
Appendix: Feature Learning in L2-regularized DNNs

The appendix is structured as follows:

1. In Section A, we describe the Experimental setup.

2. In Section B, we prove Proposition 1 of the main underlying the first reformulation.

3. In Section C, we prove Proposition 3 for the second reformulation. We also give an
example of a local minimum of the original loss which is not a local minimum in the second
reformulation.

4. In Section D, we prove Proposition 8, 13, 14 and 15 of the main.

A Experimental Setup

The experiments were done on fully-connected DNNs of depth L = 3 with varying widths.

We used the MNIST dataset [2] under the ’Creative Commons Attribution-Share Alike 3.0’ license.
For the MNIST examples we trained the networks on the multiclass cross-entropy loss with L2-
regularization.

We also used synthetic data sampled from a teacher network. The network has depth L = 3, widths
n = (50, 10, 10, 10) with random Gaussian weights. The cost used was the Mean Squared Error
(MSE).

For the experiments of Figure 1 of the main, the DNN was trained with full batch GD. For the
experiments of Figure 2 we first trained with Adam [1] and finished with full batch GD (GD seems
to be better suited to consistently reach the bottom of the local minima, though Adam trains faster
overall). For the right plot of Figure 2, three independent networks were trained for every width and
the one with the smallest loss at the end of training was chosen (the plotted test error is that of the
chosen network).

The goal of Figure 2 is to identify the start of the plateau, note however that we cannot guarantee
that our training procedures actually approaches a global minimum. Interestingly it was easier to
observe a plateau on MNIST rather than on the teacher network data, which is why we had to take
the minimum over 3 trials in the teacher setting. This could be due to the change of loss (from cross
entropy to the MSE) or due to the change of the data. Note that in Figure 2 (right), it is unclear
whether the ’failed’ trials , i.e. the small blue dots with a loss above the plateau even for large widths,
are stuck at local minima of the loss or if they could have reached the plateau if we had trained them
longer.

The experiments each took between 1 and 4 hour on a single NVIDIA GeForce GTX 1080.

B Equivalence for the first reformulation

Proposition 1 (Proposition 1 of the main). The infimum of Lλ(W) = C(ZL(X;W)) + λ ∥W∥2 ,
over the parameters W ∈ RP is equal to the infimum of

Lr
λ(Z1, . . . , ZL) = C(ZL) + λ

L∑
ℓ=1

∥∥∥Zℓ

(
Zσ
ℓ−1

)+∥∥∥2
F
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over the set Z of hidden representations Z = (Zℓ)ℓ=1,...,L such that Zℓ ∈ Rnℓ×N , ImZT
ℓ+1 ⊂

Im (Zσ
ℓ )

T , with the notations Zσ
0 =

(
X

β1T
N

)
and Zσ

ℓ =

(
σ (Zℓ)
β1T

N

)
.

Furthermore, if W is a local minimizer of Lλ then (Z1(X;W), . . . , ZL(X;W)) is a local minimizer
of Lr

λ. Conversely, keeping the same notations, if (Zℓ)ℓ=1,...,L is a local minimizer of Lr
λ, then

W = (Zℓ(Z
σ
ℓ−1)

+)ℓ=1,...,L is a local minimizer of Lλ.

Proof. We write Φ for the map which sends some weights W to the hidden representations
(Z1(X;W), . . . , ZL(X;W)) and Ψ for the map which sends some hidden representations Z ∈ Z
to W with weight matrices Wℓ = Zℓ

(
Zσ
ℓ−1

)+
.

We clearly have Φ(Ψ(Z)) = Z for any Z ∈ Z , however it is not true in general that Ψ(Φ(W)) for
all W (actually this is true iff W lies in the image of Ψ).

