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Abstract

Designing spectral convolutional networks is a challenging problem in graph
learning. ChebNet, one of the early attempts, approximates the spectral graph
convolutions using Chebyshev polynomials. GCN simplifies ChebNet by utilizing
only the first two Chebyshev polynomials while still outperforming it on real-world
datasets. GPR-GNN and BernNet demonstrate that the Monomial and Bernstein
bases also outperform the Chebyshev basis in terms of learning the spectral graph
convolutions. Such conclusions are counter-intuitive in the field of approximation
theory, where it is established that the Chebyshev polynomial achieves the optimum
convergent rate for approximating a function.
In this paper, we revisit the problem of approximating the spectral graph convolu-
tions with Chebyshev polynomials. We show that ChebNet’s inferior performance
is primarily due to illegal coefficients learnt by ChebNet approximating analytic fil-
ter functions, which leads to over-fitting. We then propose ChebNetII, a new GNN
model based on Chebyshev interpolation, which enhances the original Chebyshev
polynomial approximation while reducing the Runge phenomenon. We conducted
an extensive experimental study to demonstrate that ChebNetII can learn arbi-
trary graph convolutions and achieve superior performance in both full- and semi-
supervised node classification tasks. Most notably, we scale ChebNetII to a billion
graph ogbn-papers100M, showing that spectral-based GNNs have superior perfor-
mance. Our code is available at https://github.com/ivam-he/ChebNetII.

1 Introduction

Graph neural networks (GNNs) have received considerable attention in recent years due to their
remarkable performance on a variety of graph learning tasks, including social analysis [31, 24, 38],
drug discovery [49, 19, 32], traffic forecasting [26, 3, 7] and recommendation system [42, 46].

Spatial-based and spectral-based graph neural networks (GNNs) are the two primary categories of
GNNs. To learn node representations, spatial-based GNNs [21, 15, 39] often rely on a message
propagation and aggregation mechanism between neighboring nodes. Spectral-based methods [8, 12]
create spectral graph convolutions or, equivalently, spectral graph filters, in the spectral domain of the
graph Laplacian matrix. We can further divide spectral-based GNNs into two categories based on
whether or not their graph convolutions can be learned.

• Predetermined graph convolutions: GCN [21] employs a simplified first tow Chebyshev
polynomials as the graph convolution, which is a fixed low-pass filter [1, 41, 43, 54].
APPNP [22] and GDC [12] set the graph convolution with Personalized PageRank (PPR)
and also achieve a low-pass filter. [12, 54]. S2GC [52] derives the graph convolution from the
Markov Diffusion Kernel, which is a low- and high-pass filter trade-off. GNN-LF/HF [54]
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designs the graph convolutions from the perspective of graph optimization that can imitate
low- and high-pass filters.

• Learnable graph convolutions: ChebNet [8] approximates the graph convolutions using
Chebyshev polynomials and, in theory, could learn arbitrary filters [1]. CayleyNet [23]
learns the graph convolutions with Cayley polynomials and generates various graph filters.
GPR-GNN [6] uses the Monomial basis to approximate graph convolutions, which can
derive low- or high-pass filters. ARMA [2] learns the rational graph convolutions through
the Auto-Regressive Moving Average filters family [28]. BernNet [17] utilizes the Bernstein
basis to approximate the graph convolutions, which can also learn arbitrary graph filters.

Despite the recent developments, two fundamental problems with spectral-based GNNs remain
unsolved. First of all, it is well-known that GCN [21] outperforms ChebNet [8] on real-world
datasets (e.g., semi-supervised node classification tasks on citation datasets [21]). However, it is
also established that GCN is a simplified version of ChebNet with only the first two Chebyshev
polynomials and that ChebNet has more expressive capability than GCN in theory [1]. Consequently, a
natural question is: Why is ChebNet’s performance inferior to GCN’s despite its better expressiveness?

Secondly, as shown in [17], the real-world performance of ChebNet is also inferior to that of GPR-
GNN [6] and BernNet [17], which use Monomial polynomial basis and Bernstein polynomial basis
to approximate the spectral graph convolutions. Such a conclusion is counter-intuitive in the field of
approximation theory, where it is established that the Chebyshev polynomial achieves near-optimum
error when approximating a function [13]. Therefore, the second question is: Why is ChebNet’s filter
inferior to that of GPR-GNN and BernNet, despite the fact that Chebyshev polynomials have a higher
approximation ability?

