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A1 Additional methodological details

A1.1 The CMS algorithm

Algorithm A1 CMS
Input: Data set Z1, . . . , Zm. Sketch dimensions d,w. Hash functions h1, . . . , hd. Query z.
Initialize: Cj,k = 0 for all j ∈ [d], k ∈ [w].
for i = 1, . . . ,m do

for j = 1, . . . , d do
Increment Cj,hj(Zi) ← Cj,hj(Zi) + 1

end for
end for
Compute f̂CMS

up (z) = minj∈[d]{Cj,hj(z)}.
Output: deterministic upper-bound for the frequency of z in the data set: f̂CMS

up (z).

A1.2 The CMS-CU algorithm

Algorithm A2 CMS-CU
Input: Data set Z1, . . . , Zm. Sketch dimensions d,w. Hash functions h1, . . . , hd. Query z.
Initialize: Cj,k = 0 for all j ∈ [d], k ∈ [w].
for i = 1, . . . ,m do

Compute j∗ = arg minj∈[d] Cj,hj(Zi).
Increment Cj∗,hj∗ (Zi) ← Cj∗,hj∗ (Zi) + 1

end for
Compute f̂CMS−CU

up (z) = minj∈[d]{Cj,hj(z)}.
Output: deterministic upper-bound for the frequency of z in the data set: f̂CMS−CU

up (z).
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A1.3 Conformalized sketching

Algorithm A3 Conformalized sketching
Input: Data set Z1, . . . , Zm. Sketching function φ. Warm-up duration m0 � m.
Input: A (trainable) rule for computing nested intervals [L̂m,α(·; t), Ûm,α(·; t)], t ∈ T .
Input: Number of data points mtrain

0 < m0 used for training [L̂m,α(·; t), Ûm,α(·; t)].
Input: A partition B = (B1, . . . , BL) of {0, . . . ,m} into L intervals.
Input: Random query Zm+1. Desired coverage level 1− α ∈ (0, 1).
Initialize a sparse dictionary fwu

m0
(z) = 0,∀z ∈ Z .

for i = 1, . . . ,m0 do
Increment fwu

m0
(Zi)← fwu

m0
(Zi) + 1.

end for
Initialize a sparse dictionary f sv

m−m0
(z) = 0,∀z ∈ Z .

Initialize an empty sketch φ(∅).
for i = m0 + 1, . . . ,m do

Update the sketch φ with the new observation Zi.
if fwu

m0
(Zi) > 0 then

Increment f sv
m−m0

(Zi)← f sv
m−m0

+ 1.
end if

end for
Train [L̂m,α(·; t), Ûm,α(·; t)] using the data in {(Xi, Yi)}

mtrain
0

i=1 .
for i = mtrain

0 + 1, . . . ,m0 do
Set Xi = (Zi, φ(Zm0+1, . . . , Zm)) as in (12).
Set Yi = f sv

m−m0
(Zi).

Compute the conformity score E(Xi, Yi) with (5), using [L̂m,α(·; t), Ûm,α(·; t)].
Assign each score E(Xi, Yi) to an appropriate frequency bin B ∈ B based on Yi.

end for
for l = 1, . . . , L do

Compute Q̂nl,1−α(Bl) as the d(1−α)(nl + 1)e smallest value among the nl scores in bin Bl.
end for
Set Q̂∗n,1−α = maxl Q̂nl,1−α(Bl).
Set Xm+1 = (Zm+1, φ(Zm0+1, . . . , Zm)) as in (12).
Output: a (1− α)-level confidence interval[

fwu
m0

(Zm+1) + L̂m,α(Xm+1; Q̂∗n,1−α), fwu
m0

(Zm+1) + Ûm,α(Xm+1; Q̂∗n,1−α)
]

for the unobserved frequency fm(Zm+1) of Zm+1 defined in (2).

