Continuous time = k * 2

Figure 16: ResNet-50 trained on CIFAR-10 using RMSprop are close for different batch sizes when
the optimization hyperparameters are varied according to the proposed scaling rule for RMSprop
(Definition 5.2). We use a baseline setting of η = 10−3, ε = 10−8, and β = 0.999 for batch size 256.
ε = 10−30 ≈ 0 for all experiments. We use a weight decay factor of 10−4. We observe a gap of at
most 3% among the different batch sizes under consideration.

37

0.00 0.05 0.1020
30
40
50
60
70
80
90

100 Train Accuracy

B=256
B=512
B=1024
B=2048
B=4096
B=8192
B=16384

0.00 0.05 0.1020
30
40
50
60
70
80
90

100 Test Accuracy

0.00 0.05

28

29

210

211

||z(1)
k ||2 Mean (Log Scale)

0.00 0.05

24

25

||g(1)
k || Mean (Log Scale)

Continuous time = k * 2

Figure 17: ResNet-50 trained on CIFAR-10 using Adam are close for different batch sizes when the
optimization hyperparameters are varied according to the proposed scaling rule for Adam (Defini-
tion 5.2). We use a baseline setting of η = 10−3 and (β1, β2) = (0.999, 0.999) for batch size 256.
ε = 10−30 ≈ 0 for all experiments. We use a weight decay factor of 10−4. We observe a gap of at
most 3% among the different batch sizes under consideration.

0.00 0.05 0.1020
30
40
50
60
70
80
90

100 Train Accuracy

B=256
B=512
B=1024
B=2048
B=4096
B=8192

0.00 0.05 0.1020
30
40
50
60
70
80
90

100 Test Accuracy

0.00 0.05

27

28

29

210

211

||z(1)
k ||2 Mean (Log Scale)

0.00 0.05

24

25

||g(1)
k || Mean (Log Scale)

Continuous time = k * 2

Figure 18: ResNet-50 trained on CIFAR-10 using RMSprop are close for different batch sizes when
the optimization hyperparameters are varied according to the proposed scaling rule for RMSprop
(Definition 5.2). We use a baseline setting of η = 10−3, ε = 10−8, and β = 0.999 for batch size 256.
We use a weight decay factor of 10−4. We observe a gap of at most 3% among the different batch
sizes under consideration.

0.00 0.05 0.1020
30
40
50
60
70
80
90

100 Train Accuracy

B=256
B=512
B=1024
B=2048
B=4096
B=8192
B=16384

0.00 0.05 0.1020
30
40
50
60
70
80
90

100 Test Accuracy

0.00 0.05

28

29

210

211

||z(1)
k ||2 Mean (Log Scale)

0.00 0.05

24

25

||g(1)
k || Mean (Log Scale)

Continuous time = k * 2

Figure 19: ResNet-50 trained on CIFAR-10 using Adam are close for different batch sizes when the
optimization hyperparameters are varied according to the proposed scaling rule for Adam (Defini-
tion 5.2). We use a baseline setting of η = 10−3, ε = 10−8, and (β1, β2) = (0.999, 0.999) for batch
size 256. We use a weight decay factor of 10−4. We observe a gap of at most 3% among the different
batch sizes under consideration.

38

0.00 0.01 0.02 0.03 0.040
10
20
30
40
50
60
70
80 Top-1 Accuracy(Train)

B=32768
B=16384
B=8192
B=4096

B=2048
B=1024
B=512
B=256

0.00 0.01 0.02 0.03 0.040
10
20
30
40
50
60
70
80 Top-1 Accuracy(Validation)

0.00 0.01 0.02 0.03 0.04
2 3
2 2
2 1
20
21
22
23
24
25

Gradient norm

Continuous Time=k * 2

Figure 20: ResNet-50 trained on ImageNet using Adam are close for different batch sizes when the
optimization hyperparameters are varied according to the proposed scaling rule for Adam (Defini-
tion 5.2). We use a baseline setting of η = 3× 10−4, ε = 10−8, and (β1, β2) = (0.999, 0.999) for
batch size 256. We use a weight decay factor of 10−4. We achieve around 74% validation accuracy
with batch size 256 and the accuracy drops by at most 1.5% at batch size 32768.

