
AMP: Automatically Finding Model Parallel Strategies
with Heterogeneity Awareness

Dacheng Lic , Hongyi Wangc , Eric Xingmcp, Hao Zhangb

c Carnegie Mellon University m Mohamed Bin Zayed University of Artificial Intelligence
p Petuum Inc. b University of California, Berkeley

Abstract

Scaling up model sizes can lead to fundamentally new capabilities in many ma-
chine learning (ML) tasks. However, training big models requires strong distributed
system expertise to carefully design model-parallel execution strategies that suit the
model architectures and cluster setups. In this paper, we develop AMP, a framework
that automatically derives such strategies. AMP identifies a valid space of model
parallelism strategies and efficiently searches the space for high-performed strate-
gies, by leveraging a cost model designed to capture the heterogeneity of the model
and cluster specifications. Unlike existing methods, AMP is specifically tailored to
support complex models composed of uneven layers and cluster setups with more
heterogeneous accelerators and bandwidth. We evaluate AMP on popular models
and cluster setups from public clouds and show that AMP returns parallel strategies
that match the expert-tuned strategies on typical cluster setups. On heterogeneous
clusters or models with heterogeneous architectures, AMP finds strategies with
1.54× and 1.77× higher throughput than state-of-the-art model-parallel systems,
respectively. 1

1 Introduction

Recent progress in language understanding [6, 4], multimodal learning [1], and many other ML
applications can largely credit to the use of extremely big models. For example, the largest language
models [4, 14] with billions of parameters are found to have fundamentally new capabilities. Due
to the increased model size, training such models, however, calls for model parallelism execution
strategies in order to place the gigantic model computation across multiple, heterogeneous accelerator
devices (e.g., TPUs and GPUs), and ensure efficient distributed execution.

Different from typical data parallelism strategies [28, 5, 15], model parallelism considers a much
larger space of parallelization techniques. In particular, when a model is too large to fit in a single
device memory, we can either place the computation of different layers across different devices (a.k.a.
pipeline parallelism), or partition the computation of particular layers and dispatch parts onto parallel
devices (i.e., tensor model parallelism (TMP) [23]). Due to their distinct communication and memory
requirements, these model parallelism dimensions have different applicable scenarios, which may
change with model architectures and cluster setups. For example, TMP results in high communication
volumes, hence is favored on devices connected with high bandwidth, but may become less effective
with limited communication bandwidth. Designing performant execution strategies requires combin-
ing these parallelism dimensions to trade-off among memory, communication, and computation, then
tuning the configurations in each parallelism dimension to align with the heterogeneity of the model
and the training cluster.

1Codes and experiment logs are available at https://github.com/MccRee177/AMP for reproducibility.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

Existing model-parallel training strategies are either manually designed by domain experts for one or
two specific models, or automatically generated with strong assumptions on the model architecture
or cluster topologies. For example, the 3D parallelism strategy adopted in Megatron-LM [23] and
DeepSpeed [21] is manually specialized for transformer-based language models, assuming a fixed
cluster setup and the model having the same layer repeated [23, 21, 19]. Therefore, they can hardly
generalize to models with diverse layer compositions (i.e., heterogeneous models), or clusters with
mixed types of accelerators and network switches (i.e., heterogeneous clusters). This motivates the
core questions in this paper: Is it possible to automatically find the best model-parallel strategies for
more heterogeneous models and clusters?

Given an arbitrary cluster and model setup, finding highly performed model-parallel strategies is
difficult for the following reasons. First, when the model has diverse types of layers, existing
heuristics on deciding the assignment of layers to pipeline stages (and balance stage workloads) can
be invalidated, because different layers exhibit distinct execution and communication costs. Second,
evaluating a model-parallel strategy on a large cluster can be expensive, and prevents search-based
methods [11] that depend on extensive real evaluations. However, existing cost models do not capture
the heterogeneity in the model or cluster (e.g. [24] assumes a uniform bandwidth in the cost model).
In this paper, we present solutions to these challenges. To address the layer-stage assignment problem,
we develop a new dynamic programming algorithm running in polynomial time. To evaluate a large
number of strategies within a limited budget, we develop a new cost model which serves as a cheaper
proxy to evaluate model-parallel strategies. We name our method AMP. In summary, AMP makes
the following contributions:

• We identify factors that influence model-parallel performance in heterogeneous settings, and
define strategies based on these factors.