A1.4 Constructing two-sided conformal confidence intervals

This section describes two alternatives methods for constructing two-sided conformal confidence
intervals. The first method, explained in Section A1.4.1, consists of directly calibrating a sequence
of nested two-sided intervals, as outlined in Section 3.3. The second method, explained in Sec-
tion A1.4.2, consists of separately calibrating two sequences of lower and upper one-sided con-
fidence intervals, each adopting the significance level α/2 instead of α. The second approach is
easier to implement compared to the first one, building upon the techniques detailed earlier in this
paper, but it may be less statistically efficient.

A1.4.1 Construction based on conditional histograms

Two-sided conformal confidence intervals for fm(Xm+1) can be constructed by following the
general recipe outlined in Section 3.3. To implement this method practically, one needs to fix
an increasing sequence of candidate intervals [L̂m,α(·; t), Ûm,α(·; t)], depending on Zm+1 and
φ(Zm0+1, . . . , Zm). Possible choices for such sequence may be directly borrowed from the ex-
isting literature on conformal inference for regression, including for example the quantile regression
approach of [3] or the conditional histogram approach of [4]. Here, we describe a particular imple-
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mentation that combines the idea in [4] with a Bayesian model, in continuity with the works of [1, 2]
on Bayesian empirical frequency estimation from sketched data. However, the same idea could eas-
ily accommodate a quantile regression model or any other machine learning algorithm instead of the
Bayesian model, as explained in [4]. Note that the following paragraphs largely retrace the same
steps as in [4], which are however useful to recap here to make the presentation self contained.

For any j ∈ [m], let ϕ̂j(x) indicate the posterior probability of fm(Xm+1) = j for Xm+1 = x as
estimated by any Bayesian model for frequency estimation given sketched data, such as that of [1]
based on a Dirichlet process prior, for example. For convenience of notation, we will sometimes
refer to the full posterior distribution of fm(Xm+1) simply as ϕ̂. Note that, in general, the form of
the posterior distribution ϕ̂may depend onm as well as on the sketched data in φ(Zm0+1, . . . , Zm).
Following in the footsteps of [4], define the following bi-valued function S taking as input a query
x, the posterior distribution ϕ̂, a scalar threshold t ∈ [0, 1], and two intervals S−, S+ ⊆ {1, . . . ,m}:

S(x, ϕ̂, S−, S+, t) := arg min
(l,u)∈{1,...,m}2 : l≤u

|u− l| :
u∑
j=l

ϕ̂j(x) ≥ t, S− ⊆ [l, u] ⊆ S+

 . (1)

Above, it is implied that we choose the value of (l, u) minimizing
∑u
j=l ϕ̂j(x) among the feasible

ones with minimal |u − l|, whenever the optimization problem does not have a unique solution.
Therefore, we can assume without loss of generality that (1) has a unique solution; if that is not
the case, we can break the ties at random by adding a little noise to ϕ̂. As explained in [4], the
problem defined in (1) can be solved efficiently, at computational cost linear in m. Note that we will
sometimes refer to sub-intervals of [m] as either contiguous subsets of {1, . . . ,m} (e.g., S−) or as
pairs of lower and upper endpoints (e.g., [l, u]).

If S− = ∅ and S+ = {1, . . . ,m}, the expression in (1) computes the shortest possible interval with
total posterior probability mass above t. In general, the optimization in (1) involves the additional
nesting constraint that the output S must satisfy S− ⊆ S ⊆ S+, which will be needed to guarantee
the resulting sequence of confidence intervals indexed by t is nested. Note that the inequality in (1)
involving t may not be binding at the optimal solution due to the discrete nature of the optimization
problem. However, the above construction could be easily modified by introducing some suitable
randomization leading to confidence intervals that are even tighter on average, as explained in [4].