In this paper, we attempt to tackle these problems by revisiting the fundamental problem of approxi-
mating the spectral graph convolutions with Chebyshev polynomials. First of all, according to the
theory of the Chebyshev approximation, we observe that the coefficients of the Chebyshev expansion
for an analytic function need to satisfy an inevitable convergence. Consequently, we prove that
ChebNet’s inferior performance is primarily due to illegal coefficients learnt by ChebNet approx-
imating analytic filter functions, which leads to over-fitting. Furthermore, we propose ChebNetII,
a new GNN model based on Chebyshev interpolation, which enhances the original Chebyshev
polynomial approximation while reducing the Runge phenomenon [10]. Our ChebNetII model
has robust scalability and can easily cope with various constraints on the learned filters via simple
reparameterization, such as the non-negativity constraints proposed in [17]. Finally, we conduct an
extensive experimental study to demonstrate that ChebNetII can achieve superior performance in both
full- and semi-supervised node classification tasks and scale to the billion graph ogbn-papers100M .

2 Revisiting ChebNet

Notations. We consider an undirected graph G = (V,E) with node set V and edge set E. Let
n = |V | denote the number of nodes. We use x ∈ Rn to denote the graph signal, where x(i) denotes
the signal at node i. Note that in the general case of GNNs where the input feature is a matrix X, we
can treat each column of X as a graph signal. Let A denote the adjacency matrix and D denote the
diagonal degree matrix, where Dii =

∑n
j Aij . For convenience, we use P = D−1/2AD−1/2 and

L = I−D−1/2AD−1/2 to denote the normalized adjacency matrix and the normalized Laplacian
matrix of G, respectively. We use L = UΛUT to represent the eigendecomposition of L, where U
denotes the matrix of eigenvectors and Λ = diag[λ1, ..., λn] is the diagonal matrix of eigenvalues.

2.1 Spectral-based GNNs and ChebNet

Spectral-based GNNs create the spectral graph convolutions in the domain of Laplacian spectrum.
Recent studies suggest that many popular methods use the polynomial spectral filters to achieve graph
convolutions [8, 21, 17]. We can formulate this polynomial filtering operation as

y = Udiag [h(λ1), ..., h(λn)]U
Tx = Uh (Λ)UTx ≈

K∑
k=0

wkL
kx, (1)

where y denotes the filtering results of x, and h(λ) is called the spectral filter, which is a function
of eigenvalues of the Laplacian matrix L. The wk denote the polynomial filter weights, and the
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Table 1: Comparison of ChebNet and GCN.
Method Cora Citeseer Pubmed

ChebNet (2) 80.54±0.38 70.35±0.33 75.52±0.75
ChebNet (10) 74.91±0.52 67.69±0.64 65.91±1.71
GCN 81.32±0.18 71.77±0.21 79.15±0.18

Table 2: Comparison of different bases.
Method Cora Citeseer Pubmed

ChebBase 79.29±0.36 70.76±0.37 78.07±0.32
GPR-GNN 83.95±0.22 70.92±0.57 78.97±0.27
BernNet 83.15±0.32 72.24±0.25 79.65±0.25

polynomial filter can be defined as h(λ) =
∑K

k=0 wkλ
k, λ ∈ [0, 2]. ChebNet [8] is a remarkable

attempt in this field, which uses Chebyshev polynomial to approximate the filtering operation.

y ≈
K∑

k=0

wkTk(L̂)x, (2)

where L̂ = 2L/λmax − I denotes the scaled Laplacian matrix. λmax is the largest eigenvalue of L
and wk denote the Chebyshev coefficients. The Chebyshev polynomials can be recursively defined as
Tk(x) = 2xTk−1(x)− Tk−2(x), with T0(x) = 1 and T1(x) = x. ChebNet’s structure is:

Y =

K∑
k=0

Tk(L̂)XWk, (3)

with the trainable weights Wk. The Chebyshev coefficients wk of the filtering operation (2) are
implicitly encoded in the weight matrices Wk. We list more spectral-based GNNs’ details in the
supplementary materials.

2.2 The motivation of revisiting ChebNet

ChebNet versus GCN. Even though GCN is a simplified form of ChebNet, it is well known that
ChebNet is inferior to GCN for semi-supervised node classification tasks [21]. Table 1 shows the
results of ChebNet and GCN for semi-supervised node classification tasks on Cora, Citeseer and
Pubmed datasets (see the Appendix for experimental details) . We find that ChebNet is inferior to
GCN, especially when we increase the polynomial order K from 2 to 10 in Equation (3).

On the other hand, existing research [1] has shown that ChebNet is more expressive than GCN in
theory. In particular, ChebNet can approximate arbitrary spectral filters as K increases, while GCN
is a fixed low-pass filter. If we set K = 1 and w0 = w1 in the Equation (2), ChebNet corresponds
to a high-pass filter; if we set K = 1 and w0 = −w1, ChebNet becomes a low-pass filter which is
essentially the same as GCN. Consequently, a natural question is: Why is ChebNet’s performance
inferior to GCN’s despite its better expressiveness?