• We present a new cost model that handles heterogeneity in both the model and the cluster to
evaluate the quality of model parallel strategies with a minimal amount of real trials.

• We develop a dynamic programming approach to handle the load imbalance issue from
heterogeneous models in the pipeline layer assignment problem.

• We empirically show that existing systems output sub-optimal strategies in heterogeneous
settings. In contrast, AMP achieves 1.54× speedup with heterogeneous clusters, and 1.77×
speedup on heterogeneous model architectures compared to state-of-the-art heuristics.

2 Background and Related Work

In this section, we discuss the trade-offs of existing model-parallel strategies, and the need for
composing them with the awareness of model and cluster heterogeneity.

Data-parallel (DP) strategies. DP partitions the input data batch evenly among workers, and each
worker holds an entire model replica [15, 22, 9]. At each iteration, each worker computes gradients
over its assigned batch; the gradients are then synchronized among workers before the next iteration.
DP requires each worker to hold an entire model replica, hence cannot be directly used to train models
with massive parameters.

Tensor model-parallel (TMP) strategies. TMP, proposed by Megatron-LM [23], is a popular
model-parallel approach for large transformer models. In TMP, the layer weights of each two
consecutive layers are partitioned row-wise (i.e., input dimension) first, then column-wise (i.e., output
dimension) [23]. TMP removes the need for synchronizing the intermediate output of the very first
layer, but requires heavy cross-device communications afterward. TMP is normally combined with
data parallelism to increase the training throughput [18].

Pipeline-parallel (PP) strategies. In PP, layers are placed across GPUs, the training mini-batch is
split into smaller micro-batches. The forward and backward computation is then pipelined across
micro-batches. PP requires less communication than DP and TMP, but suffers from device idle
(i.e., pipeline bubbles) [10, 18]. Despite synchronous pipelining schedules such as GPipe [10],
PipeDream [18] proposes an 1F1B asynchronous schedule to reduce the pipeline bubble. TeraPipe de-
velops token-level pipelining schedules in a single training sequence for auto-regressive models [16].

2

Automatic partition. Prior work, e.g., FlexFlow, PipeDream, and DAPPLE explore automatic
computation graph partitioning over a few typical cluster device setups [11, 18, 7], such as NVIDIA
DGX workstations connected with Infiband switches. For partitioning the model over multiple
devices, the aforementioned work leverages carefully designed cost models to select the desired
strategy over the search space.

3D parallelism. To trade-off the scalability, memory footprint, and device utilization, DP, MP, and
PP have to be used together (which is also known as 3D parallelism). DeepSpeed carefully designs a
3D parallelism strategy to train a massive-scale language model with 17 billion parameters [21]. [19]
manually tunes the degrees of DP, MP, PP to scale to 3072 GPUs – both of them are not automatic.
The closest to our work is Piper [24], which leverages a cost model and a dynamic programming
algorithm to search over the 3D strategy space. However, Piper works only with transformer-based
models, and assumes the same type of devices in the cluster are homogeneously connected with equal
bandwidth, ignoring heterogeneous setups. In contrast, AMP is designed to capture the heterogeneity
of the given ML model and the deployed cluster, reflected in both the search space design and the
searching algorithm (§ 3).

Heterogeneity in models and clusters. Newer generations of GPU devices and Ethernet switches
emerge rapidly, thus it is common nowadays that multiple types of devices are deployed together
in a training cluster. Conducting distributed training over such types of heterogeneous clusters
introduces extra challenges. For instance, a poor load balancing strategy can cause straggler effects
easily; heterogeneous memory capacity among GPUs introduces new constraints on model and data
partitioning. Apart from hardware heterogeneity, DL models also introduce another dimension of
heterogeneity. Many today’s popular models are composed with diverse layers with different sizes
and computing characteristics, e.g., typical convolution networks have their layer width growing with
depth [8], which would require distinct partitioning and placement strategies for each layer during
model parallelism.

