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Abstract

Approximating Stochastic Gradient Descent (SGD) as a Stochastic Differential
Equation (SDE) has allowed researchers to enjoy the benefits of studying a contin-
uous optimization trajectory while carefully preserving the stochasticity of SGD.
Analogous study of adaptive gradient methods, such as RMSprop and Adam, has
been challenging because there were no rigorously proven SDE approximations
for these methods. This paper derives the SDE approximations for RMSprop and
Adam, giving theoretical guarantees of their correctness as well as experimental
validation of their applicability to common large-scaling vision and language set-
tings. A key practical result is the derivation of a square root scaling rule to adjust
the optimization hyperparameters of RMSprop and Adam when changing batch
size, and its empirical validation in deep learning settings.

1 Introduction

Distributed synchronous optimization environments have enabled very rapid training of models
(in terms of wall-clock time) by allowing a large batch size. Understanding large-batch stochastic
optimization is crucial to enjoying the speed-up of this setting. In this context, Krizhevsky (2014);
Goyal et al. (2017) empirically discovered the linear scaling rule (LSR) for Stochastic Gradient
Descent (SGD). It calls for scaling learning rate proportionately to the batch size while fixing the
number of epochs. It was recognized that the validity of this scaling rule stems from the benefits
to generalization due to noise from mini-batch gradient estimation. But naive analysis, as done
in Hoffer et al. (2017), suggested that the scaling rule for SGD ought to be square root instead of
linear. Subsequently, Jastrzębski et al. (2017) pointed out that since the phenomenon involves varying
the LR even down to zero, the correct analysis should invoke a continuous view, namely a stochastic
differential equation (SDE). The SDE view helps identify the correct scaling of the noise and leads to
a derivation of the linear scaling rule (see Section 2.2).

However, extending the SDE approach—i.e., continuous-time approximations—to popular adaptive
optimization algorithms, like RMSprop (Tieleman and Hinton, 2012) and Adam (Kingma and Ba,
2015), has been challenging due to their use of coordinate-wise normalization. By ignoring gradient
noise, Ma et al. (2022) derived intuitive continuous approximations for full-batch RMSprop and
Adam; however, this deterministic view precludes a scaling rule.

Recent papers have suggested a square root scaling rule for adaptive algorithms: set the learning
rate proportionately to the square root of the batch size while fixing the number of epochs. Based
on perturbation theory, Granziol et al. (2022) proposed the square root scaling rule for RMSprop
and Adam but could only reason about optimization behavior near convergence, not along the entire
trajectory. A square root scaling rule was also empirically discovered for another adaptive gradient
∗Equal Contribution.
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method called LAMB (You et al., 2020), which is an optimization method with layerwise adaptive
learning rates, designed for better optimization and generalization in large-batch training. Instead
of tuning learning rates while increasing batch size, LAMB used the square root scaling rule to
automatically adjust the learning rate and achieve strong performance on vision and language tasks.

In this paper, we make the following contributions.

1. We propose new SDE approximations for two popular adaptive optimization algorithms, RM-
Sprop and Adam (Definitions 4.1 and 4.4) in Theorems 4.2 and 4.5. We prove that these
approximations are 1st-order weak approximations (Definition 2.4), providing a calculus-based
guarantee of the approximation strength between the SDEs and their corresponding discrete
processes as was done for SGD and its SDE in Li et al. (2019).

2. Our SDE approximations immediately yield square-root scaling rules (Definitions 5.1 and 5.2)
for adjusting the optimization hyperparameters of Adam and RMSprop when changing batch
size to ensure that the resulting discrete trajectories are all 1st-order weak approximations of the
same SDE (Theorem 5.3). Experiments (Figures 1 and 2 and Appendix I) validate the scaling
rules in the vision and language modeling domains.

3. We provide efficient experimental verification of the validity of the SDE approximation for the
adaptive algorithms in realistic deep nets (Definitions 5.1 and 5.2). Direct simulation of the
SDE, e.g., Euler-Maruyama, is prohibitively expensive because it requires computing the full
gradient and noise covariance at fine-grained intervals. Hence we adapt (Definition 6.2) the
new and efficient SVAG simulation for SGD (Li et al., 2021) for use with our proposed SDEs
and rigorously prove its correctness (Theorem 6.3). Using SVAG, we provide evidence that
the proposed SDE approximations track the analogous discrete trajectories in many common
large-scale vision and language settings (Figure 3 and Appendix H).

