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Abstract

Sparsely-activated Mixture-of-experts (MoE) models allow the number of param-
eters to greatly increase while keeping the amount of computation for a given
token or a given sample unchanged. However, a poor expert routing strategy can
cause certain experts to be under-trained, leading to an expert being under or
over-specialized. Prior work allocates a fixed number of experts to each token
using a top-k function regardless of the relative importance of different tokens. To
address this, we propose a heterogeneous mixture-of-experts employing an expert
choice method. Instead of letting tokens select the top-k experts, we have experts
selecting the top-k tokens. As a result, each token can be routed to a variable
number of experts and each expert can have a fixed bucket size. We systematically
study pre-training speedups using the same computational resources of the Switch
Transformer top-1 and GShard top-2 gating of prior work and find that our method
improves training convergence time by more than 2×. For the same computational
cost, our method demonstrates higher performance in fine-tuning 11 selected tasks
in the GLUE and SuperGLUE benchmarks. For a smaller activation cost, our
method outperforms the T5 dense model in 7 out of the 11 tasks.

1 Introduction

Scaling up model capacity, dataset size, and training time has demonstrated huge success in enhancing
the performance of computer vision architectures [4, 11, 13, 14] as well as neural language models [2,
20, 26, 27]. The final model quality has been found to have a power-law relationship with the amount
of data, model size, and compute time [16, 20]. However, training efficiency, which is defined as
the total amount of computation used to achieve superior model quality than the state of the art
system [21], should receive greater attention as we increase our efforts towards green AI [29].

Sparsely gated mixture-of-experts [31] (MoE) provides an effective way to scale model capacity
given a fixed computational cost, and has recently played an important role in increasing the training
efficiency of large-scale language models [10, 21]. MoE operate by adopting a number of experts,
each as a sub-network, and by activating only one or a few experts for each input token. A gating
network must be chosen and optimized in order to route each token to the most suited expert(s). For
example, recent work has implemented sparse routing via k-means clustering [12], linear assignment
to maximize token-expert affinities [22], or hashing [8, 28]. Many of the prior work use a routing
strategy concerning the token choice, where each token selects the best one or two experts.

We argue that the independent token choice of prior work often leads to an imbalanced load of experts,
which causes training inefficiency and sub-optimal training of the model. In order to mitigate this
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Figure 1: High-level Comparison Between Conventional MoE and expert choice MoE.

issue, previous sparsely gated networks introduce additional auxiliary losses as regularization to
prevent too many tokens being routed to a single expert, but the effectiveness is still limited. Recent
approaches [8, 22, 28] explore alternative strategies for routing, but they focus on pre-training only
and do not demonstrate performance gain on downstream tasks. Moreover, none of the previous
methods consider allocating a variable number of experts to each token based on importance, which
can be beneficial.

We propose a very simple yet effective routing method we are calling expert choice. Unlike conven-
tional MoE where tokens select one or two top-scoring experts, our method lets each expert pick the
top-k tokens. Our method guarantees perfect load balancing, allows a variable number of experts
for each token, and achieves substantial gains in training efficiency and downstream performance as
demonstrated in our experiments. Our major contributions include:

• We identify common pitfalls in conventional MoE such as load imbalance as described
in Section 3.1. We then propose a heterogeneous, expert choice method to provide a fluid
allocation of model parameters based on a learnt token-to-expert importance. This method
intrinsically guarantees load balance without imposing an auxiliary loss.

• We show our method provides over 2× faster training convergence in a 8B/64E (8 billion
activated parameters, 64 experts) model, compared to the top-1 and top-2 gating counterparts
in Switch Transformer [10] and GShard [21].

• We show our method demonstrates strong scaling when increasing the number of experts
from 16 to 128, evaluated in training perplexity.

• We show our method demonstrates strong performance on downstream tasks selected from
GLUE and SuperGLUE at all the evaluated scales. More specifically, our 8B/64E model
outperforms a T5 11B dense model in 7 out of 11 tasks evaluated.