For any integer T ≥ 1, consider an increasing sequence tτ ∈ [0, 1], for τ ∈ {0, . . . , T}. A nested
sequence of T intervals indexed by τ ∈ {0, . . . , T}, which may be written in the form of

St =
[
L̂m,α(Xm+1; tτ ), Ûm,α(Xm+1; tτ )

]
,

for appropriate lower and upper endpoints L̂m,α(Xm+1; tτ ) and Ûm,α(Xm+1; tτ ), respectively, is
then constructed from (1) as follows. First, fix any starting index τ̄ ∈ {0, 1, . . . , T} and define Sτ̄
by applying (1) without the nesting constraints (with S− = ∅ and S+ = {1, . . . ,m}):

Sτ̄ := S(x, ϕ̂, ∅, {1, . . . ,m}, tτ̄ ), (2)

Note the explicit dependence on x and ϕ̂ of the left-hand-side above is omitted for simplicity, al-
though it is important to keep in mind that Sτ̄ does of course depend on these quantities.

Having computed the initial interval Sτ̄ , we recursively extend the definition to the wider intervals
indexed by τ = τ̄ + 1, . . . , T as follows:

Sτ := S(x, ϕ̂, Sτ−1, {1, . . . ,m}, tτ ).

See [4] for a schematic visualization of this step. Similarly, the narrower intervals Sτ indexed by
τ = τ̄ − 1, τ̄ − 2, . . . , 0 are defined recursively as:

Sτ := S(x, ϕ̂, ∅, Sτ+1, tτ ).

See [4] for a schematic visualization of this step. As a result of this construction, the sequence of
intervals {Sτ}Tτ=0 is nested regardless of the starting point τ̄ in (2), for which a typical choice is such
that tτ̄ = 1−α. Then, two-sided conformal confidence intervals for fm(Xm+1) can be obtained by
applying Algorithm A3 with this particular sequence of input nested intervals. We refer to [4] for
further details on the construction of nested intervals outlined above.
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A1.4.2 Construction based on a pair of one-sided intervals with Bonferroni correction

An alternative, and somewhat simpler, approach to building two-sided conformal confidence inter-
vals for fm(Xm+1) at level 1 − α consists of constructing a pair of lower and upper one-sided
confidence intervals at level 1− α/2. In particular, consider the following two nested sequences Slt
and Sut of one-sided confidence intervals, each indexed by a scalar parameter t:

Slt = [L̂m,α/2(Xm+1; t), f̂CMS
up (Xm+1)], Sut = [0, Ûm,α/2(Xm+1; t)],

where f̂CMS
up (Xm+1) is a deterministic upper bound for the unknown true empirical frequency of

Xm+1; e.g., see Section 1.2. The sequences Slt and Sut can be separately calibrated using the con-
formal inference method described in Sections 3.3 and 3.4, for any given choice of frequency-range
partition B, as we shall make more precise below. This gives two distinct data-adaptive thresholds
Q̂∗,ln,1−α/2 and Q̂∗,un,1−α/2, respectively, such that, ∀B ∈ B,

P
[
fm(Xm+1) ≥ L̂m,α/2(Xm+1; Q̂∗,ln,1−α/2) | fm(Zm+1) ∈ B

]
≥ 1− α

2
,

and

P
[
fm(Xm+1) ≤ Ûm,α/2(Xm+1; Q̂∗,un,1−α/2) | fm(Zm+1) ∈ B

]
≥ 1− α

2
.

By a union bound, we obtain that the following two-sided conformal confidence interval has valid
coverage, in the sense of (8), at level 1− α:

[L̂m,α/2(Xm+1; Q̂∗,ln,1−α/2), Ûm,α/2(Xm+1; Q̂∗,un,1−α/2)].

Different practical implementations are available to construct the sequences of candidate lower
bounds L̂m,α/2(Xm+1; t) and upper bounds Ûm,α/2(Xm+1; t). Two concrete examples are ex-
plained below.