0.00 0.01 0.02 0.03 0.040
10
20
30
40
50
60
70
80 Top-1 Accuracy(Train)

B=16384
B=4096
B=1024
B=256

0.00 0.01 0.02 0.03 0.040
10
20
30
40
50
60
70
80 Top-1 Accuracy(Validation)

0.00 0.01 0.02 0.03 0.04
21

22
23
24
25

26
27

28
29

Gradient norm

Continuous Time=k * 2

Figure 21: ResNet-50 trained on ImageNet using Adam are close for different batch sizes when the
optimization hyperparameters are varied according to the proposed scaling rule for Adam (Defini-
tion 5.2). We use a baseline setting of η = 3 × 10−4 and (β1, β2) = (0.999, 0.999) for batch size
256. ε = 10−30 ≈ 0 for all experiments. We use a weight decay factor of 10−4. We achieve around
74% validation accuracy with batch size 1024 and the accuracy drops by at most 3% at batch size
16384.

I.1 Ablation study on the proposed scaling rule

CIFAR-10. We conduct an ablation study on whether all the parameters η, ε, β1, β2 need to be
scaled in our proposed scaling rule. To do so, we compare the performance of a ResNet-50 model
trained with batch size 256 and hypeparameters (ε = 10−8, β1 = 0.999, β2 = 0.999) with the
performance at a larger batch size, across 5 runs representing 5 different scaling rules: (a) Scale
η, keeping others fixed, (b) Scale η, ε, keeping others fixed, (c) Scale η, ε, β1, keeping others fixed,
(d) Scale η, ε, β2, keeping others fixed, and (e) Scale η, ε, β1, β2. Please check the behaviors of the
different scaling rules at batch size 2048, 4096, 8192 and 16384 in Appendix I.2. We found that (e)
consistently beats others in terms of the test functions and the validation accuracies at all batch sizes.
The closest scaling rule (c) involved scaling only η, ε, and β1 while keeping β2 fixed.

I.2 Ablation against linear scaling rules

CIFAR-10. We compared the proposed scaling rule against possible linear scaling rules, that scale
the hyperparameters linearly with the increase in training batch size. We focused on ResNet-50
training with Adam. The linear scaling rules that we tried were: (a) Scale η linearly, keeping β1, β2, ε

39

0.00 0.02 0.040

2

4

6

8

10

12 Train Log Perplexity
B 256
B 1024
B 2048
B 4096
B 8192

0.00 0.02 0.040

2

4

6

8

10

12 Validation Log Perplexity

0.00 0.02 0.04

2 3

2 1

21

23

25

Gradient Norm

Continuous time = k * 2

Figure 22: The train and validation log perplexities of RoBERTa-large trained on the Wiki+Books
corpus using Adam (for 48 hours) are close for moderate batch sizes using the Square Root Scaling
Rule on Adam. η = 10−3 and (β1, β2) = (0.99375, 0.996) for batch size 1024, ε = 2 × 10−6 for
batch size 1024 and scaled likewise for other batch sizes. We achieve a validation log perplexity of
2.1± 0.1 for batch size 1024, 2048, 4096 and 8192. Training with batch size 256 is computationally
inefficient, but follows the same behavior during its 48-hour trajectory.

0.000 0.005 0.0100

2

4

6

8

10

12 Train Log Perplexity
B 512
B 1024
B 2048
B 4096
B 8192

0.000 0.005 0.0100

2

4

6

8

10

12 Validation Log Perplexity

0.000 0.005 0.010
2 4

2 3

2 2

2 1

20

21

22

23

Gradient Norm

Continuous time = k * 2

Figure 23: The train and validation perplexities of 12 layer GPT trained on the Wikitext corpus
using Adam (for 48 hours) are close for moderate batch sizes Square Root Scaling Rule on Adam on
RoBERTa-large. η = 10−3 and (β1, β2) = (0.9875, 0.996) for batch size 1024, ε = 2 × 10−8 for
batch size 1024 and scaled likewise for other batch sizes. We achieve a validation log perplexity of
5±0.1 for all the batch sizes under consideration. Moreover, we observe an alignment in the behavior
of the trajectories across the different batch sizes (except 8192 in the first half of the training).