Chebyshev basis versus other bases. Chebyshev polynomials are widely used to approximate
various functions in the digital signal processing and the graph signal filtering [36, 37]. The truncated
Chebyshev expansions are demonstrated to produce a minimax polynomial approximation for the
analytic functions [13]. Consequently, the spectral filters can be well-approximated by a truncated
expansion in terms of Chebyshev polynomials Tk(x) up to K-th order [16].

h(λ̂) ≈
K∑

k=0

wkTk(λ̂), λ̂ ∈ [−1, 1], (4)

where λ̂ is the eigenvalue of the scaled Laplacian matrix L̂. ChebNet [8] then defined the graph
convolutions using the Chebyshev approximated filters, while recent works were inspired by ChebNet
and used Monomial (i.e., GPR-GNN [6]) and Bernstein (i.e., BernNet [17]) bases to approximate
filters. In order to evaluate the approximation ability of Chebyshev basis, we propose ChebNet
with explicit coefficients, ChebBase, which simply replaces the Monomial basis of GPR-GNN and
Bernstein basis of BernNet with the Chebyshev basis. The expression of ChebBase is

Y =

K∑
k=0

wkTk(L̂)fθ (X) , (5)

where fθ(X) denotes Multi-Layer Perceptron (MLP). Table 2 reveals the results of ChebBase,
GPR-GNN and BernNet for node classification tasks on three citation graphs. We can observe that
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Figure 1: Illustrations of the Chebyshev expansion’s coefficients of exp(λ̂) and the Chebyshev
coefficients learnt by ChebBase and ChebBase/k on Cora.

ChebBase has the worst performance, which is inconsistent with the fact that the Chebyshev basis
can approximate minimax polynomial in theory. Therefore, the second question is: Why is ChebNet’s
filter inferior to that of GPR-GNN and BernNet, despite the fact that Chebyshev polynomials have a
higher approximation ability?

2.3 Coefficient Constraints

We now demonstrate that ChebNet’s suboptimal performance is due to the illegal coefficients learned,
which results in over-fitting. Given an arbitrary continuous function f(x) in the interval [−1, 1],
the Chebyshev expansion is defined as f(x) =

∑∞
k=0 wkTk(x) with the Chebyshev coefficients wk.

The following theorem establishes that in order to approximate an analytic function, the Chebyshev
expansion’s coefficients must be constrained.
Theorem 2.1. [48] If f(x) is weakly singular at the boundaries and analytic in the interval (−1, 1),
then the Chebyshev coefficients wk will asymptotically (as k → ∞) decrease proportionally to 1/kq

for some positive constant q.

Here, "weakly singular" means that the derivative of f could vanish at the boundaries, and "analytic"
means f can be locally given by a convergent power series in the interval (−1, 1). Intuitively,
Chebyshev polynomial Tk(x) with larger k corresponds to higher frequency oscillation (see the
Appendix for more details). Theorem 2.1 essentially demonstrates that high frequency polynomials
should be constrained in the Chebyshev expansion to approximate an analytic function. Figure 1(a)
depicts the Chebyshev expansion’s coefficients of the analytic function exp(λ̂) used as a spectral
filter in GDC [12] and shows that the coefficients are convergent.

Table 3: The performance of ChebBase.

Method Cora Citeseer Pubmed

ChebNet 80.54±0.38 70.35±0.33 75.52±0.75
GCN 81.32±0.18 71.77±0.21 79.15±0.18
ChebBase 79.29±0.36 70.76±0.37 78.07±0.32
ChebBase/k 82.66±0.28 72.52±0.29 79.25±0.31

The ability to approximate an analytic function is
crucial in the task of approximating the spectral
filters, since non-analytic filters are more difficult
to approximate by polynomials and may result in
over-fitting. In particular, ChebNet and ChebBase
learn the coefficients wk by gradient descent with-
out any constraints. The coefficients may not satisfy
Theorem 2.1, leading to their poor performance. To
validate this conjuncture, we conducted an empirical analysis of ChebBase with difference coefficient
constraints. Inspired by Theorem 2.1, we use the following propagation process for the ChebBase/k.

Y =

K∑
k=0

wk

k
Tk(L̂)fθ (X) , (6)

where wk/k denote the Chebyshev coefficients implemented by reparameterizing the learnable param-
eters wk. Table 3 shows the experimental results of the semi-supervised node classification performed
on the citation graphs. We can observe that with a simple penalty on wk, ChebBase/k outperforms
ChebNet, ChebBase, and GCN. Figure 1(b) plots the absolute value of the Chebyshev coefficients
learnt by ChebBase and ChebBase/k on Cora. We can observe that the coefficients of ChebBase/k
could more readily satisfy the convergence constraint. These results validate Theorem 2.1.
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3 ChebNetII model

Although ChebBase/k appears to be a promising approach, it still has some drawbacks: 1) Imposing
the penalty on the coefficients is not mathematically elegant, as Theorem 2.1 only provides a
necessary condition for the coefficients; 2) It is hard to impose further constraints on the learned
spectral filters. For example, it is unclear how we can modify Equation (6) to obtain non-negative
filters, a requirement proposed in [17]. In this section, we describe ChebNetII, a GNN model based
on Chebyshev interpolation that resolves the above two issues. We also discuss the advantages and
disadvantages of various polynomial interpolations as well as the Runge phenomenon.