3 Methods

3.1 Problem Formulation

Formally, the inputs of AMP are (i) the model, (ii) the cluster, and (iii) the global batch size
(gbs). A deep learning model W is represented as a graph, i.e., W = (CW , VW). CW is a set
of vertices where each vertex cW,i ∈ CW , i ∈ {i, · · · , |CW |} represents a layer, and each edge
vW,i = (cW,i; cW,i+1) ∈ VW represents the tensor (activation) between layer cW,i and layer cW,i+1.
Additionally, we denote the execution cost of a layer cW,i as ci, and the communication volume of an
edge vW,i as vi. A cluster is represented as C = {D, B} where D = {di|1 ≤ i ≤ |D|} denotes a set
of devices. B ∈ R|D|×|D| is a symmetric matrix where each matrix element bij represents bandwidth
between device di and dj . The goal of AMP is to output a high throughput parallel training strategy s
given the hardware and model configuration. S denotes the entire space of candidate strategies. We
formulate this as an optimization problem:

s⋆ = argmin
s∈S

f(s;W, C, gbs) (1)

where f(·) denotes per iteration running time as a function of the strategy s, conditioned on the given
ML model, cluster, and user-specified global batch size.

3.2 Method Overview

To solve the optimization problem in Equation 1, we identify factors that influence the system
performance (§3.3). However, there are two major difficulty in solving this optimization with these
identified factors. First is how to evaluate f(·). One possible solution is to launch real trials, but
this is prohibitively expensive because the entire optimization procedure may require evaluating a
large number of strategies. Rather we develop a cost model (§ 3.4) that can estimate f(·) quickly.
Second, the discrete nature of the optimization problem disallows us to leverage gradient-based
optimization methods. However, evaluating all strategies in the search space S is slow even with
the cost model. One way to efficiently optimize the objective is to exploit structure in the strategy

3

space S , and prune areas with no promising candidates. Using this principle, we develop a dynamic
programming approach (§3.5), which prunes out candidates with worse performance before invoking
the cost model.

3.3 Representation of a Strategy

At a high level, a strategy s defines how to train model {CW , VW} on a given cluster {D, B} with the
batch size gbs. Concretely, a strategy s that composes DP, TMP, and PP strategies can be represented
by a few key aspects, e.g., how many model replicas should be created (i.e., how many pieces should
a mini-batch be evenly split) in DP; how to partition model layers (for PP) or layer parameters (for
TMP); and how shall the global batch size decompose into micro-batches in PP semantics. In AMP,
we represent a strategy s with the following four aspects:

1. Parallelism degrees. Since PP, DP, and TMP have different characteristics, different degrees of
each affect the system performance. We denote the degrees to be pp, dp, tmp. The tuple (pp, dp, tmp)
defines a three-dimensional grid, which satisfies the constraint pp× dp× tmp = |D|; pp, dp, tmp ∈
{1, . . . , |D|}. This tuple generates pp× dp× tmp virtual ranks that carry out corresponding tasks.
For instance, ranks in the same data parallelism group communicate with each other to finish the
gradient update. These ranks are bijectively mapped to available devices D for execution.

TMP

DP

PP

GPU:2GPU:1

GPU:0GPU:3

GPU:4

GPU:5 GPU:6

GPU:7

virtual rank

tmp communication

dp communication

pp communication

pp layer assignment

Figure 1: An example strategy with
parallelism degrees = (2, 2, 2). Note
that there are 8! possible GPU as-
signments to these 8 virtual ranks.
Assuming a uniform bandwidth, a
uniform-layer assignment cuts at the
5th layer, while a more balanced as-
signment cuts at the 3rd layer.

2. Device placement. In a heterogeneous environment,
physical devices can have different connection bandwidth
to each other, thus placing physical devices in different
virtual ranks leads to different performance. For instance,
if ranks in a communication-heavy group are all allocated
with physical devices with high bandwidth, the per iteration
time will be shorter. Formally, We denote a device place-
ment as a bijective function from virtual ranks to devices
p : {1, . . . , pp} × {1, . . . , dp} × {1, . . . , tmp} 7→ D.

3. Micro-batch size. Micro-batch size (mbs) is the batch
size a device proceeds at a time in the pipeline parallelism
execution (§2). When mbs varies, devices usually have dif-
ferent utilization [18, 26]. For instance, a larger micro-batch
size usually leads to better GPU utilization because the GPU
can better parallel the computation. However, a larger micro-
batch size also leads to a larger pipeline bubble, which makes
selecting mbs hard.

4. Pipeline layer assignment. Different assignments of layers to each device can also affect the
system throughput. On the one hand, when activation volume v is large in the boundary, the next
device needs to wait longer, resulting in a longer per iteration time. On the other hand, when a device
is assigned a much higher load than other devices, it blocks all other devices and thus incurs a longer
iteration time. We denote a feasible pipeline layer assignment as a function a : CW 7→ R that maps
layers to the stage index (1, . . . , pp) in a pipeline.