fixed, (b) Scale η, 1− β1 linearly, keeping β2, ε fixed, (c) Scale η, 1− β2 linearly, keeping β1, ε fixed,
and (d) Scale η, 1− β1, 1− β2 linearly, keeping ε fixed. Fig. 25 shows the behavior of these scaling
rules at batch size 8192 and 16384, at different values of ε.

The linear scaling rule in (d) seems to perform as well as the proposed Square Root scaling rule
(Definition 5.2) in terms of validation accuracies. However, with a closer look on the train accuracy
plots, we observe that the Square Root scaling rule tracks the smaller batch training trajectory better
than the linear scaling rule. The linear scaling rules seem to catch up, only after the learning rate is
decayed. Our hypothesis is that the CIFAR-10 dataset is simple enough for different scaling rules to
work well.

ImageNet. We conduct ablation experiments on ResNet-50, trained with Adam on ImageNet, where
we follow a linear scaling rule to scale the hyperparameters across batch sizes. Due to computational
issues, we didn’t conduct extensive experiments, as was done for CIFAR-10. The linear scaling rule
for Adam is as follows: the hyperparameters η, 1−β1 and 1−β2 are scaled by κ, when the batch size
is scaled by κ, and ε isn’t scaled. As was noted earlier, the definition of continuous time will change
to η ×#{gradient steps}. We keep the number of training epochs equal to 90 as before, follow the

40

same learning rate schedule, and show the performance of the models in Figure 26. We observe that
scaling the hyperparameters to larger batch training with the proposed LSR results in a big drop in
validation accuracies.

J Experiment Configuration Details

J.1 A note on learning rate schedule and warm-up

We have used a learning rate schedule and a warm-up phase in all our experiments. We have to
admit that our current theorems do not directly apply to time-varying learning rates or batch sizes.
But our experiments demonstrate that our scaling rules continue to hold for learning rate schedulers
with a special warm-up, even if they go beyond the scope of our theoretical setting. Technically, the
extensions of our theorems to time-varying learning rates or batch sizes are interesting, and we believe
they can indeed be shown following the same proof strategy. The corresponding SDE approximations
should have hyperparameters changing with time.

J.2 CIFAR-10

There are 50000 images in the training set and 10000 images in the validation set of CIFAR-10
Krizhevsky et al..

Architecture. We used the architecture of ResNet-56 from He et al. (2015a) without modification.
We used the same architecture of VGG-16 with batch normalization from Simonyan and Zisserman
(2014). However, we kept the final layer of the architecture fixed throughout training, to make the
model 1-homogenous and avoid the optimization difficulties of 2-homogenous networks (Li and
Arora (2020)).

RMSprop. To fix a baseline to compare against, we first trained the models with batches of size
256, sampled with replacement, at peak learning rate η = 10−3 and β = 0.999. The model was
trained for 500 × b(50000/256)c = 97500 gradient steps (or 500 epochs). We followed an initial
warmup for the first 2% of the total gradient steps. The learning rate schedule during the warmup
phase is given by η × 10−3 × (103)# epochs /10. We also followed a learning rate decay schedule, the
learning rate was decayed by 0.1 when the model reaches 80% (400 epoch) and 90% (450 epoch) of
the total continuous time respectively. We did experiments at two values of ε, small (= 10−30) and
large (= 10−8).

We then made multiple runs of the same model with batches of varying sizes in {1024, 4096, 16384},
with the hyperparameters η, ε and β modified appropriately according to the scaling rule. The number
of gradient steps were modified to keep the total amount of continuous time same across all the
batches (which amounted to 500 epochs by the equivalence between continuous time and the number
of training epochs). The warmup schedule and the learning rate decay schedule were kept the same.