2 Related Work

Scaling: Various approaches have been proposed to scale up neural network capacity to improve
performance. Recent works have successfully scaled models to billions of parameters via various
forms of model parallelism [2, 21, 26, 27, 33]. Model parallelism [30] splits weights and tensors
across multiple cores while pipeline parallelism [18, 24] splits different layers across devices with
micro-batches pipelined to the different layers. To enable continued scaling of neural networks,
improving model training and serving efficiency has become a critical research area.

Conditional Computation: Computation decisions can be made dynamically based on the input [23,
25]. Conditional computation has been proposed as a way to increase the capacity of a deep
neural network without increasing the amount of computation, by activating certain parameters and
computation on demand, on a per-example or per-token basis [3]. Conditional convolution layers [1]
with task-specific gating has been used to combat catastrophic forgetting when a sequence of learning
problems are optimized. The gating decisions may be binary or sparse and continuous, stochastic or
deterministic.
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Mixture of Experts: Sparsely-gated MoE [31] is the first model to demonstrate massive improve-
ments in model capacity, training time, or model quality with gating. Switch Transformer [10]
simplifies the gating by selecting only the top expert per token using a softmax over the hidden state
and demonstrates better scaling than previous work. All the prior work requires an auxiliary loss to
explicitly encourage balancing. This loss term has to be carefully weighted to not overwhelm the
primary loss. However, auxiliary loss does not guarantee balancing and a hard capacity factor has to
be imposed. As a result, many tokens can still be unprocessed by the MoE layer. Hard MoE [12] with
a single decoding layer can be efficiently trained to good effect on large scale hashtag prediction tasks.
Base Layers [22] formulate a linear assignment that maximizes token-expert affinities while ensuring
each expert receives an equal number of tokens. Hash layers [8, 28] devise hashing techniques on
input tokens. However, the evaluations are limited to pre-training perplexity. THOR [37] randomly
activates experts during training and inference and is trained with a consistency regularization loss.
THOR has demonstrated strong performance on translation tasks. Different from these prior works,
our method is a learnt method that enables heterogeneous MoE and effectively improves downstream
fine-tuning performance.

3 Method

We first identify a few pitfalls in the routing method of conventional mixture-of-experts (MoE) models
and then present our method using expert choice to tackle these problems.

3.1 Pitfalls of Token-Choice Routing

MoE can be computationally advantageous compared to a dense model, a routing strategy must be
used to assign each token to the most-suited experts. Conventional MoE models employ token-choice
routing which independently selects the top-k experts for each token [10, 21, 31]. We argue that this
strategy has a few pitfalls that lead to sub-optimal training.

Load Imbalance: Token-choice routing often lead to poor load balancing across experts. That is,
some experts may be trained with most tokens, leaving the remaining experts under-utilized. Experts
can be under specialized because a lot of model capacity in the under-utilized experts are wasted.
On the other side, some tokens will not be processed, since over-utilized experts can only take a
maximum number of tokens at each step in order to avoid running out of memory. Load imbalance can
also hurt step latency, thus inference time, as the step latency can be determined by the most loaded
expert. Previous methods add an auxiliary loss on load balancing to mitigate the issue. However, this
auxiliary loss does not guarantee a balanced load, especially during the important early stages of
training. Indeed, we empirically observe that the over-capacity ratio can reach 20%–40% for
some experts in token choice routing, indicating that a significant portion of the tokens routed to
these experts will be dropped.

Under Specialization: Each MoE layer uses a gating network to learn token-to-expert affinity.
Ideally, the learnt gating network should produce the affinity such that similar or relevant tokens are
routed to the same expert. A sub-optimal strategy can produce redundant experts and/or experts that
are not sufficiently specialized. Under specialization may result by imposing an large auxiliary loss
which favors more load balanced but less effective routing. Finding the right balance on the auxiliary
loss to promote both load balancing and specialization is challenging for token-choice routing.