In summary, a strategy s can be defined by a 6-dimensional tuple:

S ≜ (pp, dp, tmp, p,mbs, a) (2)

3.4 Cost Model

Since launching real trials to obtain the actual f(·) is expensive, we develop a cost model that serves
as a fast estimation of f(·). In this section, we introduce the proposed cost model.

Communication primitive. We consider the ring topology for all-reduce collective communication
in both DP and TMP [22]. Assume that the whole message size is M . In a communication group of
n workers with uniform bandwidth B, the communication time of a single ring all-reduce operation
can be modeled as [13]:

Tallreduce =
2(n− 1)M

nB
(3)

In a group with non-uniform bandwidth, we approximate the bandwidth with the lowest bandwidth
B′. For point-to-point (P2P) communication operations between consecutive pipeline stages, we

4

Variable Meaning

D set of devices in the cluster
M message size in an all-reduce operation
n number of workers in an all-reduce operation
B bandwidth between workers in an all-reduce operation
v activation volume for a P2P operation
b bandwidth for a P2P operation
k number of stages in a pipeline
ei communication time for the P2P operation between the ith and (i+ 1)th stage
ti execution time of the ith stage in a pipeline
T pp
i execution time of the ith pipeline

tlayerj execution time of a single layer j
gas number of micro-batches in a pipeline
L number of layers in W

Table 1: Major variables and their meanings in the cost model.

assume the communication operation can use the full bandwidth: e = v
b [11]. Here v is the activation

volume and b is the bandwidth between these two GPUs.

Top-down run time decomposition. We now present our cost model designed from a top-down
view. First, DP is at the top granularity, where there are dp pipelines running in parallel. It
synchronizes gradients when all pipelines finish their schedules. It does not consider how each
pipeline is executed. At the DP level, the system run-time can be decomposed into two terms:

T = max{T pp
i |1 ≤ i ≤ dp}+max

d∈D
T dpsync
d (4)

T pp
i is the time taken to complete a single pipeline i. T dpsync

d denotes the time for a device d to
synchronize gradients with an all-reduce operation. We model the latter term by using Equation 3
with the message size equal to the number of model parameters held at device d. Since different
pipelines may finish with different speeds, and different devices may finish their data parallelism
synchronization with different speeds, we take maximum over these two terms respectively.

At a lower granularity, each pipeline executes a training schedule that includes activation/gradients
exchange at a layer level. It does not need to consider how each layer is executed, which is carried
out by MP workers. Assume the number of stages in a pipeline is k, and the communication time
between the ith and (i+ 1)th is ei, and the execution time for the ith stage is ti. We model ti as the
sum over execution time tlayerj in the stage for layer j in the stage: ti =

∑
a(j)=i t

layer
j . We model

the execution time for a single pipeline as 2:

T pp = (gas− 1) ·max{ti|1 ≤ i ≤ pp}+
pp−1∑
i=1

ei +

pp∑
i=1

ti (5)

Intuitively, the first term captures the straggler effect, which gets amplified by the number of micro-
batches gas. If we assume gas = 1, Equation 5 reduces to T pp =

∑pp−1
i=1 ei +

∑pp
i=1 ti. This aligns

with the actual schedule: the mini-batch simply performs a single forward pass and a single backward
pass, and sends or receives gradients or activations. If we assume all layers have the same execution
cost and the cluster is equipped with the same bandwidth, the optimal solution is simply to balance
the number of layers. This heuristic is often adopted as the default layer assignment solution in
current systems[23].

At the bottom granularity, MP workers consider how a single layer is executed. The run-time of
a single layer tlayerj is composed of the layer computation time (e.g., Matrix multiplication) and
all-reduce communication time. One way to estimate tlayerj is using the number of floating point
operations (FLOPs) for computation time, and Equation 3 for communication time. However, we find
this inaccurate in our setting. Concretely, when mp grows, the arithmetic intensity of each matrix
multiplication becomes lower. In such scenarios, a matrix multiplication with only a few FLOPs
can take a long time to execute. Thus, we simply obtain tlayerj by profiling several tensor model
parallelism settings and store results in a lookup table. This profiling is feasible because it only needs
to be done once in the entire optimization.

2We describe how we consider overlapping in the P2P communication and computation in §6.1.