Adam. We first trained the models with batches of size 256, sampled with replacement, at peak
learning rate η = 10−3 and (β1, β2) = (0.999, 0.999). The total continuous time of training (or
number of epochs), the amount of continuous time in the warmup phase, and the learning rate
schedule in the warmup phase were same as RMSprop. The only difference was the learning rate
schedule after the warmup phase, the learning rate was decayed by 0.1 when the model reaches 60%
of the total continuous time (or 300 epochs).

We then made multiple runs of the same model with batches of varying sizes in {1024, 4096, 16384},
with the hyperparameters η, ε and β1, β2 modified appropriately according to the scaling rule. The
number of gradient steps were modified to keep the total amount of continuous time same across all
the batches. The warmup schedule and the learning rate decay schedule were kept the same.

J.3 ImageNet

There are 1281167 images in the training set and 50000 images in the validation set of ImageNet
(Deng et al., 2009).

41

0.00 0.05 0.1020
30
40
50
60
70
80
90

100 Train Accuracy

Baseline B=256
Scale
Scale ,
Scale , , 2
Scale , , 1
Scale , , 1, 2

0.00 0.05 0.1020
30
40
50
60
70
80
90

100 Test Accuracy

0.00 0.05

26

211

216

221

226

231

||z(1)
k ||2 Mean (Log Scale)

0.00 0.05

23

25

27

29

211

213

||g(1)
k || Mean (Log Scale)

Continuous time = k * 2

(a) B = 2048

0.00 0.05 0.1020
30
40
50
60
70
80
90

100 Train Accuracy

Baseline B=256
Scale
Scale ,
Scale , , 2
Scale , , 1
Scale , , 1, 2

0.00 0.05 0.1020
30
40
50
60
70
80
90

100 Test Accuracy

0.00 0.05

25

211

217

223

229

235

||z(1)
k ||2 Mean (Log Scale)

0.00 0.05

22

25

28

211

214

217

||g(1)
k || Mean (Log Scale)

Continuous time = k * 2

(b) B = 4096

0.00 0.05 0.1020
30
40
50
60
70
80
90

100 Train Accuracy

Baseline B=256
Scale
Scale ,
Scale , , 2
Scale , , 1
Scale , , 1, 2

0.00 0.05 0.1020
30
40
50
60
70
80
90

100 Test Accuracy

0.00 0.05

23

29

215

221

227

233

239
||z(1)

k ||2 Mean (Log Scale)

0.00 0.05

22

25

28

211

214

217
||g(1)

k || Mean (Log Scale)

Continuous time = k * 2

(c) B = 8192

0.00 0.05 0.1020
30
40
50
60
70
80
90

100 Train Accuracy

Baseline B=256
Scale
Scale ,
Scale , , 2
Scale , , 1
Scale , , 1, 2

0.00 0.05 0.1020
30
40
50
60
70
80
90

100 Test Accuracy

0.00 0.05

23

29

215

221

227

233

239

||z(1)
k ||2 Mean (Log Scale)

0.00 0.05

22

25

28

211

214

217
||g(1)

k || Mean (Log Scale)

Continuous time = k * 2

(d) B = 16384

Figure 24: Ablation study for the square root scaling rule on Resnet-50 trained with Adam on
CIFAR-10. We compare the performance of a model trained with batch size 256 and hypeparameters
(ε = 10−8, β1 = 0.999, β2 = 0.999) with the performance at a larger batch size, across 5 runs
representing 5 variations of the square root scaling rule: (a) Scale η, keeping others fixed, (b) Scale
η, ε, keeping others fixed, (c) Scale η, ε, β1, keeping others fixed, (d) Scale η, ε, β2, keeping others
fixed, and (e) Scale η, ε, β1, β2. We use a weight decay of 10−4 in all the experiments. We observe
that scaling all the hyperparameters consistently gives better performance at higher batch size. Scaling
rule (c) is close second.