2 Preliminaries

We use v � u, v2,
√
v to denote coordinate-wise operators for multiplication, taking squares, taking

square roots. For ease of exposition we modify RMSprop and Adam to use vk in the update for θk
instead of using vk+1.2 We also assume that v0 is nonzero if ε is 0 to avoid division by zero.
Definition 2.1. RMSprop (Tieleman and Hinton, 2012) is an algorithm that updates θk as follows,

θk+1 = θk − ηgk � (
√
vk + ε)−1, vk+1 = βvk + (1− β)g2k,

where θk is the parameter, gk is the stochastic gradient at step k, and vk is an estimate for the second
moment of gk.
Definition 2.2. Adam (Kingma and Ba, 2015) is an algorithm that updates θk as follows,

mk+1 = β1mk + (1− β1)gk, vk+1 = β2vk + (1− β2)g2k,

m̂k+1 = mk+1 � (1− βk+1
1 )−1, v̂k+1 = vk+1 � (1− βk+1

2 )−1,

θk+1 = θk − ηm̂k+1 � (
√
v̂k + ε)−1,

where θk is the parameter, gk is the stochastic gradient at step k,mk is the momentum, and vk is an
estimate for the second moment of gk.

2.1 Noisy Gradient Oracle with Scale Parameter

We abstract the stochastic gradient as being provided by a noisy oracle for the full gradient. We
formulate the oracle to highlight the phenomenon of interest: changing the batch size affects the scale
of the noise.
Definition 2.3. A Noisy Gradient Oracle with Scale Parameter (NGOS) is characterized by a
tuple Gσ = (f,Σ,Zσ). Given a (noise) scale parameter σ > 0, Gσ takes an input θ and returns
g = ∇f(θ) + σz, where ∇f(θ) is the gradient of f at θ, z is the gradient noise drawn from the
probability distribution Zσ(θ) with mean zero and covariance matrix Σ(θ). We use Gσ(θ) to denote
the distribution of g given σ and θ. The probability distribution Zσ(θ) can change with the scale σ,
but the covariance matrix Σ(θ) is fixed across different noise scales.

2Experiments in Appendix G.2 show that this change does not significantly impact performance.
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For all gk in Definitions 2.1 and 2.2, we assume that gk is drawn from a noisy gradient oracle Gσ.
In our setting, as is common when batches are sampled with replacement, σ is primarily controlled
through the batch size; in particular, σ ∼ 1/

√
B (see Appendix F.1 for a derivation). For sampling

with replacement on a finite dataset of size n, where f1(θ), . . . , fn(θ) are the loss functions for
the n data points (and the average of these n functions is f(θ)), this covariance matrix for a given
parameter θ can be explicitly written as

Σ(θ) =
1

n

n∑
i=1

(∇fi(θ)−∇f(θ))(∇fi(θ)−∇f(θ))>. (1)

2.2 SDE Approximation and Scaling Rules

Under appropriate conditions it becomes possible to approximate SGD via an Itô SDE, which uses
Brownian motion to model the noise and has the following general form, where Wt is a Wiener
process: dXt = b(Xt)dt + σ(Xt)dWt. The SGD update rule for a loss f is xk+1 = xk − ηgk,
where η is the learning rate and gk is given by the NGOS on input xk. The following is the canonical
interpretation of SGD as an SDE:

dXt = −∇f(Xt)dt+
√
ηΣ1/2(Xt)dWt. (2)

Equation (2) hints at a relationship between learning rate and gradient noise—specifically, the linear
scaling rule—since scaling batch size by factor κ scales the noise covariance by 1/κ, which can
be canceled by scaling η by κ as well (Jastrzębski et al., 2017). Therefore, the linear scaling rule
ensures the SDE approximation does not change when using a different batch size. With the same
methodology, the current paper studies the SDE approximations for adaptive gradient algorithms to
derive the square root scaling rule for them.

2.3 Quality of SDE Approximation and Theoretical Assumptions

The quality of the SDE approximation can be measured empirically (Section 6) and bounded theoreti-
cally using a calculus-based guarantee, which was initiated in the context of deep learning in Li et al.
(2019). In particular, the theoretical guarantee uses the following notion of approximation between
discrete and continuous stochastic processes by comparing iteration k in the discrete process with
continuous time kηe, where ηe > 0 is the (effective) step size of the discrete process.
Definition 2.4 (Order-1 Weak Approximation, Li et al. (2019)). Let {Xηe

t : t ∈ [0, T ]} and
{xηek }

bT/ηec
k=0 be families of continuous and discrete stochastic processes parametrized by ηe. We say