3.1 Chebyshev interpolation

Consider a real filter function h(λ̂) that is continuous in the interval [−1, 1]. When the values of this
filter are known at a finite number of points λ̂k, one can consider the approximation by a polynomial
PK with K degree such that h(λ̂k) = PK(λ̂k), which is the general polynomial interpolation. We
give an explicit expression of the general polynomial interpolation in the supplementary materials.

We generally sample the K + 1 points λ̂0 < λ̂1 < ... < λ̂K uniformly from [−1, 1] to construct the
interpolating polynomial PK(λ̂). Intuitively, increasing K should improve the approximation quality.
However, this is not always the case due to the Runge Phenomenon [10] (The details are discussed in
section 3.3). The popular approach to this problem in the literature [14] is Chebyshev interpolation,
having superior approximation ability and faster convergence. Instead of sampling the interpolation
points uniformly, Chebyshev interpolation uses Chebyshev nodes as the interpolation points, which
are essentially the zeros of the (K + 1)-th Chebyshev polynomial.
Definition 3.1. (Chebyshev Nodes) The Chebyshev polynomial Tk(x) satisfies the closed form
expression Tk(x) = cos (k arccos(x)). The Chebyshev Nodes for Tk(x) are defined as xj =

cos
(
2j+1
2k π

)
, j = 0, 1, ..., k − 1, which lie in the interval (−1, 1) and are the zeros of Tk(x).

Definition 3.1 suggests that each Chebyshev polynomial Tk(x) has k zeros, and we can define
Chebyshev interpolation by replacing the equispaced points with Chebyshev nodes in the general
polynomial interpolation (see the Appendix for details). More eloquently, definition 3.2 efficiently
defines the Chebyshev interpolation via their orthogonality properties.

Definition 3.2. (Chebyshev Interpolation) [14] Given a continuous filter function h(λ̂), let xj =

cos
(

j+1/2
K+1 π

)
, j = 0, . . . ,K denote the Chebyshev nodes for TK+1 and h(xj) denotes the function

value at node xj . The Chebyshev interpolation of h(λ̂) is defined to be

PK(λ̂) =

K∑
k=0

c′kTk(λ̂), ck =
2

K + 1

K∑
j=0

h(xj)Tk(xj), (7)

where the prime indicates the first term is to be halved, that is, c′0 = c0/2, c′1 = c1, . . . , c
′
K = cK .

3.2 ChebNetII via Chebyshev Interpolation

Inspired by Chebyshev interpolation, we propose ChebNetII, a graph convolutional network that
approximates an arbitrary spectral filter h(λ̂) with an optimal convergence rate. ChebNetII simply
reparameterizes the filter value h(xj) in Equation (7) as a learnable parameter γj , which allows the
model to learn an arbitrary spectral filter via gradient descent. More precisely, the ChebNetII model
can be formulated as

Y =
2

K + 1

K∑
k=0

K∑
j=0

γjTk(xj)Tk(L̂)fθ(X), (8)

where xj = cos ((j + 1/2)π/(K + 1)) are the Chebyshev nodes of TK+1, fθ(X) denotes an MLP
on the node feature matrix X, and γj for j = 0, 1, ...,K are the learnable parameters. Note that
similar to APPNP [22], we decouple feature propagation and transformation.
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Table 4: Dataset statistics.
Chameleon Squirrel Actor Texas Cornell Cora Citeseer Pubmed ogbn-arxiv ogbn-papers100M

Nodes 2277 5201 7600 183 183 2708 3327 19,717 169,343 111,059,956
Edges 31,371 198,353 26,659 279 277 5278 4552 44,324 1,166,243 1,615,685,872
Features 2325 2089 932 1703 1703 1433 3703 500 128 128
Classes 5 5 5 5 5 7 6 5 40 172
H(G) 0.23 0.22 0.22 0.11 0.30 0.81 0.74 0.80 0.66 -

Consequently, the filtering operation of ChebNetII can be expressed as

y ≈ 2

K + 1

K∑
k=0

K∑
j=0

γjTk(xj)Tk(L̂)x. (9)

It is easy to see that compared to the filtering operation of the original ChebNet (2), we only make
one simple change: reparameterizing the coefficient wk by wk = 2

K+1

∑K
j=0 γjTk(xj). However,

this simple modification allows us to have more control on shaping the resulting filter, as Chebyshev
interpolation suggests that γj directly corresponds to the filter value h(xj) at the Chebyshev node
xj . The coefficients wk = 2

K+1

∑K
j=0 h(xj)Tk(xj) are fundamentally guaranteed to satisfy the

constraints of Theorem 2.1 since we directly approximate the filter h. Furthermore, Chebyshev
interpolation also provides the ChebNetII with several beneficial mathematical properties.