42

0 200 40020
30
40
50
60
70
80
90

100 Train Accuracy

Baseline B=256
Scale
Scale , 2
Scale , 1
Scale , 1, 2
Sqrt scaling

0 200 40020
30
40
50
60
70
80
90

100 Test Accuracy

0 200 400

28

213

218

223

228

233

238
||z(1)

k ||2 Mean (Log Scale)

0 200 400

24

27

210

213

216

||g(1)
k || Mean (Log Scale)

Epochs

(a) B = 8192, ε of order 10−30

0 200 40020
30
40
50
60
70
80
90

100 Train Accuracy

Baseline B=256
Scale
Scale , 2
Scale , 1
Scale , 1, 2
Sqrt scaling

0 200 40020
30
40
50
60
70
80
90

100 Test Accuracy

0 200 400

28

212

216

220

224

228

232

||z(1)
k ||2 Mean (Log Scale)

0 200 400

24

26

28

210

212

214

||g(1)
k || Mean (Log Scale)

Epochs

(b) B = 16384, ε of order 10−30

0 200 40020
30
40
50
60
70
80
90

100 Train Accuracy

Baseline B=256
Scale
Scale , 2
Scale , 1
Scale , 1, 2
Sqrt scaling

0 200 40020
30
40
50
60
70
80
90

100 Test Accuracy

0 200 400

28

213

218

223

228

233

||z(1)
k ||2 Mean (Log Scale)

0 200 400

23

25

27

29

211

213

215

||g(1)
k || Mean (Log Scale)

Epochs

(c) B = 8192, ε of order 10−8

0 200 40020
30
40
50
60
70
80
90

100 Train Accuracy

Baseline B=256
Scale
Scale , 2
Scale , 1
Scale , 1, 2
Sqrt scaling

0 200 40020
30
40
50
60
70
80
90

100 Test Accuracy

0 200 400

29

214

219

224

229

234

||z(1)
k ||2 Mean (Log Scale)

0 200 400

23

26

29

212

215

||g(1)
k || Mean (Log Scale)

Epochs

(d) B = 16384, ε of order 10−8

Figure 25: Ablation study against (possible) linear scaling rules on Resnet-50 trained with Adam on
CIFAR-10. We compare the performance of a model trained with batch size 256 and hypeparameters
(ε = 10−8/10−30, β1 = 0.999, β2 = 0.999) with the performance at a larger batch size, across 5
runs representing 5 possible linear scaling rules: (a) Scale η linearly, keeping β1, β2, ε fixed, (b) Scale
η, 1− β1 linearly, keeping β2, ε fixed, (c) Scale η, 1− β2 linearly, keeping β1, ε fixed, and (d) Scale
η, 1 − β1, 1 − β2 linearly, keeping ε fixed. We use a weight decay of 10−4 in all the experiments.
We also compare the behavior of the linear scaling rules against the square root scaling rule. Since
the continuous time definition varies across the scaling rules, we plot against the number of epochs
trained. A closer look at the training accuracy plots shows that the square root scaling rule tracks the
smaller batch training trajectory better than the linear scaling rule.

43

0 25 50 75 100 1250
10
20
30
40
50
60
70
80 Top-1 Accuracy(Train)

B=16384
B=4096
B=1024
B=256

0 25 50 75 100 1250
10
20
30
40
50
60
70
80 Top-1 Accuracy(Test)

0 25 50 75 100 125
2 3

2 2
2 1

20
21

22

23
24

25

Gradient norm

Continuous Time=k *
Figure 26: Ablation study against a (possible) linear scaling rule on Resnet-50 trained with Adam on
Imagenet. We compare the performance of a model trained with batch size 256 and hypeparameters
(η = 3 × 10−4, ε = 10−8, and (β1, β2) = (0.999, 0.999)) with the performance at a larger batch
size, when the hyperparameters are scaled as follows: scale η, 1− β1, 1− β2 by κ, if the batch size
is scaled by κ, keeping ε fixed. We use a weight decay factor of 10−4. We clearly observe a decrease
in performance at larger batch size, in comparison to a model trained with square root scaling rule
(see Figure 20).

Architecture. We trained a ResNet-50 (He et al., 2015a) model without modification.