Let Lλ(W) = C(YW) + λ ∥W∥2 and Lr
λ(Z) = C(ZL) + λ

∑L
ℓ=1

∥∥∥Zℓ

(
Zσ
ℓ−1

)+∥∥∥2
F

. One can

show that Lλ(Ψ(Z)) = Lr
λ(Z) for all Z ∈ Z and Lr

λ(Φ(W)) ≤ Lλ(W) for all W (actually
Lr
λ(Φ(W)) = Lλ(W) if W ∈ ImΨ and Lr

λ(Φ(W)) < Lλ(W) otherwise). The first fact implies
that infW Lλ(W) ≤ infZ∈Z Lr

λ(Z) while the second implies infW Lλ(W) ≥ infZ∈Z Lr
λ(Z),

furthermore the maps Φ and Ψ must map global minimizers to global minimizers.

Local Minima: We now extend the correspondence to local minima and saddles:

We prove that if Z is a local minimum of Z 7→ Lr
λ(Z) then W = Ψ(Z) is a local minimum

of W 7→ Lλ(W) through the contrapositive: if W = Ψ(Z) is not a local minimum of the loss
W 7→ Lλ(W) (i.e. there is a sequence of weights W1,W2, . . . which converges to W with
Lλ(Wi) < Lλ(W) for all i) then Z is not a local minimum. We simply consider the sequence
Zi = Φ(Wi) which converges to Z = Φ(Ψ(Z)) by the continuity of Φ. This sequence satisfies
Lr
λ(Zi) ≤ Lλ(Wi) < Lλ(W) = Lr

λ(Z), proving that Z is not a local minimum.

Let us now prove if W is a local minimum of W 7→ Lλ(W) then Z = Φ(W) is a local minimum
of Z 7→ Lr

λ(Z), again using the contrapositive. Assume that there is a sequence Z1,Z2, . . . which
converges to Z = Φ(W) with Lr

λ(Zi) < Lr
λ(Z) for all i. We consider the sequence Wi = Ψ(Zi),

however this sequence might not be convergent since Ψ is not continuous, however we know the

sequence is bounded, since ∥Wi∥2 =
∑L

ℓ=1

∥∥∥∥Zi,ℓ

(
Zσ
i,ℓ−1

)+
∥∥∥∥2
F

≤ 1
λL

r
λ(Zi) < 1

λL
r
λ(Z), this

implies that there exists a subsequence Zki
such that Wki

= Ψ(Zki
) converges to some weights

W′. Note that since Φ(W) = Φ(W′) the weight matrices must agree up to ’useless weights’, i.e.
for all ℓ

Wℓ = Zℓ

(
Zσ
ℓ−1

)+
+ W̃ℓ

W ′
ℓ = Zℓ

(
Zσ
ℓ−1

)+
+ W̃ ′

ℓ .

If W̃ℓ ̸= 0 then W is not a local minimum (since we could choose the weights W ϵ
ℓ = Zℓ

(
Zσ
ℓ−1

)+
+

(1 − ϵ)W̃ℓ for any 0 < ϵ < 1 to get a lower loss). We may therefore assume W̃ℓ = 0, but this
implies that W̃ ′

ℓ = 0 too since ∥W∥ = ∥W′∥ and therefore W′ = W and therefore W is not a local
minimum since the sequence Wki

approaches W with a strictly lower loss.

B.1 Optimization

It is possible to optimize the first reformulation directly, using projected gradient descent to guarantee
that the constraints ImZT

ℓ+1 ⊆ Im (Zσ
ℓ )

T remain satisfied. As we show now, this projection is
unnecessary in the continuous case, which suggests that it might also be unnecessary in gradient
descent with a small enough learning rate.

Assume there is a ℓ s.t. ImZT
ℓ+1 ⊈ Im (Zσ

ℓ )
T , i.e. there is a vector v ∈ RN (with ∥v∥ = 1) such that

v ∈ kerZσ
ℓ but ∥Zℓ+1v∥ > 0. Consider any Z̃ such that

∥∥∥Z̃ − Z
∥∥∥ ≤ ϵ, then∥∥∥∥Z̃ℓ+1

(
Z̃σ
ℓ

)+
∥∥∥∥2
F

≥
∥∥∥∥Z̃ℓ+1vv

T
(
Z̃σ
ℓ

)+
∥∥∥∥2
F

=
∥∥∥Z̃ℓ+1v

∥∥∥2 ∥∥∥∥vT (
Z̃σ
ℓ

)+
∥∥∥∥2 ≥ ∥Zℓ+1v∥2 − ϵ

ϵ
.
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This implies that the loss explodes in the vicinity of any point where the constraints are not satisfied.
As a result, gradient flow on the cost Lr

λ starting from a value with a non-zero loss will never approach
a non-acceptable point (where ImZT

ℓ+1 ⊈ Im (Zσ
ℓ )

T ) since the loss is decreasing during gradient
flow.