Constant conformity scores. A simple option to construct the sequence L̂m,α/2(Xm+1; t) is to
directly apply the method described in Section 3.4, for example by shifting f̂CMS

up (Xm+1) downward
by a constant t. Then, the conformalized threshold Q̂∗,ln,1−α/2 can be calibrated exactly as described

in Section 3.3. The sequence of candidate upper bounds Ûm,α/2(Xm+1; t) can also be constructed
similarly to L̂m,α/2(Xm+1; t), for example by adding a constant t to the trivial lower bound of 0, up
to the deterministic upper bound f̂CMS

up (Xm+1). The threshold Q̂∗,un,1−α/2 for Ûm,α/2(Xm+1; t) can
then be calibrated as usual with Algorithm A3.

Bootstrap conformity scores. An alternative option to construct the sequence L̂m,α/2(Xm+1; t)
consists of shifting downward by a constant t the bootstrap lower bound calculated with the method
of [5], at level α/2. Similarly, the sequence Ûm,α/2(Xm+1; t) can be obtained by shifting upward
by a constant t the analogous bootstrap upper bound at level 1 − α/2. Thus, in the special case of
the vanilla CMS, our conformal confidence intervals based on these scores intuitively become very
similar to the bootstrap confidence intervals of [5]. In general, however, the difference remains that
the intervals of [5] rely on the linearity of the CMS, while ours are theoretically valid regardless of
how the data are sketched. We have observed this option works well in practice, at least within the
scope of our numerical experiments. Therefore, this is the implementation adopted in our numerical
experiments described in Section A4.

A1.5 Sampling from a Pitman-Yor predictive distribution

The data points are sampled sequentially from the following predictive distribution, which has pa-
rameters λ > 0 and σ ∈ [0, 1). After sampling Z1 from a standard normal distribution, N (0, 1), fix
any i ≥ 1 and let Z1, . . . , Zi indicate the data stream observed up to that point. Denote by ki the
number of distinct elements within it, and by Vi = (Vi,1, . . . , Vi,ki) the set of such distinct values.
Further, let ci,l indicate the number of times that object Vi,l has been observed in Z1, . . . , Zi, for
l ∈ {1, . . . , ki}. Then, Zi+1 is generated as follows:

Zi+1 | Z1, . . . , Zi =

{
Vi,l, with probability ci,l−σ

λ+i , for l ∈ {1, . . . , ki},
N (0, 1), with probability λ+kiσ

λ+i .
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Above, the second case which occurs with probability (λ+ kiσ)/(λ+ i) corresponds to sampling a
new unique value from the standard normal distribution.

A2 Mathematical proofs

A2.1 Proof of Proposition 1

Proof. Consider ((Xπ(1), Yπ(1)), . . . , (Xπ(m0), Yπ(m0)), (Xπ(m+1), Yπ(m+1))) for any permutation
π of {1, . . . ,m0,m+ 1}. This is equal to ((X ′1, Y

′
1), . . . , (X ′m0

, Y ′m0
), (X ′m+1, Y

′
m+1)), defined by

applying the functions in (11)–(12) to a shuffled data set Zπ̃(1), . . . , Zπ̃(m+1), where π̃ indicates a
permutation of {1, . . . ,m+1} that agrees with π on {1, . . . ,m0,m+1} and leaves {m0+1, . . . ,m}
unchanged. Therefore,(

(Xπ(1), Yπ(1)), . . . , (Xπ(m0), Yπ(m0)), (Xπ(m+1), Yπ(m+1))
)

=
(
(X ′1, Y

′
1), . . . , (X ′m0

, Y ′m0
), (X ′m+1, Y

′
m+1)

)
d
= ((X1, Y1), . . . , (Xm0

, Ym0
), (Xm+1, Ym+1)) ,

where the last equality in distribution follows directly from the assumption that Z1, . . . , Zm+1 are
exchangeable.