3.3 Analysis of ChebNetII

ChebNetII has several advantages over existing GNN models due to the unique nature of Chebyshev
interpolation. From the standpoint of polynomial approximation and computational complexity, we
compare ChebNetII with current related approaches such as GPR-GNN [6] and BernNet [17].

Near-minimax approximation. First of all, we examine ChebNetII’s capabilities in terms of filter
function approximation. Theorem 3.1 exhibits that ChebNetII provides an approximation that is close
to the best polynomial approximation for a spectral filter h.
Theorem 3.1. [27] A polynomial approximation P ∗

K(x) for a function f(x) is said to be near-
best/minimax approximation with a relative distance ρ if

||f(x)− P ∗
K(x)|| ≤ (1 + ρ)||f(x)− P ∗

B(x)||, (10)

where ρ is the Lebesgue constant, P ∗
B(x) is a best polynomial approximation, and || · || represents the

uniform norm (i.e., ||g|| = maxx∈[−1,1] |g(x)|). Then, we have ρ ∼ 2K as K → ∞ for the general
polynomial interpolation, and ρ ∼ log(K) as K → ∞ for the Chebyshev interpolation.

Convergence. In comparison to BernNet [17], which uses the Bernstein basis, ChebNetII has a faster
convergence rate for approximating a filter function. Specifically, we have the following Theorem:
Theorem 3.2. [14, 29] Let PK(x) be the polynomial approximation for a function f(x). Then
the error is given as ||f(x)− PK(x)|| ≤ E(K). If PK(x) is obtained by Bernstein approximation,
then E(K) ∼ (1 + (2K)−2)ω(K−1/2); if PK(x) is obtained by Chebyshev Interpolation, then
E(K) ∼ Cω(K−1) log(K) with a constant C, where ω is the modulus of continuity.

Runge phenomenon. In comparison to GPR-GNN [6], which uses the Monomial basis, ChebNetII
has the advantage of reducing the Runge phenomenon [10]. In particular, when we use the general
polynomial interpolation to approximate a Runge filter h(λ̂) with a high degree over a set of equis-
paced interpolation points, it will cause oscillation along the edges of an interval. Consequently, as
the degree of the polynomial increases, the interpolation error increases. Following [14], we define
the error of polynomial interpolation as

RK(λ̂) = h(λ̂)− PK(λ̂) =
hK+1(ζ)

(K + 1)!
πK+1(λ̂), (11)

where πK+1(λ̂) =
∏K

k=0(λ̂− λ̂k) denotes the nodal polynomial and ζ is the value depending on λ̂.
The terrible Runge phenomenon is caused by the values of this nodal polynomial, which have very
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Table 5: Dataset statistics of large heterophilic graphs.
Penn94 pokec arXiv-year genius twitch-gamers wiki

Nodes 41,554 1,632,803 169,343 421,961 168,114 1,925,342
Edges 1,362,229 30,622,564 1,166,243 984,979 6,797,557 303,434,860
Features 5 65 128 12 7 600
Classes 2 2 5 2 2 5
H(G) 0.47 0.46 0.22 0.62 0.55 0.39

high oscillations around the interval endpoints. In particular, for high-degree polynomial interpolation
at equidistant points in [−1, 1], we have limK→∞

(
max−1≤λ̂≤1 |RK(λ̂)|

)
= ∞.

On the other hand, we have the following Theorem 3.3 that explains that Chebyshev nodes can
minimize and quantify this error caused by the nodal polynomial, meaning Chebyshev interpolation
minimizes the problem of the Runge phenomenon.
Theorem 3.3. [14] Consider the Chebyshev nodes xj = cos ((j + 1/2)π/(K + 1)), j = 0, 1, ...,K.
Then the nodal polynomial T̂K+1(x) =

∏K
k=0(x− xj) has the smallest possible uniform norm, i.e.,

||T̂K+1(x)|| = 2−K .

Computational complexity. Compared to BernNet [17], which has a time complexity quadratic to
the order K in the forward process, ChebNetII can be computed in time linear to K. Specifically,
we first compute the ChebNetII’s coefficients 2

K+1

∑K
j=0 γjTk(xj) in time linear to K as we can

precompute Tk(xj), and then plug the coefficients into Equation (8) for propagation, which also takes
the time linear to K, the same as that of ChebNet [8] and GPR-GNN [6].

4 Experiments

In this section, we conduct experiments to evaluate the performance of ChebNetII against the
state-of-the-art graph neural networks on a wide variety of open graph datasets.