C Equivalence for the second reformulation

Proposition 2 (Proposition 3 of the main). For positively homogeneous non-linearities σ, the infimum
of Lλ(W) = C(ZL(X;W))+λ ∥W∥2 , over the parameters W ∈ RP is equal to the infimum over
Kn(X) of

Lk
λ(K, ZL) = C(ZL) + λ

L∑
ℓ=1

Tr
[
Kℓ

(
Kσ

ℓ−1

)+]
.

The set Kn(X) is the set of covariances K = ((K1,K
σ
1 ), . . . , (KL−1,K

σ
L−1)) and outputs ZL such

that for all hidden layer ℓ = 1, . . . , L− 1:

• the pair (Kℓ,K
σ
ℓ ) belongs to the (translated) nℓ-conical hull

Snℓ,β = conenℓ

({(
xxT , σ(x)σ(x)T

)
: x ∈ RN

})
+ (0, β21N×N ),

• ImKℓ ⊂ ImKσ
ℓ−1, with the notation Kσ

0 = XTX+β21N×N and for the outputs, ImZL ⊂
ImKσ

L−1.

Proof. Consider the map Ψ that maps parameters W to the the tuple (K, ZL). We simply need to
show that the image of Ψ is the set Kn(X). The fact that ImΨ ⊂ Kn(X) can easily be checked.

To prove ImΨ ⊃ Kn(X) we need to construct a pre-image W ∈ Ψ−1(K, ZL) from any tuple
(K, ZL) in Kn(X). For every hidden layer ℓ, we have (Kℓ,K

σ
ℓ ) ∈ Snℓ,β . There are hence

representations Zℓ ∈ Rnℓ×N such that Kℓ = ZT
ℓ Zℓ and Kσ

ℓ = σ (Zℓ)
T
σ (Zℓ) + β21N×N ,

furthermore for all ℓ, we have ImZT
ℓ = ImKℓ and Im

(
σ (Zℓ)
β1T

N

)
= ImKσ

ℓ , which implies

that ImZT
ℓ ⊂ Im

(
Zσ
ℓ−1

)T
and therefore that the tuple (Z1, . . . ZL) is in the set Zn and we can

choose the weight matrices Wℓ = Zℓ

(
Zσ
ℓ−1

)+
to obtain a preimage W ∈ Ψ−1 (K, ZL).

C.1 Non-correspondence of the local minima

Let us consider the map Γ : Z 7→ (K, ZL) which maps each hidden representation Zℓ to the kernel
pair (ZT

ℓ Zℓ, (Z
σ
ℓ )

T
Zσ
ℓ ). The continuity of Γ implies that if Γ(Z) is a local minimum then so is Z.

The converse is not true, instead we have:
Proposition 3. A kernel and outputs pair (K, ZL) is a local minimum if all Z ∈ Γ−1(K) are local
minima.

Proof. We will prove the contrapositive of this statement: if (K, ZL) is a saddle (i.e. there is
a sequence (K1, ZL,1), (K2, ZL,2), . . . which converges to (K, ZL) such that Lλ(Ki, ZL,i) <
Lλ(K, ZL)), then there is a Z ∈ Γ−1(K, ZL) which is a saddle.

First note that for any i, Γ−1(Ki, ZL,i) is compact (it is closed and bounded since ∥Zℓ∥2F =
Tr [Kℓ] < ∞). There is hence a sequence Z1,Z2. . . . with Zi ∈ Γ−1 (Ki, ZL,i) which converges to
some Z. By the continuity of Γ, we have Γ(Z) = (K, ZL) and we have Lλ (Zi) = Lλ (Ki, ZL,i) <
Lλ (K, ZL) = Lλ (Z), hence proving that Z is a saddle as needed.