A2.2 Proof of Theorem 2

Proof. The following notation will be helpful: let B(Yi) ∈ B indicate the frequency bin into which
Yi belongs, for i ∈ {1, . . . ,m0,m + 1}. We begin by proving the result for the simpler case in
which Algorithm A3 is applied using conformity scores that do not require training, in which case
mtrain

0 = 0. For i ∈ {1, . . . ,m0,m + 1}, define the random variables Yi and Xi as in (11)–(12),
respectively. We already know from Proposition 1 that (X1, Y1), . . . , (Xm0 , Ym0), (Xm+1, Ym+1)
are exchangeable. This implies that the conformity scores E(Xi, Yi) are exchangeable with one an-
other, for i ∈ {1, . . . ,m0,m+ 1}, because each of them only depends on Xi, Yi and on the separate
data points in the sketch φ(Zm0+1, . . . , Zm). Therefore, Em+1 is also exchangeable with the subset
of conformity scores with indices in {i ∈ {1, . . . ,m0} : B(Yi) = B(Ym+1)}. Now, fix any bin
B∗ ∈ B and assume B(Ym+1) = B∗. Now, note that the interval output by Algorithm A3 does not
cover the true frequency fm(Zm+1) if and only if Em+1 > Q̂n,1−α ≥ Q̂nl,1−α(B∗). However, a
standard exchangeability argument for the conformity scores in {i ∈ {1, . . . ,m0} : B(Yi) = B∗}
shows that P[Em+1 > Q̂nl,1−α(B∗) | B(Ym+1) = B∗] ≤ 1−α; for example, see Lemma 1 of [3].
This completes the first part of the proof. The second part with mtrain

0 > 0 follows very similarly:
Proposition 1 implies that (Xmtrain

0 +1, Ymtrain
0 +1), . . . , (Xm0

, Ym0
), (Xm+1, Ym+1) are exchange-

able, and so must be the conformity scores Ei for i ∈ {mtrain
0 + 1, . . . ,m0,m + 1} because each

of them only depends on the corresponding Xi, Yi and on the separate set of observations indexed
by {1, . . . ,mtrain

0 }, as well as on the sketch φ(Zm0+1, . . . , Zm). The rest of the proof is exactly the
same as in the first part because the empirical quantiles Q̂nl,1−α(B) are only computed on subsets
of the data indexed by {mtrain

0 + 1, . . . ,m0}.
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A3 Supplementary figures and tables
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Figure A1: Performance of 95% confidence intervals for random frequency queries, based on syn-
thetic data from a Zipf distribution. The data are sketched with either the vanilla CMS or the CMS-
CU. The results are shown as a function of the Zipf tail parameter a. Other details are as in Figure 1.
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Figure A2: Performance of 95% confidence intervals for random frequency queries, based on syn-
thetic data from a Zipf distribution, sketched with the vanilla CMS. The results are shown as a
function of the Zipf tail parameter a. Other details are as in Figure 1.
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Figure A3: Empirical coverage and length of 95% confidence intervals for random frequency queries
on a synthetic data set sampled from the predictive distribution of a Pitman-Yor process. The data
are sketched with the CMS-CU. The results are shown as a function of the Pitman-Yor process
parameter σ. Other details are as in Figure 1.
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Figure A4: Performance of 95% confidence intervals for random frequency queries on a synthetic
data set sampled from the predictive distribution of a Pitman-Yor process. The results are stratified
by the quintile of the true query frequency. Other details are as in Figure A3.
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Figure A5: Performance of 95% confidence intervals for random frequency queries, based on syn-
thetic data sampled from the predictive distribution of a Pitman-Yor process and sketched with either
the vanilla CMS or the CMS-CU. The results are shown as a function of the Pitman-Yor process pa-
rameter σ. Other details are as in Figure A3.
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Figure A6: Performance of 95% confidence intervals for random frequency queries, based on syn-
thetic data sampled from the predictive distribution of a Pitman-Yor process and sketched with the
vanilla CMS. The results are shown as a function of the Pitman-Yor process parameter σ. Other
details are as in Figure A3.
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Figure A7: True frequency distribution of unique objects in two real data sets. Left: sequenced
SARS-CoV-2 DNA 16-mers. Right: English 2-grams in a corpus of classic English literature.
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Figure A8: Performance of 95% confidence intervals for random frequency queries on SARS-CoV-2
sequence data sketched with the CMS-CU. The results are shown as a function of the hash width
and stratified by the quintile of the true query frequency. Other details are as in Figure 3.
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Figure A9: Performance of 95% confidence intervals for random frequency queries on SARS-CoV-2
sequence data. The data are sketched with either the vanilla CMS or the CMS-CU. The results are
shown as a function of the hash width. Other details are as in Figure 3.
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Figure A10: Median absolute deviation of point estimates for random frequency queries on SARS-
CoV-2 sequence data sketched with the CMS-CU. The results are shown as a function of the hash
width. Other details are as in Figure 3.
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Figure A11: Performance of 95% confidence intervals for random frequency queries on a data set
of 2-grams in classic English literature, sketched with the CMS-CU. The results are are shown as a
function of the hash width and stratified by the quintile of the true query frequency. Other details
are as in Figure 4.
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Figure A12: Performance of 95% confidence intervals for random frequency queries on a data set
of 2-grams in classic English literature. The data are sketched with either the vanilla CMS or the
CMS-CU. The results are shown as a function of the hash width. Other details are as in Figure 4.