Same Compute for Every Token: Finally, in a token-choice strategy each token receives exactly
k experts and therefore occupies the same amount of compute. We hypothesize that this is not
necessary nor desired. Instead, a MoE model should flexibly allocate its compute resource based
on the complexity of the input. Motivated by the aforementioned observations, we next describe a
simple yet effective method which produces load balanced assignments based on expert choice.

3.2 Heterogeneous MoE via Expert Choice

Different from conventional routing, an expert choice method independently selects top-k tokens
for each expert, where k is a fixed expert capacity (i.e. the number of tokens each expert can take).
Despite its simplicity, expert choice achieves perfect load balancing by design. It also enables more
flexible allocation of model compute since tokens can be received by a variable number of experts.
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In our experiments, we set k as

k =
n× c
e

(1)

where n is the total number of tokens in the input batch (such as batch size × sequence length), c is
the capacity factor, and e is the number of experts. The capacity factor c denotes on average how
many experts are utilized by a token. Given input token representations X ∈ Rn×d where d is the
model hidden dimension, our method produces a token-to-expert assignment denoted by three output
matrices I , G and P . The matrix I is an index matrix where I[i, j] specifies j-th selected token of
the i-th expert. The gating matrix G ∈ Re×k denotes the weight of expert for the selected token,
and P ∈ Re×k×n refers to an one-hot version of I that will be used to gather tokens for each expert.
These matrices are computed using a gating function,

S = Softmax(X ·Wg), S ∈ Rn×e

G, I = TopK(S>, k), P = Onehot(I)
(2)

where S denotes the token-to-expert affinity scores, Wg ∈ Rd×e denotes the expert embeddings, and
TopK() selects the k largest entries for each row of S>.

Similar to Switch Transformer [10] and GShard [21], we apply mixture of experts and the gating
function in the dense feed-forward (FFN) layer, as it is the most computationally expensive part in
a Transformer-based network. The input to the gated FFN, denoted by Xin ∈ Re×k×d, is produced
using the permutation matrix P . Here Xin[i] ∈ Rk×d denotes the input of the i-th expert. Similarly,
let W1 and W2 denote the parameters of gated FFN in which W1[i] and W2[i] ∈ Rd×d′

denote the
parameter matrices of the i-th expert. We compute the output of each expert Xe[i] as follows,

Xin = P ·X
∀i : Xe[i] = GeLU(Xin[i] ·W1[i]) ·W2[i]

> (3)

We omit the bias terms here for brevity. The finally output of the gated FFN layer Xout ∈ Rn×d can
be obtained given Xe, the permutation and gating matrices P and G,

Xout[l, d] =
∑
i,j

P [i, j, l] G[i, j] Xe[i, j, d] (4)

Both Xe and Xout can be efficiently computed using Einstein summation (einsum) operations.

3.3 Expert Choice with Additional Constraint

We also consider regularizing our expert choice routing by limiting the maximum number of experts
for each token. We are interested in whether adding this constraint improves pre-training and fine-
tuning results. More importantly, it helps analyzing to what degree using a variable number of experts
per token affects the model performance.

Let A ∈ Re×n be a positive matrix where A[i, j] represents whether the i-th expert selects j-th token.
We solve the following entropy-regularized linear programming problem

max
A

〈
S>, A

〉
+ λH(A)

s.t. ∀i :
∑
j′

A[i, j′] = k; ∀j :
∑
i′

A[i′, j] ≤ b; ∀i, j : 0 ≤ A[i, j] ≤ 1

where < S>, A > denotes the inner product, H(A) is the sum of element-wise entropy1, and b > 0
is an integer that upper bounds the selection for each token. Adding a small entropy term gives a
near-integer solution while enabling a fast iterative solver we can run on TPUs. Specifically, the
solution space is the intersection of three convex sets each satisfying one of the linear constraints.
We use Dykstra’s algorithm [9] that alternatively projects the intermediate solution onto one of the
convex sets.2 After A is computed, the routing indices I is selected using TopK(A, k) instead.