Dataset and Experimental setup. We evaluate ChebNetII on several real-world graphs for the Semi-
and Full-supervised node classification tasks. The datasets include three homophilic citation graphs:
Cora, Citeseer, and Pubmed [35, 45], five heterophilic graphs: the Wikipedia graphs Chameleon
and Squirrel [34], the Actor co-occurrence graph, and webpage graphs Texas and Cornell from
WebKB* [30], two large citation graphs: ogbn-arxiv and ogbn-papers100M [18], as well as six large
heterophilic graphs: Penn94, pokec, arXiv-year, genius, twitch-gamers and wiki [25]. We measure the
level of homophily in a graph using the edge homophily ratio H(G) = |{(u,v):(u,v)∈E∧yv=yu}|

|E| [53],
where yv denotes the label of node v. We summarize the dataset statistics in Tables 4 and 5. All the
experiments are carried out on a machine with an NVIDIA RTX8000 GPU (48GB memory), Intel
Xeon CPU (2.20 GHz) with 40 cores, and 512 GB of RAM.

4.1 Semi-supervised node classification with polynomial-based methods

Setting and baselines. For the semi-supervised node classification task, we compare ChebNetII to
7 polynomial approximation filter methods, including MLP, GCN [21], ARMA [2], APPNP [22],
ChebNet [8], GPR-GNN [6] and BernNet [17]. For dataset splitting, we employ both random and
fixed splits and report the results on random splits. The results of fixed splits will be discussed in
the Appendix.Specifically, we apply the standard training/validation/testing split [45] on the three
homophilic citation datasets (i.e., Cora, Citeseer, and Pubmed), with 20 nodes per class for training,
500 nodes for validation, and 1,000 nodes for testing. Since this standard split can not be used for
very small graphs (e.g. Texas), we use the sparse splitting [6] with the training/validation/test sets
accounting for 2.5%/2.5%/95%, respectively, on the five heterophilic datasets.

For ChebNetII, we use Equation (8) as the propagation process and use the ReLu function to
reparametrize γj , maintaining the non-negativity of the filters [17]. We set the hidden units as 64

*http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb/
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Table 6: Mean classification accuracy of semi-supervised node classification with random splits.

Method Cham. Squi. Texas Corn. Actor Cora Cite. Pubm.

MLP 26.36±2.85 21.42±1.50 32.42±9.91 36.53±7.92 29.75±0.95 57.17±1.34 56.75±1.55 70.52±2.01
GCN 38.15±3.77 31.18±0.93 34.68±9.07 32.36±8.55 22.74±2.37 79.19±1.37 69.71±1.32 78.81±0.84
ChebNet 37.15±1.49 26.55±0.46 36.35±8.90 28.78±4.85 26.58±1.92 78.08±0.86 67.87±1.49 73.96±1.68
ARMA 37.42±1.72 24.15±0.93 39.65±8.09 28.90±10.07 27.02±2.31 79.14±1.07 69.35±1.44 78.31±1.33
APPNP 32.73±2.31 24.50±0.89 34.79±10.11 34.85±9.71 29.74±1.04 82.39±0.68 69.79±0.92 79.97±1.58
GPR-GNN 33.03±1.92 24.36±1.52 33.98±11.90 38.95±12.36 28.58±1.01 82.37±0.91 69.22±1.27 79.28±2.25
BernNet 27.32±4.04 22.37±0.98 43.01±7.45 39.42±9.59 29.87±0.78 82.17±0.86 69.44±0.97 79.48±1.47
ChebNetII 43.42±3.54 33.96±1.22 46.58±7.68 42.19±11.61 30.18±0.81 82.42±0.64 69.89±1.21 79.51±1.03

Table 7: Mean classification accuracy of full-supervised node classification with random splits.
Method Cham. Squi. Texas Corn. Actor Cora Cite. Pubm.

MLP 46.59±1.84 31.01±1.18 86.81±2.24 84.15±3.05 40.18±0.55 76.89±0.97 76.52±0.89 86.14±0.25
GCN 60.81±2.95 45.87±0.88 76.97±3.97 65.78±4.16 33.26±1.15 87.18±1.12 79.85±0.78 86.79±0.31
ChebNet 59.51±1.25 40.81±0.42 86.28±2.62 83.91±2.17 37.42±0.58 87.32±0.92 79.33±0.57 87.82±0.24
ARMA 60.21±1.00 36.27±0.62 83.97±3.77 85.62±2.13 37.67±0.54 87.13±0.80 80.04±0.55 86.93±0.24
APPNP 52.15±1.79 35.71±0.78 90.64±1.70 91.52±1.81 39.76±0.49 88.16±0.74 80.47±0.73 88.13±0.33
GCNII 63.44±0.85 41.96±1.02 80.46±5.91 84.26±2.13 36.89±0.95 88.46±0.82 79.97±0.65 89.94±0.31
TWIRLS 50.21±2.97 39.63±1.02 91.31±3.36 89.83±2.29 38.13±0.81 88.57±0.91 80.07±0.94 88.87±0.43
EGNN 51.55±1.73 35.81±0.91 81.34±1.56 82.09±1.16 35.16±0.64 87.47±1.33 80.51±0.93 88.74±0.46
PDE-GCN 66.01±1.56 48.73±1.06 93.24±2.03 89.73±1.35 39.76±0.74 88.62±1.03 79.98±0.97 89.92±0.38
GPR-GNN 67.49±1.38 50.43±1.89 92.91±1.32 91.57±1.96 39.91±0.62 88.54±0.67 80.13±0.84 88.46±0.31
BernNet 68.53±1.68 51.39±0.92 92.62±1.37 92.13±1.64 41.71±1.12 88.51±0.92 80.08±0.75 88.51±0.39
ChebNetII 71.37±1.01 57.72±0.59 93.28±1.47 92.30±1.48 41.75±1.07 88.71±0.93 80.53±0.79 88.93±0.29