{Xηe
t } and {xηek } are order-1 weak approximations of each other if for every test function g with at

most polynomial growth (Definition B.1), there exists a constant C > 0 independent of ηe such that

max
k=0,...,bT/ηec

|Eg(xηek )− Eg(Xηe
kηe

)| ≤ Cηe

A function g : Rd → R is said to have polynomial growth if there exist positive integers κ1, κ2 > 0
such that |g(x)| ≤ κ1(1 + ‖x‖2κ2

2 ) for all x ∈ Rd (Definition B.1). The above definition measures
the strength of the approximation by the closeness of a test function g computed on the iterates of
both trajectories. The approximation becomes stronger in this sense as ηe becomes smaller. In the
SDE approximation of SGD, ηe = η and k steps correspond to continuous time kη. A key difference
between SGD and adaptive algorithms is that ηe = η2 for both RMSprop and Adam, which means k
steps correspond to continuous time kη2. We validate this time-scaling theoretically in Section 4.

Now we formalize the assumptions needed in the theory. Since our analysis framework is based upon
calculus, it becomes necessary to assume differentiability conditions on the NGOS (Definition 2.5).
Similar differentiability conditions also appear in prior SDE works (Li et al., 2019, 2021), and we
note that lately it has become clear that restricting to differentiable losses (via differentiable node
activations such as Swish (Ramachandran et al., 2017)) does not hinder good performance.
Definition 2.5 (Well-behaved NGOS). The loss function f and covariance matrix function Σ in
a NGOS Gσ are well-behaved if they satisfy3: (1) ∇f(θ) is Lipschitz and C∞-smooth; (2) The
square root of covariance matrix Σ1/2(θ) is bounded, Lipschitz, and C∞-smooth; and (3) All partial

3Note: C∞-smoothness can be relaxed using the mollification technique from Li et al. (2019).

3



derivatives of ∇f(θ) and Σ1/2(θ) up to and including the 4-th order have polynomial growth. We
also say that the NGOS Gσ is well-behaved if f and Σ are well-behaved.

Deriving an SDE approximation also requires conditions on the noise distribution in the NGOS.
It is allowed to be non-Gaussian, but not heavy-tailed. We require an upper bound on the third
moment of the noise so that the distribution is not very skewed. For other higher order moments, we
require Ez∼Zσ [‖z‖p2]1/p, namely the Lp-norm of random variable ‖z‖2, to grow at most linearly as
a function of θ (which is implied by ensuring an upper bound on all even order moments). We note
that the following conditions are standard in prior work using Itô SDEs to study SGD.
Definition 2.6 (Low Skewness Condition). The NGOS Gσ is said to satisfy the low skewness condition
if there is a function K3(θ) of polynomial growth (independent of σ) such that |Ez∼Zσ(θ)[z⊗3]| ≤
K3(θ)/σ for all θ ∈ Rd and all noise scale parameters σ.
Definition 2.7 (Bounded Moments Condition). The NGOS Gσ is said to satisfy the bounded moments
condition if for all integers m ≥ 1 and all noise scale parameters σ, there exists a constant C2m

(independent of σ) such that Ez∼Zσ(θ)[‖z‖2m2 ]
1

2m ≤ C2m(1 + ‖θ‖2) for all θ ∈ Rd.

For well-behaved loss f(θ) and covariance Σ(θ), the above two conditions are satisfied when Zσ is
the Gaussian distribution with mean zero and covariance Σ(θ). That is, the Gaussian NGOS g ∼
N (∇f(θ), σ2Σ(θ)) satisfies the low skewness and bounded moments conditions. The low skewness
condition holds because the odd moments of a Gaussian are all zeros, and the bounded moments
condition can be verified since Ez∼N (0,Σ(θ))[‖z‖2m2 ]

1
2m ≤ Ew∼N (0,I)[‖w‖2m2 ]

1
2m · ‖Σ1/2(θ)‖2

and Σ1/2(θ) is Lipschitz.

The Gaussian NGOS with σ = 1√
B

can be seen as an approximation of the gradient noise in a
mini-batch training with batch size B, if Σ(θ) is set to match with (1). But this does not directly
imply that the gradient noise in mini-batch training satisfies the low skewness and bounded moments
conditions, as the noise is not exactly Gaussian. Assuming that the gradient of the loss function fi(θ)
at every data point is Lipschitz, these two conditions can indeed be verified for all batch sizes B ≥ 1.