1H(A) =
∑

ij −A[i, j] logA[i, j]
2We use λ = 0.001 and a maximum of 100 iterations.
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Model Type nparams nact-params L M H nheads dhead E

0.1B Dense 130M 130M -
0.1B/16E MoE 548M 145M 16
0.1B/32E MoE 1.0B 145M 12 768 3,072 12 64 32
0.1B/64E MoE 1.9B 145M 64
0.1B/128E MoE 3.7B 145M 128

8B Dense 8.7B 8.7B 32 4,096 16,384 32 128 -
8B/64E MoE 143B 9.8B 64

Table 1: Sizes and architectures of both MoE and dense models that were trained in our experiments.
Models are grouped by the number of activated parameters per token. All trained models share the
same learning hyperparameters described in Section 4.1.

3.4 Model Architecture

At the high level, we adopt the idea of sparsely activated Mixture-of-Experts (MoE) [31]. We use
a Transformer architecture and replace the feed-forward component of every other Transformer
layer with a MoE layer, following recent practice [10, 21]. Interleaving regular Transformer layers
and MoE layers empirically improves model performance and training efficiency, probably because
forcing some shared components in between MoE layers can mitigate the negative effects of skipping
tokens. Several additional modifications adopted in recent work have been applied in our experiments.
For example, we replace the standard positional embedding with per-layer relative positional bias [5].
In the non-MoE feed-forward sub-layers (only every other layers are MoE layers), we replace the
first linear projection and the activation function with the Gated Linear Unit [6], which computes
the component-wise product of two linear transformation of the input, followed by a Gaussian Error
Linear Unit [15] activation function.

As described earlier, each MoE layer consists of a group of independent feed-forward networks as
denoted as “experts”. The gating function in Eq. (2) uses a softmax activation function to model a
probability distribution over these experts. This distribution denotes the preference over experts of
each incoming token, which is computed similarly in a conventional gating network [10, 21, 31].
During training, each MoE layer’s learnable gating network described in Eq. (2) is trained to use
the input to activate the best subset of experts using a top-k function along the token dimension. An
“shuffle” stage and an “unshuffle” stage are inserted to the MoE layer, where the first stage gathers the
tokens to their designated experts while the second stage permutes the tokens back to their original
order in the input batch. This step is formulated in Eq. (3) and Eq. (4).

Similar to conventional MoE method, there are more parameters in the MoE layer. However, the
activated model size per token can be comparable to a dense layer because during training or inference,
only a limited subset of experts is activated for any given token. For instance, Switch Transformer [10]
has only one activated expert while GShard [21] uses two experts per token. In our method, the
number of activated experts can vary for each token but the overall computation is kept the same as
the baseline architectures by fixing the capacity factor c in Eq. (1). Unless otherwise specified, we set
c = 2 such that our method can be directly compared to the top-2 token-choice gating in GShard.

We train several variants of our architecture at the 100M scale (i.e. 100M expert size) by increasing
the number of experts to understand the scaling effects of our method. We also train a 8B scale
MoE model. The large MoE model is partitioned with a 2D sharding algorithm as presented in
GSPMD [36], which fully exploits the 2D topology of the TPU cluster [19]. Across different
scales and setups, our method outperforms related work and demonstrates strong downstream task
performance on selected tasks in GLUE and SuperGLUE.

4 Experiments

4.1 Setup

Table 1 summarizes the hyperparameter settings of different MoE models. As a reference point,
we also include the respective dense model configurations with comparable numbers of activated
parameters per-token during inference. To study of the effect of scaling the number of experts, we
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Figure 2: (a) Training convergence is more than 2x faster using our method compared to GShard
top-2 gating. (b) Training perplexity scales strongly with the number of experts while keeping the
expert size fixed. EC consistently outperforms GShard top-2 gating.

studied varying the number of experts but fixing the per expert size to 100M parameters. For example,
0.1B/64E represents the architecture of an approximately 100M parameter dense model with every
other layer replaced by a 64-expert MoE layer. The MoE model degenerates into a dense transformer
architecture when each MoE layer only has one expert. While nparams is the total number of trainable
parameters, nact−params represents the number of activated parameters per token. L is the total
number of Transformer layers, M is the model dimension, H is the hidden dimension after the
projection in each transformer layer, nheads is the number of attention heads, and dhead is the hidden
dimension of each attention head.