10



1

10

100

1000 3000 10000 30000
Hash width

M
A

D

Method

Classical

Bayesian

Bootstrap

Conformal (fixed)

Conformal (adaptive)

Figure A13: Median absolute deviation of point estimates for random frequency queries on a data
set of 2-grams in classic English literature, sketched with the CMS-CU. The results are shown as a
function of the hash width. Other details are as in Figure 4.
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Figure A14: Performance of 95% confidence intervals for random frequency queries, on a sketched
data set of 2-grams in classic English literature, keeping only unique queries. The coverage is
defined as the empirical proportion of unique queries whose frequency is correctly covered by the
output confidence intervals. The data are sketched with the CMS-CU. The results are shown as a
function of the hash width. Other details are as in Figure 3.
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Figure A15: Performance of 95% confidence intervals for random frequency queries, on a sketched
data set of 2-grams in classic English literature, keeping only unique queries. The coverage is
defined as the empirical proportion of unique queries whose frequency is correctly covered by the
output confidence intervals. The results are shown as a function of the hash width. Other details are
as in Figure 4.
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Figure A16: Performance of confidence intervals for random frequency queries, keeping only unique
queries. The coverage is defined as the empirical proportion of unique queries whose frequency is
correctly covered by the output confidence intervals. The results are shown as a function of the Zipf
tail parameter a. Other details are as in Figure 1.
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Table A1: True frequencies, deterministic upper bounds, and 95% lower bounds for some a few
random queries in two sketched data sets. Sketching with CMS-CU with w = 50, 000. Lower
bounds written in green are below the true frequency; those in red are above. For each query, the
highest lowest bound below the true frequency is highlighted in bold.

95% Lower bound

Conformal

Data Frequency Upper bound Classical Bayesian Bootstrap Fixed Adaptive

SARS-CoV-2
AATTATTATAAGAAAG 81 81 26 81 52 50 36
TCAGACAACTACTATT 76 76 21 55 47 45 32
AAAGTTGATGGTGTTG 73 73 18 59 44 42 31
CAATTATTATAAGAAA 63 63 8 48 34 32 26
ATCAGACAACTACTAT 60 60 5 44 31 29 26
ACCTTTGACAATCTTA 55 55 0 52 26 24 27
ATTTGAAGTCACCTAA 55 55 0 55 26 24 27
CATGCAAATTACATAT 54 54 0 54 25 23 26
GAATTTCACAGTATTC 54 54 0 54 25 23 27
TTTGTAGAAAACCCAG 53 53 0 53 24 22 27