and K = 10 for the all datasets as the same as GPR-GNN [6] and BernNet [17]. We employ the
Adam SGD optimizer [20] with an early stopping of 200 and a maximum of 1000 epochs to train
ChebNetII. We use the officially released code for GPR-GNN and BernNet and use the Pytorch
Geometric library implementations [11] for other models (i.e., MLP, GCN, APPNP, ARMA, and
ChebNet). More details of hyper-parameters and baselines’ settings are listed in the Appendix.

Results. We utilize accuracy (the micro-F1 score) with a 95% confidence interval as the evaluation
metric. Table 6 reports the relevant results on 10 random splits. Boldface letters indicate the best
result for the given confidence interval, and underlinings denote the next best result. We first observe
that ChebNet is inferior to GCN even on heterophilic graphs, which concurs with our theoretical
analysis that the illegal coefficients learned by ChebNet lead to over-fitting. ChebNetII, on the other
hand, outperforms other methods on all datasets excluding Pubmed, where it also achieves top-2
classification accuracy. This quality is due to the fact that the learnable parameters γj of ChebNetII
directly correspond to the filter value h(xj) at the Chebyshev node xj , effectively preventing it from
learning an illegal filter.

4.2 Full-supervised node classification

Setting and baselines. For full-supervised node classification, we compare ChebNetII to the
baselines in the prior semi-supervised node classification. We also include GCNII [5], TWIRLS [44],
EGNN [51] and PDE-GCN [9] four competitive baselines for full-supervised node classification. For
all datasets, we randomly split the nodes into 60%, 20%, and 20% for training, validation and testing,
and all methods share the same 10 random splits for a fair comparison, as suggested in [30, 6, 17].

For ChebNetII, we also set the hidden units to be 64 and K = 10 for all datasets, and employ the
same training manner as in the semi-supervised node classification task. For GCNII, TWIRLS,
EGNN and PDE-GCN we use the officially released code. More details of hyper-parameters and
baselines’ settings are listed in the Appendix.

Results. Table 7 reports the mean classification accuracy of each model. We first observe that,
given more training data, ChebNet starts to outperform GCN on both homophilic and heterophilic
datasets, which demonstrates the effectiveness of the Chebyshev approximation. However, we also
observe that ChebNetII achieves new state-of-the-art results on 7 out of 8 datasets and competitive
results on Pubmed. Notably, ChebNetII outperforms GPR-GNN and BernNet by over 10% on the
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Table 8: Experimental results on large heterophilic graphs. OOM denotes "out of memory".
Method Penn94 pokec arXiv-year genius twitch-gamers wiki

MLP 73.61±0.40 62.37±0.02 36.70±0.21 86.68±0.09 60.92±0.07 37.38±0.21
LINK 80.79±0.49 80.54±0.03 53.97±0.18 73.56±0.14 64.85±0.21 57.11±0.26
LINKX 84.71±0.52 82.04±0.07 56.00±1.34 90.77±0.27 66.06±0.19 59.80±0.41
GCN 82.47±0.27 75.45±0.17 46.02±0.26 87.42±0.37 62.18±0.26 OOM
GCNII 82.92±0.59 78.94±0.11 47.21±0.28 90.24±0.09 63.39±0.61 OOM
ChebNet 82.59±0.31 72.71±0.66 46.76±0.24 89.36±0.31 62.31±0.37 OOM
GPR-GNN 83.54±0.32 80.74±0.22 45.97±0.26 90.15±0.30 62.59±0.38 58.73±0.34
BernNet 83.26±0.29 81.67±0.17 46.34±0.32 90.47±0.33 64.27±0.31 59.02±0.29
ChebNetII 84.86±0.33 82.33±0.28 48.53±0.31 90.85±0.32 65.03±0.27 60.95±0.39

Squirrel dataset. We attribute this quality to the fact that Chebyshev interpolation achieves near-
minimax approximation of any function with respect to the uniform norm, giving ChebNetII greater
approximation power than GPR-GNN and BernNet do.