Dataset: We use the high-quality dataset from GLaM [7] of 1.6 trillion tokens that are representative
of a wide range of natural language use cases. An in-house classifier is trained to classify between
a collection of curated text and other webpages and estimate the content quality of a webpage. A
high-quality filtered subset of webpages are combined with books, Wikipedia pages, conversations,
forums, and news to create the final dataset. The data and mixture weights can be found in Table 3 in
the GLaM paper.

Model Training: Our model training follows the setups of GLaM [7] where a maximum sequence
length of 1024 tokens is adopted. We use an Adafactor optimizer [32] with first-moment decay
β1 = 0 and second-moment decay β2 = 0.99. We keep the learning rate constant for the first 10K
training steps, and then decay it with an inverse square root schedule. Unlike most related works, we
do not impose any auxiliary loss for load balance, such as described in Switch Transformer [10] and
GShard [21]. We use the SentencePiece subword tokenizer with a vocabulary of size of 256K. The
largest model (8B/64E) is trained on 512 TPU V4 chips. We use a dropout rate of 0 during training
as the number of tokens in the training data corpus is much greater than the total number of tokens
during training.

Model Evaluation: We mainly focus on evaluating the finetuning performance on the 11 selected
tasks from GLUE and SuperGLUE benchmarks [34, 35].

4.2 Training Efficiency

We first study training efficiency and convergence. We use expert choice with a capacity factor of 2
(EC-CF2) to match the activated model size and computational cost on a per token basis in GShard
top-2 gating and run both for a fixed number of steps. The results are shown in Fig. 2 (a). Comparing
to GShard top-2 gating, which showed stronger performance in both perplexity in the evaluation
dataset and fine-tuning on downstream tasks compared to Switch Transformer top-1 gating, EC-CF2
converges more than 2x faster during training. More specifically, EC-CF2 reaches the same perplexity
as GShard top-2 in less than half the steps, and with each GShard top-2 step being 20% slower than
our method. As explained in Section 3.1, the slower step time in top-2 gating is due to load imbalance

6



100M/128E 100M/64E

Name Metric Split ST Top-1 GS Top-2 EC-CF2 ST Top-1 GS Top-2 EC-CF2

BoolQ acc dev 77.4 76.5 76.9 73.2 77.5 79.7
CB acc dev 87.5 80.9 89.1 85.9 84.4 89.1
CoLA acc dev 78.9 84.0 86.7 64.1 85.2 88.3
MNLI acc dev 82.3 83.6 84.9 80.8 85.2 86.7
MRPC acc dev 82.6 81.0 83.1 81.3 81.3 84.4
QNLI acc dev 89.5 88.6 89.0 89.4 89.7 91.3
QQP acc dev 90.6 90.3 90.4 88.9 90.5 91.0
RTE acc dev 77.0 78.9 78.5 74.1 79.3 81.6
SST2 acc dev 92.0 94.5 94.6 91.8 95.1 95.1
WiC acc dev 67.8 65.5 68.1 64.4 67.8 65.6
WNLI acc dev 65.6 70.3 67.2 68.8 68.8 71.7

Avg - - 81.0 81.3 82.6 78.4 82.2 84.0

100M/32E 8B/64E

Name Metric Split ST Top-1 GS Top-2 EC-CF2 ST Top-1 GS Top-2 EC-CF2

BoolQ acc dev 74.5 79.0 79.3 89.1 89.5 89.2
CB acc dev 80.6 81.3 92.2 93.8 96.7 100
CoLA acc dev 87.5 92.2 93.8 88.3 87.5 89.1
MNLI acc dev 83.1 87.8 88.0 90.7 91.4 91.1
MRPC acc dev 82.3 85.2 84.4 89.3 91.7 90.6
QNLI acc dev 91.6 91.9 92.5 94.5 94.9 95.0
QQP acc dev 90.1 91.5 92.0 92.1 92.5 93.8
RTE acc dev 75.0 79.1 78.1 91.0 92.2 95.2
SST2 acc dev 93.3 94.4 95.4 97.1 98.0 97.7
WiC acc dev 62.5 65.9 69.8 74.5 76.4 83.8
WNLI acc dev 65.6 64.1 68.8 78.1 82.8 92.8