Let us now give an example of a set of weights W of a depth L = 2 network which is a local
minimum of Lλ but such that the corresponding covariances (K, ZL) are not a local minimum of Lk

λ:
Proposition 4. Consider a shallow ReLU network (L = 2) of widths n0 = 1, n1 = 2, n2 = 1 with
no bias β = 0. Consider the MSE error Lλ(W) = 1

N ∥Y (X;W)− Y ∥2F for the size N = 2 dataset
with inputs X = ( 1 −1 ) and outputs Y = ( 1 1 ).
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For any λ < 1 and any choices of a1, a2 > 0 s.t. a21 + a22 = 1− λ the parameters

W1 =

(
a1
a2

)
,W2 = ( a1 a2 )

are a local minimum of the loss Lλ(W) however, the corresponding covariances and outputs
(K1,K

σ
1 ), Z2 are not a local minimum of the second reformulation Lc

λ((K1,K
σ
1 ), Z2).

Proof. Consider a depth L = 2 network with no bias (β = 0) and widths n = (1, 2, 1) with a training
set of size N = 2, with inputs X = (1,−1) and outputs Y = (1, 1). Let us consider this loss in the
region where all four weights are positive:

W1 =

(
a1
a2

)
,W2 = ( b1 b2 )

with a1, a2, b1, b2 ≥ 0. We then have the following activations

Z1 =

(
a1 −a1
a2 −a2

)
σ (Z1) =

(
a1 0
a2 0

)
Z2 = ( a1b1 + a2b2 0 ) .

The cost therefore takes the form

Lλ(W) = (1− a1b1 − a2b2)
2 + 1 + λ

(
a21 + a22 + b21 + b22

)
.

Let us now reformulate the loss in terms of the two positive values

c =

(
a1 + b1

2

)2

+

(
a2 + b2

2

)2

d =

(
a1 − b1

2

)2

+

(
a2 − b2

2

)2

.

Since 2(c+ d) = a21 + a22 + b21 + b22 and c− d = a1b1 + a2b2, we can rewrite

Lλ(W) = (1− c+ d)2 + 1 + 2λ(c+ d).

The above is minimized (over the set of positive c, d) at c = 1− λ and d = 0, since it is the unique

point of the quarterplane
{(

c
d

)
: c, d ≥ 0

}
where the gradient

∇Lλ(W) =

(
∂cLλ(W)
∂dLλ(W)

)
=

(
0
4λ

)
points toward the inside of the quarterplane.

The set weights which optimal amongst the set of positive weights equals the set of positive weights
such that c = 1− λ and d = 0. Such weights a1, a2, b1, b2 must satisfy a1 = b1 and a2 = b2 (since
d = 0) and a21 + a22 = 1− λ (since c = 1− λ). In other terms, the weights of the form

W1 =

(
a1
a2

)
,W2 = ( a1 a2 )

for any choice of positive a1, a2 s.t. a21 + a22 = 1 − λ (we have assumed that λ < 1). For any
choice of a1, a2 that are both strictly positive, the above weights lie in the inside of the set of positive
weights, which implies that these weights form a local minimum.

To prove that the corresponding covariances (K1,K
σ
1 ) are not a local minimum of the reformulation,

it is sufficient to find a pre-image of these covariances which is not a local minimum. We will show
that the extrema of the segment of local minima that we identified are not local minima. Since all
weights on the segment have the same covariances, it follows from Proposition 2 that if one of those
points is not a local minimum, the covariances cannot be a local minimum of the reformulation.

4



Let us consider one of the extrema:

W1 =

( √
1− λ
0

)
,W2 =

( √
1− λ 0

)
.

This extremum can be approached by the following weights as ϵ ↘ 0

W ϵ
1 =

( √
1− λ
−ϵ

)
,W ϵ

2 =
( √

1− λ −ϵ
)
.