5

Cluster Size 2×2 4×4 8×8 16×16

Optimization time (seconds) 58.0 325.6 890.3 1627.4

Table 2: AMP optimization time with respect to the cluster size. Results are obtained with a 24-layer
GPT-2 model and a global batch size 32.

3.5 Pipeline Layer Assignment

A key observation in the layer assignment problem is that only consecutive layers can be assigned to
the same stage. In particular, computation up to layer i can be reused for that of layer i + 1. This
pattern fits neatly in a dynamic programming solution. To handle the max term in objective 5, we use
an auxiliary variable tolerance m . m takes value from all possible execution time for a single stage.
For instance, it can be the sum of the execution time of the first and the third layer because they can
form a valid pipeline stage. However, it can not be that of the first and the third layer because they
are not consecutive. Using m, we rewrite an objective for the dynamic programming algorithm:

(gas− 1) ·max{0,max{ti|1 ≤ i ≤ pp} −m}+
pp−1∑
i=1

ei +

pp∑
i=1

ti (6)

Note that when m = 0, Equation 6 reduces to the desired objective 5. Formally, we store the optimal
assignments and the corresponding cost up to layer i with j stages and variable m in table dp[i][j][m].
Let L be the number of layers, then dp[L][k][0] stores the solution. We induct on the number of
stages in the pipeline.

Base case (j = 1). The only possible assignment assigns all i layers into a single stage. Denote the
sum of execution time for these i layers as t1. The associated optimal cost is thus

g(i) = (gas− 1)×max{0, t1 −m}+ t1 (7)

We store the table entry dp[i][0][m] with (i, g(i)) for all possible i and m.

Recursive step. To compute dp[i][j][m] when j > 1, we enumerate all possible positions of the
last cut i′ for all i′ < i. Denote the execution time from layer i′ to layer i as t2,i′ , let the value
stored at dp[i′][j − 1][max(t2,i′ ,m)] be (ai′ , ci′). Denote the longest stage time in ai′ as t1,i′ , the
communication cost between the (j − 1)th and jth device at layer i′ as ei′,j . The cost associated
with the last cut at i′ is: 3

g(i′) = ci′ + (gas− 1)×max{0, t2,i′ −m}+ t2,i′ + ei′,j (8)

Select the optimal last cut position i′opt = argmini′<ig(i
′). The dynamic programming table entry

dp[i][j][m] is updated as: (ai′opt ∪ (i− i′opt), g(i
′
opt)).

Running time. There are
∑L

i=1 i = O(L2) possible values for m. Thus, our problem size is
O(L × k × L2), each sub-problem takes O(L) time. Thus the total running time for the dynamic
programming algorithm is O(kL4), while a brute force solution takes O

(
L−1
K−1

)
.

3.6 Optimization Procedure

In this section, we introduce the overall optimization procedure to find the best strategies defined at §
3.3. First, we enumerate all possible parallelism degrees and micro-batch sizes. For each parallelism
degree and micro-batch size, we deterministically solve for the optimal pipeline layer assignment
using the algorithm at § 3.5. We adopt the heuristics at [19] to solve the device placement problem:
prioritize placing model parallelism workers in the same node. If there is more available intra-node
bandwidth, then place data parallelism workers and pipeline parallelism workers. The procedure is
written in Algorithm 1. More details can be found in § 6.2

3proof can be found in § 6.4

6

Algorithm 1: Optimization procedure
Input: C, W , gbs, budget

1 degrees = enumerate_degrees(C)
2 record = set()
3 for d in degrees do

/* Possible micro-batch size given data parallel degree */
4 for mbs in enumerate_(d.dp) do
5 p = placement(C, d) // Device placement heuristics
6 a = pipe_ast(W , d.pp, p) // Optimal pipeline assignment
7 s = (a, mbs, d, p) // current strategy
8 cost = estimate(s) // our cost model
9 record.add(s, cost)

/* run top predicted strategies */
10 best_s = run(record, budget)
11 return best_s

Megatron AMP SA

Min 1.32 1.20 1.57
Mean 2.41 ± 1.29 1.43 ± 0.18 1.82 ± 0.17

Table 3: Best and average strategies under homogeneous setup over Top 10 candidates (scale: seconds)

Complexity of the overall optimization. The number of factors of an integer N can be loosely
upper bounded by O(N1/2). Thus, the number of possible degrees can be upper bounded by
O(|D|1/2)) × O(|D|1/2) = O(|D|), and the number of possible micro-batch sizes can be upper
bounded by O(gbs1/2). The pipeline assignment algorithm run-time is bounded by O(kL4) =
O(|D| × L4) (section 3.5). Thus, the total run time can be upper bounded by O(gbs1/2 × |D| ×
|D| × L4) = (gbs1/2 × |D|2 × L4). Empirically, we verify the optimization time with respect to the
cluster size in Table 2. We find that the actual optimization time is near linear with respect to the
cluster size.