Avg - - 80.6 83.5 85.0 88.9 90.3 92.6

Table 2: Expert choice with capacity factor of 2 (EC-CF2) outperforms Top-1 gating in Switch
Transformer (ST) and top-2 gating in GShard (GS) on GLUE and SuperGLUE tasks. Note that with
an expert size of 100M parameters, 100M/32E works best for our method and Ghard Top-2 while
100M/128E works better for Switch Transformer Top-1. Our method consistently outperforms the
others across all the scales.
where some experts can receive a lot more tokens than the desired capacity. As a result, the step
latency will be bottlenecked by the most loaded expert.

4.3 Scaling the Number of Experts

As presented in Table 1, increasing the number of experts effectively increases model capacity without
increasing activated model size. We scale the number of experts while fixing the expert size to 100M
parameters for both expert choice (EC) and GShard (Top-2) methods and find both methods work
well in terms of perplexity on the evaluation dataset during pre-training. As demonstrated in Fig. 2
(b), having more experts consistently improves training perplexity.

4.4 Fine-tuning on GLUE and SuperGLUE

To validate whether improved perplexity directly translates to better performance in downstream tasks,
we perform fine-tuning on 11 selected tasks from GLUE and SuperGLUE. We compare three MoE
methods including Switch Transformer top-1 gating (ST Top-1), GShard top-2 gating (GS Top-2)
and our method (EC-CF2) that matches the activation memory size and computational cost of GS
Top-2. Indicated by the results in Table 2, our EC-CF2 method consistently outperforms the related
methods and yields more than 2% average accuracy increase in a large 8B/64E setting. Table 3 further
compares our 8B/64E model against its dense counterpart. Again, our method achieves stronger
fine-tuning results, increasing the average score by 3.4 point.

Interestingly, we observe the 100M/32E model setting works the best for both GS Top-2 and EC-CF2,
even though the effective model capacity is smaller than that of 100M/64E and 100M/128E. This
result indicates that a good training perplexity does not always translate to better performance of
downstream tasks.
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Model BoolQ CB CoLA MNLI MRPC QNLI QQP RTE SST2 WiC WNLI Avg

Dense 8B 88.2 100 86.4 91.3 86.7 94.7 91.2 92.2 97.2 75.6 78.1 89.2
EC-CF2 8B/64E 89.2 100 89.1 91.1 90.6 95.0 93.8 95.2 97.7 83.8 92.8 92.6

Table 3: Comparison between Dense 8B and Expert Choice (EC-CF2) 8B/64E models: Our method
significantly outperforms the dense model in downstream tasks.

Table 4: (a) Limiting the number of experts
per token in expert choice method affects
downstream accuracy. (b) Comparing to Hash
Layer.

Method Max # of Experts Avg acc.

EC-CAP2 2 83.2 ± 0.4
EC-CAP3 3 84.0 ± 0.4
EC-CF2 - 84.0 ± 0.2
Hash Layer - 81.3 ± 0.1

Figure 3: Distribution of the number of experts
routed to per token in a 100M/64E model.
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4.5 Heterogeneity Matters

Capped Expert Choice: We regularized expert choice by limiting the maximum number of experts
for each token, using the method described in Section 3.3. Table 4 reports the average accuracy on
the 11 selected datasets. EC-CAP2 is the variant of our expert choice method by limiting the number
of experts of each token to 2. This decreases the fine-tuning accuracy by 0.8 points on average. In
addition, EC-CAP3 allows a maximum of 3 experts per token and achieves on par results compared
to the vanilla expert choice method. This ablation study confirms that allowing variable number of
experts per token is indeed helpful.