2.4 Discussion on Heavy-Tailed Gradient Noise

We note that Definitions 2.6 and 2.7 allow some non-Gaussianity in the noise, but K3(θ) and C2m

could be large in practice. In this case, higher order moments of the gradient noise have non-negligible
effects on training that the Itô SDE cannot capture. Zhang et al. (2020) and Simsekli et al. (2019)
presented experimental evidence that the noise is heavy-tailed. This motivated Zhou et al. (2020) to
consider a Lévy SDE approximation (instead of Itô SDE) to study the (worse) generalization behavior
of Adam. However, the quality of the Lévy SDE approximation was not formally guaranteed (e.g.,
in the sense of Definition 2.4), so finding a guaranteed approximation for adaptive optimization
algorithms remains an open problem. Moreover, Li et al. (2021); Xie et al. (2021) highlighted issues
with the evidence, noting that the measurements used in Simsekli et al. (2019) are intended only for
scalar values. When applied to vector valued distributions the measurement can (incorrectly) identify
a multidimensional Gaussian distribution as heavy-tailed too (Li et al., 2021). It is in general difficult
to estimate the moments of the noise distribution from samples, so the heavy-tailedness of real-world
gradient noise remains an open question.

Our empirical results suggest that our assumptions in Definitions 2.6 and 2.7 are not too strong. In
Section 6, we efficiently simulate the Itô SDE using an algorithm analogous to SVAG (Li et al., 2021).
The simulation closely approximates the test accuracy achieved by the discrete trajectory, suggesting
that even if heavy-tailed noise is present during training, it is not crucial for good generalization
(Appendix H). We remain interested in exploring the heavy-tailed analogs of our Itô SDEs. However,
efficient simulation of such SDEs remains intractable and formal approximation guarantees are
difficult to prove, so we are limited in assessing the utility of such approximations. We leave it for
future work to investigate if and how heavy-tailed noise plays a role in adaptive optimization.

3 Related Work

We defer a full discussion of empirical and theoretical works on adaptive gradient methods to
Appendix A.1 and only discuss works relevant to SDEs and scaling rules here.
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Applications of SDE Approximations. There are applications of the SDE approximation beyond
the derivation of a scaling rule. Li et al. (2020) and Kunin et al. (2021) assumed that the loss has
some symmetry (i.e., scale invariance) and studied the resulting dynamics. Furthermore, Li et al.
(2020) used this property to explain the phenomenon of sudden rising error after LR decay in training.
Xie et al. (2021) analyzed why SGD favors flat minima using an SDE-motivated diffusion model.

Past Work on Square Root Scaling Rule. As mentioned before, square root scaling was incor-
rectly believed for a few years to be theoretically justified for SGD. Granziol et al. (2022) decomposed
the stochastic Hessian during batch training into a deterministic Hessian and stochastic sampling
perturbation and assumes one of the components to be low rank to propose a square root scaling rule.
(You et al., 2020) empirically discovered a square root scaling rule for language models trained by
LAMB, a layer-wise variant of Adam. Xie et al. (2022) heuristically derived, but did not show an
approximation bound for, a second-order SDE for approximating Adam, and they applied the SDE to
study the time needed for Adam to escape sharp minima. Xie et al. (2022) did not discuss a scaling
rule, though their proposed SDE may admit one. Similarly, Zhou et al. (2020) derived a Lévy SDE
for Adam, but no approximation bounds are given in the paper.

4 SDEs for Adaptive Algorithms

An SDE approximation operates in continuous time and thus implicitly considers the limit η → 0.
In adaptive algorithms, the moment averaging parameters β, β1, β2 and η must be taken to limits
such that the adaptivity and stochasticity can still be studied. For example, if β, β1, β2 remain fixed
when η → 0, then the algorithm computes the moving averages in a very small neighborhood,
which averages out the effects of gradient noise and gradient history, causing the flow to turn into
deterministic SignGD (Ma et al., 2022). We will need to assume β, β1, β2 → 1 as η → 0, which
implies the impact of the history grows as the learning rate decreases, and thus the adaptive features
of these algorithms can still be studied in the continuous approximation (Ma et al., 2022). To keep the
stochastic nature of the flow, we require the noise from mini-batching dominate the gradient updates.

4.1 Warm-Up: Linear loss

To build intuition for the SDE and the scaling rule, we first study a simplified setting. In particular,
consider a linear loss f(θ) = 〈θ, ḡ〉 and isotropic noise in the NGOS, namely gk ∼ N (ḡ, σ2I). The
RMSprop update vk+1 = βvk + (1− β)g2k can be expanded as vk = βkv0 + (1− β)

∑k−1
j=0 β

jg2j .
By linearity of expectation,

E[vk] = βkv0 + (1− β)

k−1∑
j=0

βj(ḡ2 + σ21) = βkv0 + (1− βk)(ḡ2 + σ21).