Adam. To fix a baseline to compare against, we first trained the models with batches of size 256,
sampled with replacement, at learning rate η = 3 × 10−4 and (β1, β2) = (0.999, 0.999). The
model was trained for a total of 90 × b(1281167/256)c = 450360 gradient steps (or 90 epochs).
We followed an initial warmup for the first 1

18 fraction of the total continuous time (or the first 5
epochs). The learning rate schedule during the warmup phase is increased linearly with epoch, i.e.
the learning rate is given by η × 10−3 × (103)# epochs /5. We then followed a learning rate decay
schedule, where the learning rate was decayed by 0.1 when the model reaches 5

18 fraction (or 50

epoch) and 8
9 fraction (or 80 epoch) of the total continuous time respectively. We use two different

values for ε, small ε (= 10−30 ≈ 0) and a larger ε (= 10−8).

J.4 Books and Wikipedia (Academic BERT)

We use a combination of Bookcorpus (Zhu et al., 2015) plus English Wikipedia, which totals 16 GB
of uncompressed text. We split the data uniformly with a ratio 9 : 1, to create training and validation
datasets for pretraining.

Architecture. We pretrain a 24-layer RoBERTa Liu et al. (2019) model. We pretrain on sequences
of length 128.

Pre-training with Adam. We use the code from Wettig et al. (2022). We follow the optimization
recipe from Izsak et al. (2021) for efficient pre-training. To fix a baseline, we first trained our model
with batch size 1024, with the optimization parameters given in table 2. In the warmup phase, the
learning rate is increased linearly over the interval, i.e. the learning rate at step k in the warmup phase
is given by k

kwarmup
η, where kwarmup denotes the total number of warmup steps and η denotes the

peak learning rate. Moreover, after the warmup phase, the learning rate is decayed linearly to 0, i.e.
the learning rate at step k after the warmup phase is given by k−kwarmup

kmax−kwarmup
η, where η denotes the

peak learning rate and kmax denotes the maximum number of gradient steps intended for pretraining.

Fine-tuning with Adam: We also validate the performance of the pretrained models from the
previous section on the GLUE(Wang et al., 2019) datasets. For each downstream task, we run an
extensive grid search on the hyperparameters for finetuning each pretrained model. We focused on
the following hyperparameters for grid search: batch size, the peak learning rate and the total number
of training epochs. Please see Table 4 for the hyperparameter grid. The rest of the hyperparameters

44

Hyperparameter Value
Dropout 0.1

Attention Dropout 0.1
Warmup Steps 5520

Peak Learning Rate 10−3

Batch Size 1024
Weight Decay 10−4

Max Steps 92000
Learning Rate Decay Linear

Adam β1 0.99375
Adam β2 0.996
Adam ε 2× 10−6

Gradient Clipping 0.0
Position embeddings 128

Table 2: Optimization hyperparameters of baseline RoBERTa model during pretraining.

Hyperparameter Value
Dropout 0.1

Attention Dropout 0.1
Warmup Steps 6% of total
Weight Decay 0.1

Learning Rate Decay Linear
Adam β1 0.9
Adam β2 0.98
Adam ε 10−6

Gradient Clipping 0.0

Table 3: Optimization hyperparameters of all pretrained RoBERTa models during finetuning.

are fixed for all the runs and are given in Table 3. We follow a similar learning rate schedule during
the warmup phase as was used for pretraining: the learning rate at step k in the warmup phase is
given by k

kwarmup
η, where kwarmup denotes the total number of warmup steps and η denotes the peak

learning rate. Moreover, after the warmup phase, the learning rate is decayed linearly to 0, i.e. the
learning rate at step k after the warmup phase is given by k−kwarmup

kmax−kwarmup
η, where η denotes the peak

learning rate and kmax denotes the maximum number of gradient steps intended for finetuning.