We simply need to show that for small enough ϵ, we have Lλ(W
ϵ) < Lλ(W). Let us first compute

the activations

Z1 =

( √
1− λ −

√
1− λ

−ϵ ϵ

)
σ (Z1) =

( √
1− λ 0
0 ϵ

)
Z2 =

(
1− λ ϵ2

)
.

Therefore the cost Lλ(W
ϵ) takes the form

Lλ(W
ϵ) = (1− λ− 1)2 + (ϵ2 − 1)2 + 2λ

(
(1− λ) + ϵ2

)
.

Clearly for small enough ϵ > 0, we have Lλ(W
ϵ) < Lλ(W) = Lλ(W

ϵ=0).

D Description of the Plateau

Proposition 5 (Proposition 8 of the main). Let (K, ZL) ∈ K(X), then there are parameters W
of a width n network with covariances and outputs K if and only if nℓ ≥ Rankσ (Kℓ,K

σ
ℓ ) for all

ℓ = 1, . . . , L− 1.

Proof. To prove that the constraints nℓ ≥ Rankσ (Kℓ,K
σ
ℓ ) are sufficient, we construct the parameters

W recursively from the first layer to the last. Since n1 ≥ Rankσ(K1,K
σ
1 ), there is a hidden

representation Z1 ∈ Rnℓ×N such that Kℓ = ZT
ℓ Zℓ and Kσ

ℓ = (Zσ
ℓ )

T
Zσ
ℓ (there is a representation of

dimension Rankσ(K1,K
σ
1 )×N , but one can add some zero lines to it to obtain Z1 without changing

the resulting Kℓ and Kσ
ℓ ). Since ImZ1 = ImK1 ⊂ ImKσ

0 = ImZσ
0 , we can choose the parameters

of the first layer as W1 = Z1 (Z
σ
0 )

+. All other weight matrices Wℓ are then constructed in the same
manner.

The fact that the constraints nℓ ≥ Rankσ (Kℓ,K
σ
ℓ ) are necessary follows from the fact that for

any network of width n with parameters W we have that Rankσ (Kℓ(W),Kσ
ℓ (W)) ≤ nℓ since

Kℓ(W) = (Zℓ(W))
T
Zℓ(W) and Kσ

ℓ (W) = (Zσ
ℓ (W))

T
Zσ
ℓ (W).

D.1 Tightness of the upper bound

Let us first prove the Proposition on the CP-rank of matrices resulting from graphs without cliques:

Proposition 6 (Proposition 13 of the main). Given a graph G with N vertices and k edges, consider
the k ×N matrix E with entries Eev = 1 if the vertex v is an endpoint of the edge e and Eev = 0
otherwise. The matrix A = ETE is completely positive and if the graph G contains no cliques of 3
or more vertices then Rankcp (A) = k.

Proof. The fact that A = ETE implies Rankcp (A) ≤ k, we only need to show Rankcp (A) ≥ k.
Let assume that there is another decomposition ETE = BTB for some m′ × N matrix B with
positive entries, we will now show that k′ ≥ k.

First, we show that the absence of cliques of 3 or more vertices implies that each line Be has at most
2 non-zero entries. The absence of cliques implies that for all sets Ω = {v1, . . . , vr} of 3 or more
vertices, there must be a pair of vertices v, w ∈ Ω which are not connected, i.e. (ETE)vw = 0. If
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one line Be contains more than two non-zero entries, corresponding to the vertices Ω = {v1, . . . , vr}
then for all v ̸= w ∈ Ω, we have (

BTB
)
vw

≥
(
BeB

T
e

)
vw

= 1.

Now if all lines Be have at most two non-zero entries it implies that BeB
T
e has at most two non-zero

off-diagonal entries. We know that ETE has 2k non-zero off-diagonal entries. Since

ETE =

m′∑
e=1

BeB
T
e

it follows that k′ ≥ k, otherwise we could not recover all the off-diagonal entries.

We may now prove the tightness of the upper bound on the σ-rank of the hidden representation in
shallow ReLU networks without bias:
Proposition 7 (Proposition 14 of the main). Consider a width-n shallow network (L = 2) with ReLU
activation, no bias β = 0, n0 = N , n1 ≥ N(N + 1), input dataset XN = IN , and any output

dataset YN such that
(
Y T
N YN

) 1
2 is a completely positive matrix with CP-rank k.