4 Experiments

In this section, we evaluate AMP on different types of clusters and models. Besides a homoge-
neous setup, we study two heterogeneous setups, one with a heterogeneous cluster and one with a
heterogeneous model. We use the state-of-the-art Megatron heuristics as our baseline [19].

4.1 Baseline
Megatron [23] is a runtime engine that supports 3D parallelism training on DNN models. It suggests
several heuristics on how to train models with 3D parallelism faster. We summarize these heuristics
in the following procedure.

Mgetraon explores all possible micro-batch sizes as in AMP. For each micro-batch size, it forces
tmp to be smaller than the smallest number of devices in a node. Then it selects parallelism degrees
with the smallest tmp × pp. It solves the device placement problem by prioritizing tensor model
parallelism workers in the same node. If there are additional available intra-node connections, it
places data parallelism workers next. It solves the pipeline layer assignment problem by either
balancing the number of parameters or the number of layers in each stage.

Megatron is proposed based on observations on a homogeneous cluster and model setup. The model
is composed of simple stacks of identical layers. The cluster is equipped with the same type of
devices with the same bandwidths. Thus, We hypothesize under such as homogeneous setup, it is
(near) optimal. To validate this hypothesis, we conduct experiments on a homogeneous setup (§ 4.3).
Moreover, we are interested in how Megatron heuristics perform when the homogeneous assumption
does not hold. Concretely, we ask two questions. What is optimal when the cluster is equipped with

7

1 2 3 4 5 6 7 8
Estimated Per Iter. Time (sec.)

1.5

2.0

2.5

3.0

3.5

4.0

Pe
r I

te
r.

Ti
m

e
(s

ec
.)

spearman correlation = 0.931

(a) homogeneous

1.0 1.5 2.0 2.5 3.0
Estimated Per Iter. Time (sec.)

1.5

2.0

2.5

3.0

3.5

Pe
r I

te
r.

Ti
m

e
(s

ec
.)

Spearman Correlation = 0.687

(b) heterogeneous cluster

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Estimated Per Iter. Time (sec.)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Pe
r I

te
r.

Ti
m

e
(s

ec
.)

Spearman Correlation = 0.842

(c) heterogeneous model

Figure 2: Predicted strategy cost versus actual cost of top candidates. The Spearman correlation
ranges from -1 to 1, and 0.5 is generally considered a reasonably strong positive correlation.

different types of devices and different bandwidths to each other? What is the effect of heterogeneity
in models? To answer these, we design two sets of experiments under a heterogeneous cluster and a
heterogeneous model in § 4.3.

4.2 Alternative Device Placement Algorithm

As described in Section 3.6, we adopt the heuristic in Megatron to solve the device placement
algorithm in our main method. During the development time, we also explore an alternative device
placement optimization method. Concretely, we adopt a Domino-tiling style device placement
representation. Since this representation introduces much more possible strategies, enumerating them
is costly. We instead use a Simulated Annealing(SA) algorithm to optimize the device placement
aspect [25]. We name this method SA. Details can be found in § 6.3.

4.3 Experiment Setup

Homogeneous. We conduct experiments using GPT-2 (L = 24, H = 1024) [20] on 4 AWS EC2
g4dn.12xlarge nodes with a global batch size 32. Each instance is equipped with 4 T4 GPUs with 50
Gbps PCIe connection intra-node bandwidth, and 50 Gbps inter-node bandwidth. In all experiments,
we place instances in the same AWS placement group to make sure they have the full bandwidth.

Heterogeneous cluster. To simulate heterogeneity in both different types of GPUs and different
bandwidths, we ensemble a cluster using 3 AWS EC2 p3.8xlarge instances (V100 GPUs) and 1
g4dn.12xlarge (T4 GPUs) instance. Each p3.8xlarge instance is equipped with 4 V100 GPUs with
approximately 170Gbps NVLink intra-node connection and 10 Gbps inter-node bandwidth. We
evaluate the performance on GPT-2 (L = 24, H = 1024) with a global batch size 32.