AGTTGCAGAGTGGTTT 24 24 0 13 0 0 20
TCTTCACAATTGGAAC 24 24 0 12 0 1 20
TTCTGCTCGCATAGTG 24 24 0 12 0 0 20
CTACTTTAGATTCGAA 23 23 0 11 0 0 19
GCTGGTGTCTCTATCT 23 23 0 23 0 1 19
TTCTAAGAAGCCTCGG 23 24 0 14 0 0 20
GGGCTGTTGTTCTTGT 22 24 0 12 0 0 20
ACGTTCGTGTTGTTTT 20 20 0 20 0 0 16
GAAGTCTTTGAATGTG 20 20 0 20 0 0 16
CAAACCTGGTAATTTT 3 3 0 3 0 0 0

Literature
of the 12565 12568 12513 12544 12557 12556 12562
in the 6188 6190 6135 6169 6179 6179 6180
and the 6173 6175 6120 6151 6164 6164 6165
the of 6015 6017 5962 5990 6006 6006 6007
the lord 4186 4195 4140 4165 4184 4184 4184
to the 3465 3467 3412 3445 3456 3456 3463
the and 2250 2251 2196 2227 2240 2240 2248
all the 2226 2230 2175 2207 2219 2219 2224
and he 2169 2173 2118 2153 2162 2162 2167
to be 2062 2064 2009 2043 2053 2053 2060
man on 22 29 0 10 18 18 18
their hand 22 24 0 9 13 13 0
no need 20 28 0 9 17 17 16
and brother 12 14 0 2 3 3 0
miss would 10 13 0 3 2 2 0
i please 8 12 0 3 1 1 1
also how 3 13 0 2 2 2 0
in under 3 9 0 2 0 0 0
ten old 3 6 0 1 0 0 0
fault he 1 9 0 1 0 0 0
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Table A2: True frequencies, upper and lower bounds for a few random queries in two sketched data
sets. Hash width w = 50, 000. Other details are as in Table A1.

95% Lower bound

Conformal

Data Frequency Upper bound Classical Bayesian Bootstrap Fixed Adaptive

SARS-CoV-2
AATTATTATAAGAAAG 81 209 0 4 0 0 18
TCAGACAACTACTATT 76 213 0 8 0 0 18
AAAGTTGATGGTGTTG 73 130 0 2 0 1 18
CAATTATTATAAGAAA 63 233 0 4 11 6 19
ATCAGACAACTACTAT 60 179 0 2 0 0 18
ACCTTTGACAATCTTA 55 292 0 15 70 67 22
ATTTGAAGTCACCTAA 55 258 0 11 36 31 20
CATGCAAATTACATAT 54 204 0 3 0 0 18
GAATTTCACAGTATTC 54 260 0 12 38 35 22
TTTGTAGAAAACCCAG 53 246 0 7 24 18 20

ATGCTGCAATCGTGCT 24 139 0 2 0 0 17
ATTTCCTAATATTACA 24 92 0 1 0 0 17
CTCTATCATTATTGGT 24 121 0 1 0 0 17
TGTTTTATTCTCTACA 24 199 0 3 0 1 19
CAGTACATCGATATCG 23 119 0 2 0 0 17
TAATGGTGACTTTTTG 23 92 0 1 0 0 17
CAACCATAAAACCAGT 22 105 0 1 0 0 17
AGTTATTTGACTCCTG 21 97 0 1 0 1 18
ATAAAGGAGTTGCACC 19 218 0 5 0 0 18