This suggests that E[vk] is approximately ḡ2 + σ21 after a sufficient number of steps. Setting
v0 = ḡ2 + σ21, we see that the approximation E[vk] = ḡ2 + σ21 becomes exact for all k ≥ 0.

Using the linearity of variance (for independent variables), the standard deviation of each coordinate
of vk is of scale O((1− β)σ2). Moreover, the expectation E[vk] is of scale O(σ2), so we know that
vk is nearly deterministic and concentrates around its expectation ḡ2 + σ21 when β is close to 1.
Therefore, we take the approximation vk ≈ ḡ2 + σ21 for all k ≥ 0. Ignoring ε, the RMSprop update
rule becomes:

θk+1 ≈ θk − ηgk � (ḡ2 + σ21)−1/2. (3)

These dynamics depend on the relative magnitudes of ḡ and σ. We show that when σ � ‖ḡ‖,
no SDE approximation can exist in Appendix F.2. Here, we explore the case where σ � ‖ḡ‖
which implies θk+1 ≈ θk − η

σgk. Noting that gk ∼ N (ḡ, σ2I) gives θk+1 − θk ∼ N ( ησ ḡ, η
2I)

approximately. Since Gaussian variables are additive, we can take a telescoping sum to obtain the
marginal distribution of θk: θk ∼ N

(
(kη/σ)ḡ, kη2I

)
approximately.

If an SDE approximation of RMSprop exists, then θk can be closely approximated by a fixed random
variable from the corresponding stochastic process at a fixed (continuous) time t. Thus, to keep the
SDE unchanged upon changing the noise scale σ, the hyperparameters must be adjusted to keep
kη
σ and kη2 unchanged, which implies η ∼ 1

σ and k ∼ 1
η2 . These observations intuitively yield
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the square root scaling rule: noting that σ changes with mini-batch size B as σ ∼ 1/
√
B suggests

η ∼
√
B, and k ∼ 1/B.

4.2 SDE Approximations for Adaptive Algorithms

Having established intuition in a highly simplified setting for adaptive algorithms, we now return
to a more general and realistic setting. We derive the SDEs that are order-1 approximations of
the discrete RMSprop and Adam algorithms under Definition 2.5, where the SDE states consist of
both the parameters θ and moment estimates. From the example of Section 4.1, we see that SDE
approximations may exist if σ ∼ 1/η2 and σ � ‖ḡ‖ (see Appendix G.1 for empirical validation of
this assumption). In this case, we can prove that k ∼ η2 is true not only for the simple setting above
but also in general. This is a key difference to the SDE for SGD — each step in RMSprop or Adam
corresponds to a time interval of η2 in SDEs, but each SGD step corresponds to a time interval of η.
In Section 4.1, v ∼ σ2 ∼ 1/η2 grows to infinity as η → 0. This also happens in the general setting,
so we track uk , vk/σ2 (instead of vk directly) in the SDEs.

Definition 4.1 (SDE for RMSprop). Let σ0 , ση, ε0 , εη, and c2 , (1− β)/η2. Define the state
of the SDE asXt = (θt,ut) and the dynamics as

dθt = −P−1t

(
∇f(θt)dt+ σ0Σ

1/2(θt)dWt

)
, dut = c2(diag(Σ(θt))− ut)dt

where Pt := σ0diag(ut)
1/2 + ε0I is a preconditioner matrix, andWt is the Wiener process.

Theorem 4.2 (Informal version of Theorem C.2). Let uk , vk/σ
2 and define the state of the

discrete RMSprop trajectory with hyperparameters η, β, ε (Definition 2.1) as xk = (θk,uk). Then,
for a well-behaved NGOS (Definition 2.3) satisfying the skewness and bounded moments conditions
(Definitions 2.6 and 2.7), the SDE in Definition 4.1 satisfies

max
k=0,...,bT/η2c

|Eg(xk)− Eg(Xkη2)| ≤ Cη2

where g and T are defined as in Definition 2.4 and the initial condition of the SDE isX0 = x0.
Remark 4.3. Section 4.1 suggested that the SDE approximation can only exist when σ � ‖ḡ‖. This
condition is reflected by keeping σ0 = ση a constant and C depends on σ0. When η → 0, σ scales as
1/η, so σ � ‖g‖2.