Variable Experts per Token: We compute statistics on token-to-expert routing, particularly on the
ratio of tokens that have been routed to a certain number of experts. According to Fig. 3, a majority
of tokens have been routed to one or two experts while 23% have been routed to three or four experts
and only about 3% tokens have been routed to more than 4 experts. This plot verifies our hypothesis
that our method learns to allocate a variable number experts to tokens, which can be beneficial for
important tokens.

4.6 Comparison with Hash Layer

In this section, we compare our method with Hash Layers [28]. We use mod x to map a token ID
to an expert ID. This ensures load balance and generates specialized experts. The fine-tuning results
are presented in the last row in Table 4. Hashing based routing performs worse than expert choice in
terms of average scores and variance. This indicates that load balancing alone does not generate
all the benefits.

4.7 Ablation

Capacity Factor: We study the capacity factor in our expert choice method and compare the training
perplexity with the baseline top-1 gating method used in Switch Transformer. As described in Eq. (1),
the capacity factor determines how many experts on average each token can be routed to, thus the
bucket size k of each expert. In all our previous experiments, we use a capacity factor of 2, which
matches the computational footprint of the top-2 gating used in GShard method. To match the
computation cost on a per-token basis fairly with top-1 gating used in Switch Transformer, we reduce
the capacity factor to 1 and plot the training perplexity in Fig. 4 (a). Not surprisingly, using a smaller
capacity factor yields higher perplexity, but our method still significantly outperforms top-1 gating.
We further push the capacity factor down to 0.5, and observe that it still outperforms the top-1 gating.

Comparison with Dense Models on Pre-training: We compare our method with dense models
on pre-training. As shown in Fig. 4 (b), our method consistently outperforms the dense method in

8



0 100 200 300 400 500 600 700
10K Steps

2.6

2.8

3.0

3.2

3.4

3.6

Ev
al

 P
er

pl
ex

ity

EC_CF2
EC_CF1
EC_CF0.5
TOP1

0 100 200 300 400 500 600 700
10K Steps

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

Ev
al

 P
er

pl
ex

ity

EC_10064E
DENSE_100M
EC_8B64E
DENSE_8B

(a) (b)

Figure 4: (a) Varying the capacity factor in our expert choice method: Decreasing the capacity factor
from two to one degrades the perplexity but still outperforms the top-1 gating. (b) Training perplexity
comparison with dense models.

perplexity and convergence time. For a small expert size of 100M parameters, the benefit of sparse
gating is even more significant. Orthogonal to results presented in Fig. 2 (b), where scaling the
number of experts improves model performance, Fig. 4 (b) shows that increasing expert capacity
also significantly increases model performance.

5 Conclusion

We propose a new routing method for sparsely activated mixture-of-experts (MoE) models. This
method addresses load imbalance and under-utilization of experts in conventional MoE methods,
and enables selecting different numbers of experts for each token. Our model demonstrates more
than 2x training efficiency improvements when compared to the state-of-the-art GShard and Switch
Transformer models, and also achieves strong gains when finetuning on 11 datasets in the GLUE and
SuperGLUE benchmark.

6 Limitations

The expert choice method might not immediately apply to auto-regressive text generation as our
current implementation takes in the past and future tokens to perform the top-k selection. One
possible solution is to collect a large batch of input sequences, dispatch tokens of the same sequence
into separate groups, and perform expert choice routing for each group. Another scenario where the
expert choice method does not immediately apply is when the batch size becomes very small during
serving or inference. A global top-k can be selected instead and we can cap the number of times each
expert or token gets selected. We leave these possible improvements for future work.

Another long-standing issue with MoE has been the large memory footprint. Even though computa-
tional cost can be reduced using sparsely gated networks, the total number of parameters increases
linearly or sub-linearly with the number of experts. Increasing the number of experts requires reser-
vation of a large number of hardware devices. Therefore, dynamic (used) power is saved while static
(reserved) power is not. Power saving techniques such as the ability to put hardware devices into low
power states while not in use [17] can help with reducing the reserved power requirements.
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