At any global minimum of Rn(XN , YN ), we have Rankσ (K1,K
σ
1 ) = k. Furthermore for λ small

enough, at any global minimum of LMSE
λ,n (W) = 1

N ∥Y (XN ;W)− YN∥2F + λ ∥W∥2 , we have
Rankσ (K1,K

σ
1 ) ≥ k.

Proof. The proof is in two steps, we first show that the minimizer K of the representation cost has
rank k, and then use this to show that for small enough λs the rank must be at least k.

Representation Cost: We first show that at a minimizer (K1,K
σ
1 ) of the cost Tr [K1] +

Tr
[
Y Y T (Kσ

1 )
+
]
, we have K1 = Kσ

1 . This follows from the fact that if K1 ̸= Kσ
1 , then the pair

(Kσ
1 ,K

σ
1 ) has a strictly lower cost than the pair (K1,K

σ
1 ): for any Z1 such that K1 = ZT

1 Z1 and
Kσ

1 = σ(Z1)
Tσ(Z1), we have that Tr [Kℓ] = ∥Z1∥2F ≥ ∥σ (Z1)∥2F = Tr [Kσ

ℓ ] and the inequality is
strict if Z1 ̸= σ(Z1) (which happens iff K1 ̸= Kσ

1 ).

The optimization of the previous cost over pairs (K1,K
σ
1 ) in S is therefore equivalent to the

optimization of the cost K 7→ Tr [K]+Tr
[
Y TY K+

]
over completely positive matrices K such that

ImY ⊂ ImK. If we remove the complete positiveness constraint on K, then the unique minimizer

of the above is K =
(
Y TY

) 1
2 . Now since

(
Y TY

) 1
2 is completely positive, it is also the unique

minimizer over complete positive matrices.

We therefore have Rankσ (K1,K
σ
1 ) = Rankcp

((
Y TY

) 1
2

)
= k.

Regularized Loss: Let us consider the regularized loss

1

N
∥Z2 − Y ∥2F + λTr [K1] + λTr

[
ZT
2 Z2 (K

σ
1 )

+
]
.

The minimizer K(λ) = (K1(λ),K
σ
1 (λ), Z2(λ)) converges as λ ↘ 0 to the pair (K1,K

σ
1 , Y ) where

K1 = Kσ
1 is the minimizer of the representation cost.

Let us now assume that there is no λ0 such that for all λ < λ0, any minimizer K of the loss Lλ

satisfies Rankσ (K1,K
σ
1 ) ≥ k. This would imply that there is a sequence λ1, λ2, . . . of ridges

with limn→∞ λn = 0 and corresponding minimizers K1,K2, . . . (where Kn is a minimizer of the
loss Lλn) such that Rankσ

(
Kn,1,K

σ
n,1

)
< k. Now by Proposition 5 for all n there are parameters

Wn of shallow ReLU network with n1 = k − 1 neurons in the hidden layer with covariances
equal Kn. The sequence W1,W2, . . . is uniformly bounded in norm by the representation cost
R(XN , YN ), there is therefore a converging subsequence Wn1

,Wn2
, . . . which converges to some

parameters W. The covariances and outputs (K1,K
σ
1 , Y ) at these limiting parameters W must

minimize the representation cost, i.e. K1 = Kσ
1 =

(
Y TY

) 1
2 , but this yields a contradiction, since

Rankσ (K1,K
σ
1 ) = k but W are parameters of network with n1 = k − 1 neurons in the hidden

layer, which would imply Rankσ (K1,K
σ
1 ) ≤ k − 1.
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To show the tightness (up to constant factor) of the upper bound, one can simply apply this proposition
to the special case YN = ETE, where E is the edge-vertex incidence matrix of the complete bipartite
graph, in which case k = N2

4 .