We need to find continuous approximations of the normalization constants in Adam (Definition 2.2).
As in the RMSprop case, we take (1 − β2)/η2 = c2. Then, we can estimate the normalization
constant 1− βk2 in continuous time t = kη2 as 1− βk2 = 1− (1− c2η2)t/η

2 ≈ 1− exp(−c2t). We
can do the analogous approximation for the other normalization constant 1− βk1 in Adam. Taking
(1− β1)/η2 = c1, we can approximate it as 1− βk1 ≈ 1− exp(−c1t). This is a heuristic approach
to deal with the normalization constants, but we can indeed justify it in theory.
Definition 4.4 (Adam SDE). Let c1 , (1 − β1)/η2, c2 , (1 − β2)/η2 and define σ0, ε0 as in
Definition 4.1. Let γ1(t) , 1− exp(−c1t) and γ2(t) , 1− exp(−c2t). Define the state of the SDE
asXt = (θt,mt,ut) and the dynamics as

dθt = −
√
γ2(t)

γ1(t)
P−1t mtdt, dmt = c1(∇f(θt)−mt)dt+ σ0c1Σ

1/2(θt)dWt,

dut = c2(diag(Σ(θt))− ut)dt,

where Pt := σ0diag(ut)
1/2 + ε0

√
γ2(t)I is a preconditioner matrix,Wt is the Wiener process.

Our main theorem for Adam is given below. The initial steps of the discrete Adam trajectory can
be discontinuous and noisy because of the normalization constants changing drastically. Hence, we
introduce a constant t0 and show that for any t0, we can construct an SDE to be a weak approximation
for Adam starting from the dt0/η2e-th step of Adam.
Theorem 4.5 (Informal version of Theorem D.2). Define uk = vk/σ

2 and let xk = (θk,mk,uk) ∈
R3d be the state of the discrete Adam trajectory with hyperparameters η, β1, β2, ε. Then, for a
well-behaved NGOS (Definition 2.3) satisfying the skewness and bounded moments conditions
(Definitions 2.6 and 2.7) and any t0 > 0, the SDE in Definition 4.4 satisfies

max
k=dt0/η2e,...,bT/η2c

|Eg(xk)− Eg(Xkη2)| ≤ Cη2

where g and T are defined as in Definition 2.4 and the initial condition of the SDE isXt0 = xdt0/η2e.
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Proof Sketch. We provide a proof sketch for our SDE approximations here and defer the technical
details to Theorems C.2 and D.2. The proof follows the same steps as Li et al. (2019): first, we
compute the approximation error of the continuous trajectory after one step in discrete time. Then, we
use the single step error to bound the error over a finite interval of time. The proof extends standard
SDE techniques in several ways. The given SDEs do not satisfy the Lipschitzness and smoothness
conditions because the denominator can be unbounded. We thus construct an auxiliary SDE with
an equivalent distribution to the desired SDE (Theorem C.5) but with better smoothness conditions,
and we prove this SDE to be an order-1 weak approximation of the discrete trajectory. Moreover,
the SDE coefficients are time-dependent for Adam, unlike the ones for SGD, so we need to extend
existing results to cover this case (see Appendix B.1).

5 Square Root Scaling Rule

The SDE approximations in Definitions 4.1 and 4.4 motivate scaling rules for how to adjust the
optimization hyperparameters when changing the batch size. In order for σ0, c1, c2, and ε0 to remain
constant, as required by the SDEs, one needs to change η, β, β1, β2, and ε accordingly.

Definition 5.1 (RMSprop Scaling Rule). When running RMSprop (Definition 2.1) with batch size
B′ = κB, use the hyperparameters η′ = η

√
κ, β′ = 1− κ(1− β), and ε′ = ε√

κ
.

Definition 5.2 (Adam Scaling Rule). When running Adam (Definition 2.2) with batch size B′ = κB,
use the hyperparameters η′ = η

√
κ, β′1 = 1− κ(1− β1), β′2 = 1− κ(1− β2), and ε′ = ε√

κ
.

Theorem 5.3 (Validity of the Scaling Rules). Suppose we have a well-behaved NGOS satisfying the
low skewness and bounded moments conditions.

1. Let x(B)
k be the discrete RMSprop (Definition 2.1) trajectory with batch size B and hyperparame-

ters η, β, and ε. Let x(κB)
k be the trajectory with batch size κB and hyperparameters adjusted

according to Definition 5.1. If x(B)
k and x(κB)

k start from the same initial point, then with g and T
defined as in Definition 2.4,

max
k=0,...,bT/η2c

∣∣∣Eg(x
(B)
k )− Eg(x

(κB)
bk/κc)

∣∣∣ ≤ C(1 + κ)η2.

2. Fix t0 > 0. Let x(B)
k be the discrete Adam (Definition 2.2) trajectory with batch size B and hyper-

parameters η, β1, β2, and ε. Let x(κB)
k be the trajectory with batch size κB and hyperparameters

adjusted according to Definition 5.2. If x(B)
dt0/η2e and x(κB)

dκt0/η2e are equal, then with g and T
defined as in Definition 2.4,

max
k=dt0/η2e,...,bT/η2c

|Eg(x
(B)
k )− Eg(x

(κB)
bk/κc)| ≤ C(1 + κ)η2.