4.3 Scalability of ChebNetII

For ChebNetII, if we calculate and save Tk(L̂)X for k ∈ 0, · · · ,K in the preprocessing, we can
scale it to large graphs. Specifically, we use the below propagation expression.

Y = fθ(Z), Z =
2

K + 1

K∑
k=0

K∑
j=0

γjTk(xj)Tk(L̂)X. (12)

The pre-computed L̂kX allow us to train γj and fθ(·) in a mini-batch manner. This approach also
works for GPR-GNN [6] and BernNet [17], so we report their results in this manner when ChebNetII
does. We evaluate the scalability of ChebNetII on the large heterophilic graphs [25] and the widely
used OGB datasets [18].

Table 9: Mean classification accuracy on large
graphs. OOM denotes "out of memory" and "-"
means failing to finish preprocessing in 24h.

Method ogbn-arxiv ogbn-papers100M

GCN 71.74±0.29 OOM
ChebNet 71.12±0.22 OOM
ARMA 71.47±0.25 OOM
GPR-GNN 71.78±0.18 65.89±0.35
BernNet 71.96±0.27 -
SIGN 71.95±0.12 65.68±0.16
GBP 72.21±0.17 65.23±0.31
NDLS∗ 72.24±0.21 65.61±0.29
ChebNetII 72.32±0.23 67.18±0.32

On the large heterophilic graphs, we compare Cheb-
NetII to eight competitive baselines, including MLP,
LINK [50], LINKX [25], GCN [21], GCNII [5],
ChebNet [8], GPR-GNN [6] and BernNet [17]. For
ChebNetII, we use Equation (12) as the propagation
process on pokec and wiki and Equation (8) on the
four remaining datasets. We establish the experi-
mental setting following [25] and use the published
baselines’ results, excluding GPR-GNN. More de-
tails are listed in the Appendix.Table 8 reports the
mean results of each method over 5 runs. ChebNetII
outperforms all other methods on 4 out of 6 datasets
and the polynomial-based methods on arXiv-year
and twitch-gamers. Notably, LINK and LINKX out-
perform ChebNetII on arXiv-year because they use
a directed graph on this dataset. Using the directed
graphs to the spectral-based GNNs is a future meaningful work because the current spectral graph
theory only applies to undirected graphs. For the largest heterophilic graph wiki, ChebNetII obtains
a new state-of-the-art result. We attribute that ChebNetII can precompute L̂kX without the graph
sampling used in LINK and LINKX and has a strong filter approximation ability.

On ogbn-arxiv and -papers100M, we compare ChebNetII to polynomial-based GNNs and state-of-
the-art scalable GNNs, SIGN [33], GBP [4], and NDLS∗ [47]. We follow the standard splits [18] and
use Equation (12) as the propagation process. More details of settings are listed in Appendix. Table 9
reports the mean accuracy of each model over 10 runs. Note that we do not include the result of
BernNet on ogbn-papers100M as BernNet has a time complexity quadratic to the order K and fails
to finish the preprocessing in 24 hours. We can observe that ChebNetII outperforms both datasets,
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(a) A filter and its approximation results.
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(b) The error of approximation results.

Figure 2: (a) A Runge filter h(λ̂) = 1/(1 + 25λ̂2) and its approximation results by different
polynomial bases. (b) The errors of the different approximation results.

which we attribute to Chebyshev Interpolation’s superior approximation quality. These results also
show that ChebNetII has lesser complexity and greater scalability than BernNet.

4.4 Comparison of Different Polynomial Bases

We perform numerical studies comparing the Chebyshev basis to the Monomial and Bernstein bases to
demonstrate ChebNetII’s approximation power. Considering a Runge filter h(λ̂) = 1/(1+25λ̂2), λ̂ ∈
[−1, 1], Figures 2(a) and 2(b) depict the approximation results and errors for several polynomial bases,
with the polynomial degree K denoted by the numbers in brackets. We find that the Chebyshev basis
has a faster convergence rate than the Bernstein basis and does not exhibit the Runge phenomenon
compared to the Monomial basis. Notably, JacobiConv [40] investigated different polynomial bases
at the same period and discovered that orthogonal polynomial bases could learn graph filters more
effectively. These findings provide empirical motivations for designing GNNs with Chebyshev
interpolation.

5 Conclusion

This paper revisits the problem of approximating spectral graph convolutions with Chebyshev
polynomials. We show that ChebNet’s inferior performance is primarily due to illegal coefficients
learned by approximating analytic filter functions, which leads to over-fitting. Moreover, we propose
ChebNetII, a new GNN model based on Chebyshev interpolation, enhancing the original Chebyshev
polynomial approximation while reducing the Runge phenomenon. Experiments show that ChebNetII
outperforms SOTA methods in terms of effectiveness on real-world both homophilic and heterophilic
datasets. For future work, a promising direction is further to improve the performance of ChebNetII
on large graphs and investigate the scalability of spectral-based GNNs.
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