We could also consider an output dataset YN ∈ RnL×N whose lines are one-hot vectors,
corresponding to a classification task. If we reorder the training set by class, the covariance Y T

N YN is

a block diagonal matrix, with all ones blocks corresponding to each class. The square root
(
Y T
N YN

) 1
2

is also block-diagonal but the block of a class i has value 1
mi

where mi is the number of datapoints

in the class i. The matrix
(
Y T
N YN

) 1
2 is completely positive and has rank k equal to the number of

classes. This implies a much earlier plateau, which could explain why in real-world classification
tasks, we observe a very early plateau.

Remark 8. The representation cost for Y = ETE is 2 ∥E∥2F = 4N2

4 = N2. We can obtain

an almost optimal representation with n1 = N neurons by taking the weights W1 =
√

N
2 I and

W2 =
√

2
NETE, with norm

∥∥∥√N
2 I

∥∥∥2
F
+
∥∥∥√ 2

NETE
∥∥∥2
F
= N2

2 + 2
N (N N2

4 +2N2

4 ) = N2

2 + N2

2 +

N = N2 +N .

D.2 One Dimensional Shallow Network

We now prove an upper bound on the start of the plateau for shallow networks with one-dimensional
inputs and outputs:

Proposition 9 (Proposition 15 of the main). Consider shallow networks (L = 2) with scalar
inputs and outputs (n0 = n2 = 1), a ReLU nonlinearity, and a dataset X,Y ∈ R1×N . Both the
representation cost Rn(X,Y ) and global minimum minW Lλ,n(W) for any λ > 0 are constant as
long as n1 ≥ 4N .

Proof. We show that if there is a network with depth L = 2 and n1 > 4N hidden neurons, we can
construct a network with strictly less neurons with the same outputs on the dataset and a smaller
parameter norm.

The network function can be written in the form

fW(x) = b+

n1∑
k=1

akσ (ckx+ dk) .

We may assume that for all neuron i, we have a2k = c2k + d2k since if this is not the case, one can
multiply ak by a scalar and divide ck and dk by the same scalar to satisfy this constraint while
reducing the norm of the parameters.

For each neuron i, we define the cusp of the neuron the value −dk

ck
, which is the point where the

neuron goes from dead to active.

If there are neurons that are inactive on the whole training set, they can simply be removed without
changing the outputs and reducing the norm.

If there are more 4N neurons, we either have:

1. There are more than 4 neurons whose cusp lies between two inputs xi and xi+1 (w.l.o.g. we
assume x1 < · · · < xN ).

2. There are more than 2 neurons whose cusp lies to the left or right of the data.

We will now show how in the case 1, one can remove a neuron while keeping the same outputs on the
training data and reducing the norm of the parameters. The second case is analogous.

If there are five or more neurons with a cusp between xi and xi+1, then two of those neurons k,m
must have the same signs signak = signam and signck = signcm (w.l.o.g. we assume they are all

7



positive). We will replace these two neurons by a single neuron ãσ(c̃x+ d̃) where ã, c̃, d̃ are chosen
as the unique positive values (d̃ may be negative) to satisfy

ãc̃ = akck + amcm

ãd̃ = akdk + amdm

ã2 = c̃2 + d̃2.

First note this new neurons contributes ã2 + c̃2 + d̃2 = 2ã2 to the norm of the parameters which is
less than the two previous neurons 2a2k + 2a2m, since

ã2 =

√
ã2

(
c̃2 + d̃2

)
=

√
(akdk + amdm)

2
+ (akck + amcm)

2

= (ak + am)

√(
ak

ak + am
dk +

am
ak + am

dm

)2

+

(
ak

ak + am
ck +

am
ak + am

cm

)2

≤ (ak + am)

(
ak

ak + am

√
d2k + c2k +

am
ak + am

√
d2m + c2m

)
= a2k + a2m

where the inequality follows from the convexity of the norm function (c, d) 7→
√
c2 + d2.

For any x with x ≤ xi or x ≥ xi+1, one can check that

ãσ(c̃x+ d̃) = akσ(ckx+ dk) + amσ(cmx+ dm),

which implies that replacement has not changed the values of the network on the training set.
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