Proof. By the linearity of covariance, scaling the batch size by κ only modifies the NGOS by
scaling σ by 1/

√
κ. Hence, both scaling rules ensure that σ0, c1, c2, and ε0 (and thus, the SDEs) are

unchanged when the batch size changes. The approximation bounds in Theorems 4.2 and 4.5 are in
terms of η2, and since η is scaled here by

√
κ, the same method gives an upper bound Cκη2. Adding

the approximation bounds for η and
√
κη together gives C(1 + κ)η2.

Remark 5.4. The t0 condition on the Adam rule, a holdover from the condition in Theorem 4.5,
implies that our theory only directly applies when there is a warm-start phase of dt0/η2e, where the
marginal distribution of the trainable parameters at the end of the phase is the same across different
learning rates η. Regardless, the scaling rules are shown to work in practice even without this phase.

The scaling rules depend on maintaining the same SDE approximation, so the bounded moments
and low skewness conditions are sufficient (but not necessary) for this scaling rule to work. Li et al.
(2021) provided an analogous discussion for SGD, and they show the scaling rule can hold even if
there is heavy-tailed noise. We leave a study of heavy-tailed gradient noise in adaptive algorithms as
future work.
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Figure 1: Square root scaling rule experiments on CIFAR-10 with VGG-16 and ResNet-50 (details in
Appendix J). We plot the mean and variance of 3 random seeds. Same color legend has been used
across all the plots. The performance gap between B = 256 and B = 8192 is at most 3% in all cases.
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(a) ResNet-50 on ImageNet
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Figure 2: Large scale square root scaling rule experiments (details in Appendix J). Small and large
batch models differ by at most 1.5% test accuracy in vision and 0.5 perplexity in language.

Experiments. Figures 1 and 2 show the square root scaling rule applied to ResNet-50 (He et al.,
2016) and VGG-16 (Simonyan and Zisserman, 2014) trained on CIFAR-10 (Krizhevsky et al.),
RoBERTa-large (Liu et al., 2019) trained on the Wiki+Books corpus (Zhu et al., 2015), 12-layer
GPT (Brown et al., 2020) on WikiText-103 (Merity et al., 2017) and ResNet-50 trained on Ima-
geNet (Deng et al., 2009). We use the efficient language model pre-training recipe outlined in Izsak
et al. (2021). Appendix I has many additional settings, including ablations against other scaling rules
(Appendix I.1).

6 SVAG for Adaptive Algorithms

Validating the approximation strength captured in Definition 2.4 involves comparing the discrete
algorithms and their SDEs on a set of test functions. However, obtaining the SDE solution through
traditional simulations, e.g., Euler-Maruyama, is computationally intractable.4

Li et al. (2021) proposed an efficient simulation, SVAG, of the SDE for SGD in the finite LR regime:
scale the constant LR by 1/` and take the limit ` → ∞. In practice the simulation converges for
a small value of `. We adapt SVAG technique to simulate our proposed SDEs, which requires
additionally adjusting the moment averaging hyperparameters (i.e., β, β1, β2) and ε.
Definition 6.1 (SVAG Operator). Given an NGOS Gσ = (f,Σ,Zσ) with scale σ (Definition 2.3)
and hyperparameter ` ≥ 1, the SVAG operator transforms Gσ into an NGOS Ĝ`σ = (f,Σ, Ẑ`σ) with
scale `σ. The NGOS Ĝ`σ takes an input θ and returns ĝ = r1(`)g1 + r2(`)g2, where g1, g2 are two

4One can also simulate the SDE by constructing 1st-order weak approximations while taking η → 0 along
the scaling rules, but the batch size cannot be smaller than 1 and hence η cannot go arbitrarily close to the limit.
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Figure 3: SVAG on the Adam trajectory when training ResNet-50 on CIFAR-10 matches the
discrete trajectory (` = 1) on various test functions (see Appendix J for details). The closeness
of the trajectories with respect to various test functions for different values of ` implies the SDE
approximation (Definition 4.4) is a 1st-order weak approximation of Adam (Theorem 4.5).

stochastic gradients from Gσ(θ) and ri(`) = 1
2 (1 + (−1)i

√
2`2 − 1) for i ∈ {1, 2}. The probability

distribution Ẑ`σ is defined such that ĝ has the same distribution as∇f(θ) + `σz when z ∼ Ẑ`σ(θ).