Literature
of the 12565 12630 12086 12325 12463 12454 12563
in the 6188 6242 5698 5906 6075 6067 6096
and the 6173 6314 5770 5972 6147 6139 6169
the of 6015 6162 5618 5834 5995 5985 6014
the lord 4186 4289 3745 3975 4122 4114 4185
to the 3465 3558 3014 3217 3391 3380 3464
the and 2250 2413 1869 2081 2246 2237 2249
all the 2226 2346 1802 1993 2179 2170 2225
and he 2169 2293 1749 1937 2126 2117 2168
to be 2062 2121 1577 1770 1954 1945 2061
very for 15 59 0 2 0 0 0
and faithful 14 94 0 3 0 0 0
but found 9 74 0 2 0 0 0
my speech 6 98 0 3 0 0 0
of eight 5 66 0 2 0 0 0
and soul 4 140 0 6 0 0 0
her prow 3 79 0 2 0 0 0
usual as 2 56 0 2 0 0 0
a invitation 1 80 0 2 0 0 0
angular log 0 146 0 5 0 0 0
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A4 Additional experiments with two-sided confidence intervals

This section describes additional numerical experiments with synthetic data similar to those de-
scribed in Figures 1 and A3, constructing two-sided instead of one-sided confidence intervals. For
simplicity, we focus on one-sided 95% conformalized bootstrap confidence intervals based on the
simpler Bonferroni approach described in Section A1.4.2. The performance of these intervals are
compared to those of one and two-sided standard bootstrap confidence intervals obtained with the
method of [5].

Figure A17 reports on results based on data generated from a Zipf distribution and sketched with
the CMS-CU, similarly to Figure 1. Here, all methods achieve the desired 95% marginal coverage
level, but the conformal confidence intervals are shorter when the Zipf tail parameter a is larger and
hash collisions become rarer, consistently with Figure 1. In this interesting to note that the two-
sided conformal confidence intervals are much narrower than their one-sided counterparts when a
is small and hash collisions are very common, but this is not true if a is large. The latter is likely
a limitation of the specific construction we have adopted, described in Section A1.4.2, which may
be too conservative in some cases due to the Bonferroni correction. A suitable implementation of
the more sophisticated conditional histogram [4] approach described in Section A1.4.1 should be
expected to produce two-sided intervals that are always narrower than their one-sided counterparts.
Figure A18 reports on results similar to those in Figure A17, with the only difference that now the
data are sketched with the vanilla CMS instead of the CMS-CU.
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Figure A17: Performance of 95% one-sided and two-sided confidence intervals with data from a
Zipf distribution, sketched with the CMS-CU. The results are shown as a function of the Zipf tail
parameter a. Standard errors would be too mall to be clearly visible in this figure, and are hence
omitted. The two dashed curves for the two-sided intervals are nearly indistinguishable from one
another for a < 1.3. Other details are as in Figure 1.
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Figure A18: Performance of 95% one-sided and two-sided confidence intervals with data from a
Zipf distribution, sketched with the vanilla CMS. The results are shown as a function of the Zipf tail
parameter a. The two dashed curves for the two-sided intervals are nearly indistinguishable from
one another for a < 1.1. Other details are as in Figure A17.

Figure A19 reports on results based on data generated from a Pitman-Yor process prior and sketched
with the CMS-CU, similarly to Figure A3. As expected, the conformal confidence intervals are
narrower than the bootstrap ones. Further, two-sided confidence intervals are much more efficient
(narrower) compared to their one-sided counterparts, especially if the Pitman-Yor parameter σ is
large and the number of hash collisions is high. Figure A20 reports on analogous results obtained
with data sketched through the vanilla CMS instead of the CMS-CU.
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Figure A19: Performance of 95% one-sided and two-sided confidence intervals with data set sam-
pled from the predictive distribution of a Pitman-Yor process and sketched with the CMS-CU. The
results are shown as a function of the Pitman-Yor process parameter σ. The two dashed curves
for the two-sided intervals are nearly indistinguishable from one another. Other details are as in
Figure A3.
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Figure A20: Performance of 95% one-sided and two-sided confidence intervals with data set sam-
pled from the predictive distribution of a Pitman-Yor process and sketched with the vanilla CMS.
The results are shown as a function of the Pitman-Yor process parameter σ. Other details are as in
Figure A19.
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