Heterogeneous model. We use a modified version of Transgan generator [12], which stacks
transformer layers in the way that later layers have smaller hidden sizes. Specifically, we use 12
layers with dimensions 1024, and 12 layers with dimensions 16. We use 4 p3.8xlarge instances and a
global batch size 64.

4.4 Evaluation Metric

We evaluate strategies by the running time per iteration. Specifically, we run each strategy by 40
iterations and take the average iteration time for the latest 20 iterations [27]. The underlying system
is Deepspeed (built on top of the Megatron engine) [21] with fp16 optimization enabled.

4.5 Results and Discussion

Homogeneous setup. In this experiment, we compare three methods: (1) Megatron: Megatron
Heuristics, (2) AMP: our method described in § 3.6, and (3) SA: optimize the device placement aspect
using the Simulated Annealing. Under homogeneous setup in § 4.3, we hypothesize that Megatron
heuristics is (near) optimal. We also expect that our method can find such optimal strategies.

In our experiment setting, Megatron proposes 10 feasible strategies. To understand the difference in
strategies between our proposal and the Megatron proposal, we evaluate the Top 10 strategies from

8

Megatron-LM RS AMP SA

Min (sec.) 1.97 1.71 1.28 1.46
Mean (sec.) 2.62±0.37 3.04±0.82 1.73±0.43 2.29±0.68

Table 4: Best and average strategies under heterogeneous cluster setup (scale: seconds).

Megatron-LM ours w/ parameter ours w/ uniform AMP

Min. (sec.) 1.89 2.19 1.25 1.07
Mean (sec.) 1.94±0.05 2.19±0.0 1.25±0.0 1.66±0.67

Table 5: Best and average strategy under heterogeneous model setting (scale: seconds)

our method. The results are presented in Table 3. We find that Megatron is indeed near-optimal and
AMP can find such strategies (in fact slightly better). We analyze the selection procedure below.

Since the model can be fit into a single GPU, Megatron selects an extreme configuration - dp = 16.
This may be sub-optimal because the communication in the data parallelism group is high. Suppose the
micro-batch size is small, so that the bubble overhead in the pipeline parallelism may be hidden, it may
be better to assign some workers to the pipeline parallelism. In fact, AMP finds that dp = 4, pp = 4
with the smallest micro-batch size 1 is a better choice. We also find that exploring more device
placement strategies with SA finds worse results. This is because considering more device placement
has limited influence in the homogeneous setup. For instance, whether the tensor model parallelism
communication happens within a node or cross node shall not change the performance. However, it
introduces much more strategies that make the optimization hard.

Heterogeneity in the cluster. In the heterogeneous cluster setup, devices have different connectivity
to each other, and different execution speeds. We hypothesize that some heuristics from Megatron can
lead to bad performance, but our method should be able to automatically address the heterogeneity
in (especially) bandwidth since we explicitly model it (3.4). We are also interested in how much
heterogeneity can influence the performance of strategies. Concretely, we examine how much
Megatron and AMP improve compared to random strategies in the space. In this experiment, we have
four methods to compare: Megatron, AMP, SA, and

• RS: Randomly selecting strategies without heuristics and a cost model.

We run RS for 50 iterations. Results are presented in Table 4. We find that the mean of random
strategies is 1.16× worse than that of Megatron, and 1.76× worse than that of ours. By using
our optimization procedure, we find strategies that achieve 1.54× speedup compared to Megatron.
Specifically, the heuristic of Megatron that minimize mp× pp is sub-optimal. When using micro-
batch size 1, the best strategy shall be dp = 2, pp = 8, which results in a 1.28 second/iteration
performance. However, since the model can be fit in a single GPU, Megatron selects dp=16, which
results in 2.72 second/iteration performance. This strategy is much slower because some GPUs
have a low bandwidth (10Gbps) to others. On the contrary, by modeling each GPU’s bandwidth in
Equation 3, our cost model penalizes this strategy heavily. We let the cost model to estimate f(·) for
all strategies and find that AMP ranks this strategy in the 21st place.