Dataset Finetune batch size Peak Learning rate Total training epochs
CoLA {16, 32} {10−5, 3× 10−5, 5× 10−5, 8× 10−5} {3, 5, 10}
SST-2 {16, 32} {10−5, 3× 10−5, 5× 10−5, 8× 10−5} {3, 5, 10}
MRPC {16, 32} {10−5, 3× 10−5, 5× 10−5, 8× 10−5} {3, 5, 10}
STS-B {16, 32} {10−5, 3× 10−5, 5× 10−5, 8× 10−5} {3, 5, 10}
RTE {16, 32} {10−5, 3× 10−5, 5× 10−5, 8× 10−5} {3, 5, 10}
QQP {32} {5× 10−5, 8× 10−5} {3, 5}

MNLI {32} {5× 10−5, 8× 10−5} {3, 5}
QNLI {32} {5× 10−5, 8× 10−5} {3, 5}

Table 4: Hyperparameter grid for pretrained RoBERTaLARGE on the downstream tasks.

45

Hyperparameter Value
Dropout 0.1

Attention Dropout 0.1
Warmup Steps 1000

Peak Learning Rate 10−3

Batch Size 1024
Weight Decay 10−4

Max Steps 12500
Learning Rate Decay Linear

Adam β1 0.9875
Adam β2 0.996
Adam ε 2× 10−8

Gradient Clipping 0.0
Position embeddings 128

Table 5: Optimization hyperparameters of baseline GPT model during pretraining.

J.5 WikiText-103 (GPT)

WikiText-103 (Merity et al., 2017) is a dataset with 103 million tokens extracted from Wikipedia. We
split the data uniformly with a ratio 9 : 1, to create training and validation datasets for pretraining.
We use Adam (Kingma and Ba, 2015) optimization algorithm.

Architecture. We pretrain a 12-layer GPT (Brown et al., 2020) model without modification. The
model has 12 layers with hidden dimension 768, feedforward network dimension 3072, 12 attention
heads in each attention layer, and attention head size 64. We pretrain on sequences of length 128
(unless stated otherwise).

Adam. We use the code from Wettig et al. (2022). To fix a baseline, we first trained our model
with batch size 1024, with the optimization parameters given in Table 5. In the warmup phase, the
learning rate is increased linearly over the interval, i.e. the learning rate at step k in the warmup phase
is given by k

kwarmup
η, where kwarmup denotes the total number of warmup steps and η denotes the

peak learning rate. Moreover, after the warmup phase, the learning rate is decayed linearly to 0, i.e.
the learning rate at step k after the warmup phase is given by k−kwarmup

kmax−kwarmup
η, where η denotes the

peak learning rate and kmax denotes the maximum number of gradient steps intended for pretraining.

46

	Introduction
	Preliminaries
	Noisy Gradient Oracle with Scale Parameter
	SDE Approximation and Scaling Rules
	Quality of SDE Approximation and Theoretical Assumptions
	Discussion on Heavy-Tailed Gradient Noise

	Related Work
	SDEs for Adaptive Algorithms
	Warm-Up: Linear loss
	SDE Approximations for Adaptive Algorithms

	Square Root Scaling Rule
	SVAG for Adaptive Algorithms
	Conclusion
	Contextualizing our Work
	Additional Recent Works
	Broader Impact

	SDE Approximation Theorem
	Proof for Theorem B.2
	Proof for Lemma B.3

	RMSProp SDE Proof
	Verifying Condition (1)
	Verifying Condition (2)
	Verifying Condition (3)

	Adam SDE Proof
	Verifying Condition (1)
	Verifying Condition (2)
	Verifying Condition (3)

	Analysis of SVAG Operator
	Miscellaneous Theoretical Arguments
	How does the noise scale change with batch size?
	What happens when the noise does not dominate the gradient?

	Experimental Verification of Assumptions
	Noise Dominates the Gradient
	Using vvk instead of vvk1 in the update rule

	SVAG Experiments
	Square Root Scaling Experiments
	Ablation study on the proposed scaling rule
	Ablation against linear scaling rules

	Experiment Configuration Details
	A note on learning rate schedule and warm-up
	CIFAR-10
	ImageNet
	Books and Wikipedia (Academic BERT)
	WikiText-103 (GPT)