Lemma E.1 verifies that Ĝ`σ does indeed compute stochastic gradients for f with covariance Σ.
Applying the SVAG operator to mini-batch training amplifies the noise scale by `. We then apply the
square root scaling rule to adjust the learning rates and other hyperparameters accordingly, which
yields the SVAG algorithm.
Definition 6.2 (SVAG Algorithm). For a loss f , SVAG operator hyperparameter ` > 0, and optimiza-
tion hyperparameters η, β, β1, β2, and ε, compute the stochastic gradient as ĝ = r1(`)gγ1 + r2(`)gγ2 ,
where r1 and r2 are defined as in Definition 6.1, and scale the optimization hyperparameters:

1. For RMSprop, set η ← η/`, β ← 1−(1−β)/`2, and ε← ε` and apply updates as in Definition 2.1.

2. For Adam, set η ← η/`, β1 ← 1 − (1 − β1)/`2, β2 ← 1 − (1 − β2)/`2 and ε ← ε` and apply
updates as in Definition 2.2.

The SVAG algorithm describes a discrete trajectory that is a 1st-order approximation of the cor-
responding SDE (Definitions 4.1 and 4.4), thereby providing an efficient simulation of the SDEs.

Theorem 6.3 (SVAG algorithm approximates SDE). Assume the NGOS is well-behaved and satisfies
the bounded moments condition (Definitions 2.5 and 2.7).

1. LetXt be the state of the RMSprop SDE (Definition 4.1) with hyperparameters η, β, and ε. Let
xk be the state of the analogous discrete SVAG algorithm with hyperparameter `.

2. LetXt be the state of the Adam SDE (Definition 4.4) with hyperparameters η, β1, β2, and ε. Let
xk be the state of the analogous discrete SVAG algorithm with hyperparameter `.

In both 1 and 2, following holds for g and T as in Definition 2.4.

max
k=0,...,b`2T/η2c

|Eg(xk)− Eg(Xkη2/`2)| ≤ Cη2/`2

Proof. The main idea of the proof is to show that the SVAG operator transforms the noise distribution
of a well-behaved NGOS satisfying the bounded moments condition into one that is well-behaved
and satisfies the bounded moments and the low skewness conditions (Lemma E.2). With these three
conditions satisfied, we can directly apply Theorems 4.2 and 4.5 to complete the proof.

Because the SDE scales time as k = t/η2, we must run SVAG for `2 steps to match a single step
of the discrete trajectories. Nevertheless, we note that in our setting and in Li et al. (2021), the
approximation guarantee is strong enough for small `, so this simulation is still more efficient than
Euler-Maruyama.
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Experiments. Figure 3 compares the Adam SVAG trajectories (Definition 6.2) up to ` = 8 to
the discrete one (` = 1) on CIFAR-10 (Krizhevsky et al.) with ResNet-50 (He et al., 2015b). We
use Tr(Σ(θk)) and ‖gk‖ as mathematically well-behaved test functions to test the approximation
strength (see Definition 2.4). We also measure the train and test accuracies, even though they are not
differentiable (and hence, not covered by the theory). The converged SVAG trajectories are close to
the discrete ones under these test functions, suggesting the SDE approximations are applicable to
realistic deep learning settings. Additional details and settings, including large language models, are
in Appendix H.

7 Conclusion

We derive SDEs that are provable 1st-order approximations of the RMSprop and Adam trajectories,
immediately yielding formal derivations of square root scaling rules: increase the learning rate by√
κ and adjust the adaptive hyperparameters when increasing batch size by κ. Experiments in the

vision and language domains verify that applying these rules ensures that the values of several test
functions, including test accuracy, are preserved. We furthermore design an efficient simulation for
the SDEs, allowing us to directly validate the applicability of these SDEs to common vision and
language settings. These SDEs can lead to a deeper understanding of how adaptivity and stochasticity
impact optimization and generalization, and we hope to extend our results to formal identification of
necessary and sufficient conditions for the approximation and its consequences to hold.
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in Definitions 2.5 to 2.7. In particular, we discuss the limited applicability of our work to
cases in which the gradient noise is heavy-tailed, though our empirical success suggests that
the gradient noise satisfies our assumptions in many realistic vision and language settings.
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discussion of the assumptions on the gradient noise and the general requirements needed
to be able to construct a continuous approximation of the discrete algorithms. Moreover,
Section 4.1 motivates the assumption that the gradient noise dominates the gradient. We
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from prior works on SDEs (Li et al., 2019, 2021).

(b) Did you include complete proofs of all theoretical results? [Yes] Our proofs are written
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