Heterogeneity in the model. When the layers in the model have different execution costs, the
pipeline assignment methods in Megatron, which balances the number of layers or parameters, can
not balance the actual workload. In such a setup, we expect our pipeline assignment can outperform
these two. In this experiment, We compare four methods: (1) Megatron: Megatron with the uniform
layer assignment, (2) AMP, (3) ours w/ uniform: the best strategy found by AMP but replaced with the
uniform layer assignment, and (4) ours w/ parameter: the best strategy found by AMP but replaced
with the uniform parameter assignment.

Results are presented in Table 5. AMP finds a 1.77× faster strategy than Megatron ones. We analyze
the speedup in two dimensions. First, if we only consider the micro-batch size and the parallelism

9

degrees aspect, the strategy found by AMP is 1.51× faster than the one by Megatron. The reason
is similar to the one in the heterogeneous cluster setting. Second, if we additionally consider the
pipeline layer assignment aspect, the strategy gains an additional 1.17× speedup.

To study the relationship between heterogeneity in the model and the system performance, we fix the
parallelism degrees and vary only the pipeline layer assignment. Results are presented in 3. Since we
only use transformer layers with two different hidden sizes, we simply define heterogeneity as:

heterogeneity =
h=16 layers time

h=1024 layers time
(9)

Cost model accuracy To correctly select the top strategies, AMP must rely on an accurate cost
model. We consider the cost model to be accurate if it can correctly rank different strategies, where
the absolute value of its prediction is of less importance. To study the accuracy, we obtain more
ground truth f(·) (more than 10 for the main result) and compare them with the estimated f(·) by
the cost model. The results are presented in Figure 2. We find that generally a lower estimate f(·)
corresponds to a lower actual f(·). More importantly, strategies with low actual f(·) are ranked
among the top. Concretely, the best strategy is ranked 3rd, 2nd, and 1st in the three settings. As
a result, the best strategy can be selected because AMP runs several real trials at the end of the
optimization procedure (Algorithm 1). While AMP outperforms the baseline as it needs to launch 10
real trials, we would like to improve our cost model in the future so that fewer real trials are needed
(each trial takes around 1-2 minutes in our setting).

1.0 1.5 2.0 2.5
Hetergeneity

1.00

1.25

1.50

1.75

2.00
Sp

ee
du

p
ov

er
Ba

se
lin

e
St

ra
te

gi
es

bs=64,vs #params.
bs=64, vs uniform

bs=16,vs #params.
bs=16, vs uniform

Figure 3: Speedup against heterogeneity
versus two Megatron layer assignment
methods. Numbers obtained when a top
parallelism strategy: mp=1, pp=4, dp=4.

Optimization cost. In the heterogeneous model exper-
iment, AMP takes 140.7 seconds for profiling and 235.6
seconds for 65 iterations of the optimization procedure.
In particular, 230.8 seconds are spent in the dynamic pro-
gramming algorithm. We also launch several real trials
for top predicted candidates to select the final best one. In
total, the cost of our optimization is around 5-10 minutes
with several real trials (around 1− 2 minutes per trial).

Limitations. AMP does not model memory footprint.
Consequently, it can suggest strategies that do not fit in
the device’s memory, and launch unnecessary real trials.
In our experiments, a small number of top strategies are
out of memory (i.e., 7th and 9th of the top 10 strategies in
the TransGAN experiment). Additionally, the solution for
the pipeline assignment problem is not efficient enough.
In our experiments, it takes the major time of the whole optimization procedure. When the number of
layers L goes up, the running time is increasing in the O(L4). In the future, we aim to either improve
the dynamic programming solution itself, or combine the solution with techniques such as operator
clustering to keep L low [2, 29].

5 Conclusion

We present AMP, an automatic algorithm that can find model parallel training strategies with high
system throughput. AMP is equipped with an expert-design cost model that considers cluster and
model configurations. We show that when heterogeneity exists in cluster or model setup, current
heuristics are sub-optimal. Our automatic algorithm can find strategies with 1.51× and 1.76×
speedup within similar budgets.

Acknowledgements

We would like to thank Sangkeun Choe and Aurick Qiao for their comments in the early stage of the
paper. We thank Tailin Zhang and Tianyi Yu for their help in deriving the pipeline objective and the
dynamic programming solution. We thank all reviewers for their invaluable comments and feedback.
This research was supported by NSF IIS1563887, NSF CCF1629559, NSF IIS1617583, NGA
HM04762010002, NSF IIS1955532, NSF CNS2008248, NSF IIS2123952, and NSF BCS2040381.

10

